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Abstract
In this paper we advocate for a hyperparametric
approach to learn diffusion in the independent
cascade (IC) model. The sample complexity of
this model is a function of the number of edges in
the network and consequently learning becomes
infeasible when the network is large. We study
a natural restriction of the hypothesis class using
additional information available in order to dra-
matically reduce the sample complexity of the
learning process. In particular we assume that dif-
fusion probabilities can be described as a function
of a global hyperparameter and features of the
individuals in the network. One of the main chal-
lenges with this approach is that training a model
reduces to optimizing a non-convex objective. De-
spite this obstacle, we can shrink the best-known
sample complexity bound for learning IC by a
factor of |E|/d where |E| is the number of edges
in the graph and d is the dimension of the hyper-
parameter. We show that under mild assumptions
about the distribution generating the samples one
can provably train a model with low generaliza-
tion error. Finally, we use large-scale diffusion
data from Facebook to show that a hyperparamet-
ric model using approximately 20 features per
node achieves remarkably high accuracy.

1. Introduction
For well over a decade there has been extensive work on
learning social network influence models (Liben-Nowell
& Kleinberg, 2003; Netrapalli & Sanghavi, 2012; Abrahao
et al., 2013; Friggeri et al., 2014; Anderson et al., 2015;
Subbian et al., 2017), and the independent cascade model
in particular (Saito et al., 2008; Gomez Rodriguez et al.,
2010; Goyal et al., 2010; Gomez Rodriguez et al., 2011;
Du et al., 2014; Lemonnier et al., 2014; Bourigault et al.,
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Figure 1. The plot shows the empirical CDF of the number of per
edge interactions in Facebook (Events dataset, see Section 5.3).

2014; Narasimhan et al., 2015). Independent cascade (IC)
was popularized by the seminal work of Kempe, Kleinberg,
and Tardos (Kempe et al., 2003) and is a stochastic model
that predicts the likelihood of information diffusing from
one individual to another in a social network. In this model
for every pair of individuals connected in the network u, v
there is a probability pu,v that v adopts the behavior of u
(i.e. information is diffused from u to v).

The main challenge with learning the IC model is that the
sample complexity is often overwhelmingly large or sim-
ply infeasible. To illustrate this point, Figure 1 shows the
cumulative distribution of edge interactions for millions of
public events on Facebook over varying periods of time,
ranging from one week to two months (see detailed descrip-
tion of the dataset in Section 5). The vertical line marks the
minimal number of observations per edge required to infer
the likelihood of influence with error 0.1 and confidence
95%. In this data set, more than 90% of the edges do not
have enough observations to learn the respective diffusion
probabilities accurately, even over a period of two months.
Furthermore, in a single week (the timeframe in which in-
ference about an event is often most relevant), none of the
edges in the data set have sufficiently many observations.

Given that even with the data available on Facebook there
are not enough observations to learn the model, one needs
to impose additional assumptions. A natural approach is to
assume that the diffusion probabilities are a function of net-
work and individuals’ characteristics and some underlying
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global hyperparameter θ. In the case of events for exam-
ple, it seems reasonable that influence could be estimated
as a function of some global unknown multidimensional
parameter θ and individuals’ characteristics such as loca-
tion, gender, and age, and topological features like the ratio
between the intersection and the union of the individuals’
neighborhoods. Using xu,v to denote the characteristics
of u and v, the hyperparametric approach assumes that the
probability of u to influence v denoted pu,v is not arbitrary
and can be faithfully estimated via some function p that
maps θ and xu,v to [0, 1], i.e. pu,v = p(θ,xu,v). Given a
set of characteristics, learning the IC model then reduces to
recovering the underlying hyperparameter θ.

Intuitively, learning a hyperparametric model necessitates
far fewer samples than a general diffusion model for two
main reasons. First, since the diffusion probabilities are
correlated, each observation provides information about all
edges in the network. Second, it seems reasonable that the
sample complexity of learning the hyperparameter should
largely depend on the dimension of the hyperparameter
rather than the number of edges the network.

A simple example. To solidify our intuition, consider a
simple bipartite network G = (U, V,E) where nodes in U
attempt to activate nodes from V as depicted in Figure 1.1
and each activation attempt together with its outcome (label)
constitutes one sample. Our goal is to find a p̂u,v for every
edge (u, v) ∈ E, s.t. with prob. at least 1− δ for all edges:

|pu,v − p̂u,v| ≤ ε

Hoeffding’s inequality and a union bound imply that
Θ
(
|E|
ε2 log |E|δ

)
samples are necessary and sufficient to

learn the diffusion probabilities on all the edges in the graph.
In comparison, suppose that the diffusion probability of
each edge is a function of a hyperparameter θ ∈ [0, 1]d and
some known features of the edge xu,v ∈ [0, 1]d as follows:

pu,v =
1

1 + e−〈θ,xu,v〉

Then, learning the diffusion probabilities becomes a logistic
regression problem and thus only O

(
d
ε2 log d

δ

)
samples are

required, independent of the number of edges. This reduces
the sample complexity by a factor of |E|d which is quite
dramatic when the number of edges in the network |E| is
large and the dimension of the hyperparameter d is small.

Beyond potential improvements in sample complexity, a
hyperparametric model is convenient due to the structure it
imposes. A recent line of work on influence maximization
in bandit models (Wen et al., 2015; Vaswani et al., 2017),
assumes that the diffusion probabilities are a linear function
of edge features, i.e. pu,v = 〈θ, xu,v〉 and this structure is
leveraged in order to develop faster algorithms.

U

V

Figure 2. Learning the diffusion probabilities on simple bipartite
graphs. Green symbolizes active nodes while red inactive ones.

1.1. A Hyperparametric Approach

Our goal in this paper is to explore a hyperparametric ap-
proach for learning the independent cascade diffusion model.
Doing so requires addressing three open questions:

• Does restriction to a low-dimensional hyperparameter
substantially decrease the sample complexity? As dis-
cussed above, the motivation for a hyperparametric ap-
proach is that intuitively its sample complexity should
depend on the dimension of the hyperparameter rather
than the number of edges. While intuitive, when the
indegree of nodes is greater than 1, minimizing empiri-
cal risk becomes a non-convex optimization problem
and analyzing sample complexity is not trivial;

• Can a hyperparametric model be learned efficiently?
As learning a hyperparametric model requires solving
a non-convex optimization problem, it is not clear it
can be learned efficiently, in theory or in practice; 1

• Are low-dimensional hyperparametric models predic-
tive? Assuming that sample complexity heavily de-
pends on its dimension, our approach is relevant only
if reasonable estimates of the IC model are achievable
with a low-dimensional hypothesis class.

In this paper we address the above questions. We first
show that the sample complexity can indeed be dramati-
cally reduced when restricting the hypothesis class to a low-
dimensional hyperparameter. Specifically, when comparing
with the state-of-the-art bound for learning the independent
cascade model (without the hyperparametric assumption)
we show that the sample complexity can be reduced by a
factor of |E|/d, as foreshadowed by the example above.

Despite being a non-concave optimization problem we show
that the problem has a great deal of structure. Under mild
assumptions about the distribution generating the samples,
we show how this structure can be leveraged to efficiently
train a model with arbitrarily small generalization error.

Lastly, we show that the hyperparametric approach does
work in practice. To do so, we ran experiments on large
scale cascades recorded on the Facebook social network.
We show that with a hyperparameter of dimension 40 one

1We note that even without the hyperparametric assumption
PAC learning the IC model is a non-convex optimization prob-
lem (Narasimhan et al., 2015).
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can estimate the diffusion probabilities with remarkably
high accuracy. Naturally, there are data sets that do not con-
tain individuals’ characteristics. Nonetheless, most social
networking services include useful information about its
members that help predict diffusion, and the topology of the
network alone often may serve as a good proxy.

2. The Hyperparametric Model
A social network is a finite directed graph G = (V,E),
where the set of nodes V represents the individuals in the
network and the set of edges E represents their social links.

Independent Cascade (IC) model. The IC model as-
sumes that every node v ∈ V can either be active or inactive.
All nodes begin as inactive. At time step t = 0 a subset of
the nodes X called the seed becomes active, and activations
in the network continue according to the following stochas-
tic process: Each node u that became active at time step
t = τ attempts to influence every one of its neighbors v only
once at time step t = τ + 1 independently, and succeeds
with some probability pu,v. A node v that became active
during the process will never go back to being inactive. Our
work generalizes the standard IC model by assuming that
the probabilities pu,v are not arbitrary but correlated and
specifically consequences of nodes’ features. This is the
hyperparametric assumption, as described below.

Hyperparametrization. Every node u ∈ V is associated
with a vector of features containing information about it.
Every edge (u, v) ∈ E, is also associated with a feature vec-
tor, the concatenation of the feature vectors of its endpoints,
denoted by xu,v. The diffusion probability of each edge
is a function of a global hyperparameter θ and its feature
vector. Formally, we assume that there exists a function
p : Rd × Rd → [0, 1] s.t. pu,v = p(θ, xu,v) for any edge
(u, v) ∈ E. In this work we define p as the sigmoid function:

pu,v = σ(θ, xu,v) =
1

1 + e−〈θ,xu,v〉
.

We restrict the hyperparameter θ to lie in a hypothesis class
H = [−B,B]d for some constant B > 0, and w.l.o.g. we
assume that the feature vector of every edge lies in [0, 1]d.
Additionally, we assume that pu,v is bounded away from 0
and 1 for all edges, i.e. pu,v ∈ [λ, 1− λ], for some λ > 0.

Further discussion about the hyperparametric model and the
choice of the sigmoid function can be found in Appendix A.

Samples. The input to a learning algorithm is a collec-
tion of labeled samples. We assume that there is some
unknown distribution D0 over subset of nodes, that acti-
vates the initial seed of the cascade, V0. Subsequently, as
we discussed before, we can partition V \ V0 into subsets
of nodes V1, V2, . . . , Vn−1 that become activated at steps

τ = 1, 2, . . . , n− 1, respectively 2. Notice that the cascade
can be further decomposed into a sequence of simpler sam-
ples as follows: for every τ ∈ {0, 1, . . . , n− 1} consider all
the nodes v /∈ ∪τ−1

t=0 Vt that are within distance of 1 from Vτ .
For every v that became activated by Vτ (i.e. v ∈ Vτ+1) cre-
ate the sample ((Vτ , v), 1), and for every v that remained in-
active create the sample ((Vτ , v), 0). Throughout this paper
we assume that the input to our learning algorithm is of the
form {(Xi, vi), yi}mi=1 where Xi ⊆ V is a subset of active
nodes, vi is a node in distance 1 from Xi and yi ∈ {0, 1}
is its label. In Appendix C we map every seed-generating
distribution D0 to a sample-generating distribution D.

Log-likelihood of a sample. For every node v, the event
“v becomes influenced by X , when the hyperparameter has
value θ” is a Bernoulli random variable with probability of
success fθv (X) = 1−

∏
u∈X∩N(v)(1−pu,v(θ)) whereN(v)

is the set of in-neighbors of node v. Hence, the likelihood
of a sample s = ((X, v), y), where v /∈ X is fθv (X)y ·

(
1−

fθv (X)
)1−y

, and the respective log-likelihood of s is:

L(s, θ) = y ln(fθv (X)) + (1− y) ln(1− fθv (X)) (1)

We want to recover a hyperparameter θ that yields accurate
estimates. To do so, given a training set S = {si}mi=1, we
seek the most probable hyperparameter generating S by
maximizing the cumulative log-likelihood function:

θ̂ = arg max
θ∈H

1

m

m∑
i=1

L(si, θ) (2)

Learning a diffusion model. Our goal is to bound the
sample complexity, i.e. the number of i.i.d. samples gen-
erated by a distribution D that we need to observe to PAC
learn H. That is, guarantee that supθ∈H Es∼D[L(s, θ)] −
Es∼D[L(s, θ̂)] ≤ ε, with probability at least 1 − δ (see
definition of PAC learnability in Appendix B).

Notice that while there are |E| edges in the network, which
translates to |E| diffusion probabilities, in the optimization
problem (2) there are only d parameters to be learned.

We would like to note that PAC learning guarantees are
required to hold for any distribution D that generates the
data. Hence, it is easy to see that the diffusion probabilities
or the hyperparameter θ are not learnable without extra
assumptions on D. For details refer to Appendix D.

3. Learning a Hyperparametric Model
In this section we prove Theorem 2 which is the main
technical result of the paper. The main takeaway is that
a hyperparameteric approach makes learning an influence
model feasible. Informally, the theorem states that the num-
ber of samples required to (ε, δ)-PAC learn the model is

2The influence process terminates after at most |V | − 1 steps.
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Õ
(

∆2
(

∆·d+log 1
δ

ε2

))
, where ∆ is the maximum degree in

the network and d is the dimension of the hyperparameter.
As we later show in the experiments section, very small
constant values of d suffice to learn an influence model with
almost no error on real data. This is in sharp contrast to
the best sample complexity guarantees due to (Narasimhan
et al., 2015) for learning the model without the hyperpara-
metric assumption which is Õ

(
∆2
(

∆·|E|+log 1
δ

ε2

))
.

Furthermore, imposing assumptions on the distribution D,
can reduce the dependence on ∆ making the sample com-
plexity (almost) independent of the size of the network.

3.1. Sample Complexity via Radamacher Complexity

The main technical challenge is due to the fact that the MLE
objective in (2) is non-concave and we cannot immediately
derive sample complexity bounds from convergence guar-
antees of Stochastic Gradient Descent for example. Instead,
to analyze the sample complexity we will argue about the
Rademacher complexity of our hypothesis class by using
covering numbers. Informally, the Rademacher complexity
measures the expressive power of a hypothesis classH with
respect to a probability distribution and the covering number
of a set is the number of balls of a certain radius whose union
contains the set (see Definitions 2 and 3 in Appendix B).
Recall that the sample complexity of a hypothesis class can
be derived from its Rademacher complexity.

Theorem 1 ((Shalev-Shwartz & Ben-David, 2014)). As-
sume that for every sample s ∼ D and every θ ∈ H
we have that: |L(s, θ)| ≤ C. Let S ∼ Dm and θ̂ =
arg maxθ∈H

{
1
m

∑m
i=1 L (si, θ)

}
. Then with probability at

least 1− δ over the choice of S we have that:

Es∼D[L(s, θ̂)] ≥ sup
θ∈H

Es∼D[L(s, θ)]

−R(S,H)−O

C
√

log 1
δ

m


whereR(S,H) is the Rademacher complexity of the class
H with respect to S.

Hence, our goal reduces to boundingR(S,H) for a training
set S of size m. We do so by discretizingH by ε, and prove
that if the discretization is dense enough, then we do not sac-
rifice a lot by searching for the most likely hyperparameter
in the discrete spaceHε instead of the continuousH.

To this end, we construct an ε-cover of the hypothesis class
H = [−B,B]d. Proving that the log-likelihood of any fixed
sample s, is bounded and Lipschitz3 in θ with respect to

3intuitively for a Lipschitz function a small change in the argu-
ment cannot lead to a large change in the value of the function, see
Definition 4, Appendix B.

the `1-norm, where the Lipschitz parameter depends on λ
(Lemma 3 in Appendix E), allows us to translate the cover
of the space of the hyperparameter, into a cover of the space
of the log-likelihood functions, by slightly increasing the
number of points we include in it, as stated in Lemma 1.
The proof is deferred to Appendix E.

Lemma 1. Let S = {((Xi, vi), yi)}mi=1 be a non-empty set
of samples and let ∆S = maxs∈S |X∩N(v)| (maximum in-
degree of a node that was activated, across all samples). The
covering number of the class of all log-likelihood functions
for S is O

((
Bρd
λ∆S ε

)d)
, i.e. we can choose a discrete cover

Hε ⊆ H of size O
((

Bρd
λ∆S ε

)d)
, such that for all θ ∈ H,

there exists a θε ∈ Hε with

sup
s∈S
|L(s, θ)− L(s, θε)| ≤ ε.

Given the above lemma, we can invoke Massart’s lemma
(Lemma 5 in Appendix E) onHε which upper bounds the
Rademacher complexity of finite hypothesis classes. Subse-
quently, we use Lemma 4 (Appendix E) to upper bound the
Rademacher complexity ofH from that ofHε. We are now
ready to prove the main theorem of the section.

Theorem 2 (Sample Complexity of MLE). Let G = (V,E)
be a directed graph and D be a distribution that gen-
erates samples of the form s = ((X, v), y). Let ∆ =
maxs∼D |X ∩N(v)|. Then, for any ε, δ ∈ (0, 1) , if we use
Maximum Likelihood Estimation on a training set of size
m ≥ m(ε, δ) = O

(
∆2 log2(1/λ)d log(Bρd/λ∆ε)+log(1/δ)

ε2

)
samples drawn i.i.d. from D, with probability at least 1− δ
(over the draw of the training set) it holds:

sup
θ∈H

Es∼D[L
(
s, θ
)
]− Es∼D[L

(
s, θ̂
)
] ≤ ε.

Proof. Define ∆ := maxs∼D |X ∩N(v)|, i.e. the maxi-
mum active in-degree that any sample generated by D can
have. Then, applying Lemma 1 we can create a discrete
ε-cover of the space of the log-likelihoods, Hε ⊆ H, of
size |Hε| = O

((
Bρd
λ∆ε

)d)
for any training set S of any size.

Invoking Lemma 4 (Appendix E), we can associate the
Rademacher complexity ofH with that of its coverHε, for
any S and any ε > 0, as follows:

R(S,H) ≤ R(S,Hε) + 2ε.

Hence, we can focus on bounding the Rademacher com-
plexity of Hε instead of that of H. Since Hε is finite, the
well-known Massart’s lemma apply yielding:

R(S,H) ≤ R(S,Hε) + 2ε

≤ 2 max
θ∈Hε

∣∣∣∣∣∣(L(si, θ)
)m
i=1

∣∣∣∣∣∣
2

√
2 log(|Hε|)

m
+ 2ε

≤ 2
√
m∆ ln

1

λ
·
√

2 log(|Hε|)
m

+ 2ε
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= 2∆ ln
1

λ

√
2 log(|Hε|)

m
+ 2ε

= O
(

∆ log
1

λ

√
d log(Bρd/λ∆ε)

m

)
+ 2ε

where the first inequality holds because of Lemma 4 (dis-
cretization), the second because of Massart’s lemma (finite
hypothesis class), the third because of Lemma 3 (bounded
L), and the last one because of Lemma 1 (covering number).

Setting ε = 1/m yields: R(S,H) =

O
(

∆ log(1/λ)
√

d log(Bρdm/λ∆)
m

)
. Now using the

generalization bound of Theorem 1, one can see that in or-
der to achieve Es∼D[L(s, θ̂)] ≥ supθ∈H Es∼D[L(s, θ)]−ε,
with probability at least 1 − δ, we need S to be of size
m = O

(
∆2 log2(1/λ)d log(Bρd/λ∆ε)+log(1/δ)

ε2

)
, which

concludes the proof.

Given that B and λ are constants the above bound simplifies
to Õ

(
∆2
(

∆·d+log 1
δ

ε2

))
, which allows immediate compar-

ison with the bounds derived in (Narasimhan et al., 2015).
Additionally, when the degree of every node is constant
(which is the case for real social networks like Facebook)
or when the distribution D activates only seeds of constant
size, ∆ is a constant and the sample complexity becomes
Õ
(
d+log 1

δ

ε2

)
, independent of the size of the network.

4. Algorithms
As we mentioned in the previous section, the maximization
problem (2) is non-concave and it cannot be solved effi-
ciently. However, the cumulative log-likelihood function we
aim to optimize has a great deal of structure we can utilize.

To understand this structure, note that there are only three
distinct cases for a sample s = ((X, v), y) in the training set
S: (i) node v was not influenced, (ii) node v was influenced
and there is only one neighbor of v in X and (iii) node v
was influenced and there is more than one neighbor of v in
X . The only case that makes the respective log-likelihood
non-concave is (iii) since we are unable to identify which
of the parents of v actually influenced it and how to update
the hyperparameter (equation (1) yields that formally). We
refer to such samples as obfuscated.

One can partition S into So and S \ So where So
contains the obfuscated samples. We can then write
f̃(θ) := 1

m

∑
s∈S L(s, θ) = 1

m

∑
s∈S\So L(s, θ) +

1
m

∑
s∈So L(s, θ) =: f(θ) + ξ(θ). Optimizing f̃ can be

perceived as optimizing a concave function f under noise
ξ. The magnitude of the noise depends on the probability
of seeing an obfuscated sample, which characterizes the
difficulty of the optimization problem and can be computed
in simple cases (see e.g. Lemma 8 in Appendix F).

There are three distinct approaches that we can follow:

1. Ignore the obfuscated samples and optimize f instead
of f̃ , using standard methods like Gradient Descent.
The fact that the likelihood of each sample is bounded
(Lemma 3 in Appendix E) will assure that the recov-
ered solution will approximately optimize f̃ as well.

2. Optimize f̃ directly by applying techniques from (Bel-
loni et al., 2015) for concave optimization under noise.

3. Attempt to optimize f̃ using standard concave opti-
mization techniques (for example Stochastic Gradient
Descent (SGD) which is widely used in the training of
deep networks, a non-convex optimization problem).

The first two methods provide theoretical guarantees for
noise of small magnitude, if the noise is large however,
they can lead to large error. See Appendix F for a detailed
description of these two approaches. The third heuristic
approach works remarkably well in practice, even when the
noise is large, as the experiments of Section 5.1 demonstrate.
Additionally, in Section 5.2 we include experiments indi-
cating that, even if the noise is small, it is still in our best
interest to utilize all the available samples since the shortage
of the training set hurts us more than non-concavity.

5. Experiments
We conduct two sets of experiments. First, using synthetic
datasets we show that if the hyperparametric assumption
holds in a network, we can accurately learn the edge prob-
abilities despite the non-concavity of (2), and significantly
outperform methods that do not include information about
the node features, for small training sets4. We also investi-
gate which properties of the network and the model affect
the convergence rate. Secondly, we validate our approach
using real Facebook data, by showing that low-dimensional
hyperparametric models are predictive in practice.

5.1. Learning the Diffusion Probabilities

Real Graphs: We also use the “ego-facebook”, “wiki-Vote”,
“bitcoin-otc” and “bitcoin-alpha” datasets from (Leskovec &
Krevl, 2014), which are publicly available real-world social
networks, enabling the reproducibility of our experiments.

Graphs. We synthetically generate the social graph and the
hyperparameter that determines the diffusion probabilities.

Synthetic Graphs: We simulate a social network using stan-
dard graph models. Since different models yield graphs
with different topology, we selected four of the widely used
ones: Barabási-Albert, Kronecker, Erdös-Rényi and the con-

4Notice that learning the diffusion probabilities allows us to
compute other quantities of interest as well, like the probability of
a node becoming influenced, the final size of a cascade initiated
from a given set, or the influence function.
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Figure 3. Learning the diffusion probabilities with vs without the hyperparametric assumption.

figuration model. For a more detailed description of these
models and the construction process refer to Appendix G.

Experimental setup. We generate 15 random features in
[0, 1] for every node (we found consistent results across a
large range of features). We define the first 10 of them to be
the ones in which the hyperparametric assumption is based,
and the rest is redundant information (30 features for each
edge, where only 20 of them are important). Additionally,
we generate a random hyperparameter in [−1, 1]d (d = 20).
We use the sigmoid function over the important features
of each edge e and the hyperparameter to compute pe, as
described in Section 2, imposing correlation between the
probabilities of different edges by construction.

Subsequently, we generate 100,000 samples, and attempt to
solve the optimization problem (2) using SGD, initializing
the hyperparameter to 0 and using a learning rate of 1/

√
T ,

where T is the size of the training set. Details on how we
create the training set can be found in Appendix G.

Benchmarks. We tested the hyperparametric model against
the following benchmarks:
• Omniscient MLE: The true diffusion probability of an

edge is approximated by p̂e = n+
e /ne, where n+

e is
the number of activations of edge e, while ne is the
total number of exposures of e (activation attempts).
Here, we assume that for every sample ((X, v), y) we
observe the activation or not of all the edges e = (u, v),
where u is an active neighbor of v. This is a strong
benchmark since in practice, we can observe whether
v became active but not which node activated it.

• Non-hyperparametric MLE: We implemented the al-
gorithm of (Narasimhan et al., 2015), that allows one

to learn the diffusion probabilities only by observing
whether a node v was influenced by the seed X or not.
• Hyperparametric MLE, reduced information: We com-

pare ourselves against a hyperparametric model that is
unaware of the exact features that are important, and
selects only a subset of them. Here we select only 5
out of 10 important features of every node.

• Hyperparametric MLE, augmented information: Simi-
larly, we compare ourselves against a hyperparametric
model that is unaware of the important features, thus it
selects all the available ones (15 features per node).

Results. We repeat each experiment 10 times, and provide
the mean and the standard deviation in Figure 3. The y-axis
corresponds to 1

|E|
∑
e∈E |pe − p̂e|, the average absolute

error between the real probability (known by construction)
and the empirical one across the network. In all networks,
the hyperparametric approach greatly outperforms the non-
hyperparametric benchmarks, even assuming omniscience.

Note that in the non-hyperparametric benchmarks, since
samples do not carry global information, there exist edges
that have no exposures given the samples that we have seen
so far. In that case, we define p̂e = 0. This explains the
initial increase in the error in the omniscient MLE since, if
pe is small and the first exposure of edge e is an activation,
the error on e increases from pe to 1 − pe. Once we see
enough samples, p̂e converges to pe. One can also notice,
the effect of omniscience since it leads to faster convergence
than actual implementable non-hyperparametric methods.

Regarding the two benchmarks that involve the hyperpara-
metric assumption it is worth noting that reduced informa-
tion does not allow convergence to 0 error, while augmented



Learning Diffusion using Hyperparameters

●

●

●

●

●

●

●

●

●

●
●

0.025

0.050

0.075

0.100

1 100 1000 10000 1e+05
Number of samples

A
ve

ra
ge

 e
rr

or

● p = 0.00
p = 0.25
p = 0.50
p = 0.75
p = 1.00

●

●

●

●

●

●

●

●

●

●●

0.00

0.05

0.10

0.15

0.20

0.25

1 100 1000 10000 1e+05
Number of samples

A
ve

ra
ge

 e
rr

or

● # edges =  5000
# edges = 10000
# edges = 20000
# edges = 40000
# edges = 80000

●

●

●

●
●

●

●

●
● ●●

0.0

0.1

0.2

1 100 1000 10000 1e+05
Number of samples

A
ve

ra
ge

 e
rr

or

● noise = 0.000
noise = 0.025
noise = 0.050
noise = 0.100
noise = 0.200

●

●

●

●

●
●

●
●

● ●●

0.05

0.10

0.15

0.20

1 100 1000 10000 1e+05
Number of samples

A
ve

ra
ge

 e
rr

or

● # features =  3
# features =  6
# features =  9
# features = 12
# features = 15

(a) Samples vs Concavity (b) Graph density (c) Noisy model (d) Feature selection

Figure 4. Characteristics of the graph or the model that affect convergence.

information does (see also Figure 4d for a more detailed
investigation). Finally, the initial difference in the errors
of different networks is related to how good predictor the
initialization of SGD is (i.e. θ = 0), as well as how large the
average diffusion probability in the network is. The learn-
ing effect is evident and universal though, since the error
converges to 0 independently of the underlying network.

5.2. Convergence Rate Investigation

In these experiments we use Erdös-Rényi graphs with 1000
nodes and 20000 edges (unless otherwise stated).

Samples vs Concavity. In Section 4 we classified the sam-
ples into categories based on whether they yield concave
log-likelihood or not. Recall that if we ignore the obfus-
cated samples, the optimization problem becomes concave.
A natural question is whether sacrificing samples for con-
cavity leads to faster convergence. To this end, we generate
samples and if a sample is obfuscated, we discard it with
probability p ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. The results can
be found in Figure 4a. It is evident that even though our opti-
mization problem becomes concave and hence theoretically
easier to solve, the price due to data shortage is huge.

Approximate models. Here we investigate how properties
of the graph or the model affect the convergence rate.
• Graph Density: We create an Erdös-Rényi graph with

1000 nodes and varying number of edges, exploring
how does graph density affect the convergence of the
error. As the density increases, so does the average
degree in the network and, as a result, the number of
obfuscated samples. Hence, the information obtained
becomes “noisier” and convergence is slower.

• Noisy model: Until now we assumed that the hyper-
parametric model is the ground truth. Here we re-
lax this assumption. We generate each edge probabil-
ity as before, and subsequently add noise uniform in
[−N,N ], for increasing values ofN . Now, the average
error does not converge to 0 and increases with N .

• Features Effect: In many cases we might not know the
exact features that support the hyperparametric model.

We explore the effect of this lack of information by
including varying number of significant features in our
model. Our results show that in terms of convergence
more information does not hurt, despite being more
costly computationally. However, if we fail to include
all the significant features, we do not converge to 0
error, and the error grows with the removal of features.

The results can be found in Figure 4b-d. In all the cases the
way that we enforced the hyperparametric assumption, cre-
ated the samples and ran SGD is the same as in Section 5.1.

5.3. Are Low-dimensional Models Predictive?

Importantly, we evaluate the validity of the hyperparametric
assumption on real cascade data. To this end, we use the fol-
lowing aggregated and public Facebook data sets containing
only de-identified data (i.e. they don’t include personally
identifying information about individuals in the dataset).

Events. In Facebook a user can invite a set of other users
for an event, who can then forward the invite to their friends
to join. Moreover, when friends join an event a user may
be notified in their Facebook feed and join in turn. The
cascade in this scenario is an event and an exposure is either
a direct invite or a feed notification. A user is influenced
if she marked herself as “going” to the event. This dataset
is a random sample of events that happened over a two-
month period in late 2017. We have included only public
events that are visible to everyone and also excluded users
who created the event or joined without being invited. The
number of cascades in our dataset is roughly 3 million with
90 million users participating and 130 million exposures.

Video and Photo Reshares. A cascade in this dataset is a
video or photo content. Whenever a user watches a video
(photo) posted from a friend we consider it as an exposure
and when the user shares that video (photo) after watching
we consider it as an adoption (we consider only videos that
were explicitly seen and not auto-played). We collected
a random sample of photo/video data on a random day in
January 2018, and included only public photo and video
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Figure 5. Learning with the hyperparametric assumption in Facebook cascade data sets.

●

●
● ●

● ● ● ● ●

0.020

0.025

0.030

0.035

500 1000 2500 5000 10000
Number of samples

A
ve

ra
ge

 e
rr

or

Features_Percentile
● 5

10
20
50
90 ●

● ●
● ● ● ● ● ●

0.07

0.08

0.09

0.10

0.11

0.12

500 1000 2500 5000 10000
Number of samples

A
ve

ra
ge

 e
rr

or

Features_Percentile
● 5

10
20
50
90

●
● ● ● ● ● ● ● ●

0.12

0.13

0.14

500 1000 2500 5000 10000
Number of samples

A
ve

ra
ge

 e
rr

or

Features_Percentile
● 5

10
20
50
90

(a) Events (b) photos (c) Videos

Figure 6. Feature sensitivity analysis of hyperparametric model for Facebook data sets.

posts. Our data sets contain roughly 10 million cascades
with more than 100 million users and 500 million exposures.

Experimental setup. The features that we include in our
model in both cases are user attributes such as Facebook age
in days, friend count, number of initiated friendship requests,
subscriber count and subscription count, city, country, and
language, number of days active in last 7 days, and 28 days.
The categorical features were binarized in the model. An im-
portant difference with the experiments of Sections 5.1 and
5.2 is that here we don’t know the true diffusion probability
of every edge by construction. Instead, we estimate it from
samples as p̂e =

n+
e

ne
. In order to estimate p̂e accurately,

we need enough samples for edge e. Hence, we restrict our
evaluation set (the set of edges where we measure the error)
only to edges that have at least 67 interactions, meaning
that |pe − p̂e| ≤ 0.15 with probability at least 90%. Each
experiment is repeated 50 times and the averages together
with the standard deviations are reported in Figures 5 and 6.

Results. Our first set of experiments is to validate the
hyperparametric assumption in real data. We observe that
using the optimization problem (2), with very few samples,
the hyperparametric model achieves significant reduction in
average error (up to 60%) over methods that don’t utilize
node features. The results, reported in Fig. 5, are consis-
tent with our synthetic experiments, where the hyperpara-
metric assumption holds by construction. Note that the
non-hyperparametric methods will eventually converge to
zero error as they correspond to the ground truth while the
hyperparametric model is only a good approximation of it.

We also included reduced and augmented hyperparametric
models for comparison as in the synthetic experiments. In
the case of the reduced model we used only 20% of the most
important features of each edge (measured using Mutual
Information). For the augmented version on the other hand,
we augment the feature vector of each node with redundant
information (increase its dimension by 50% and fill the extra
coordinates with random noise) and investigate whether con-
vergence still occurs. As in the experiments of Section 5.1,
the reduced model converges to higher average error than
the models that use more information, while the augmented
model successfully ignores all the redundant features.

We also evaluated the sensitivity of the hyperparametric
model when we include all versus few selected features.
The picture that we see matches the synthetic experiments
(Figure 4d), i.e. the hyperparametric model is supported on
several features and if we fail to include all of them our error
won’t converge to 0. However, an important difference with
the synthetic experiments is that here not all the features are
equally important, hence by applying feature-selection algo-
rithms we can collect a small subset that performs almost as
well as using the entire feature vector (see e.g. the difference
in the error between 20% and 90% of the features).
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A. The Hyperparametric Model, Discussion
As discussed in Section 2, the essence of the hyperpara-
metric model is that the diffusion probability of every edge
is dictated by the features of its endpoints. Node features
have been used in several studies and been proved to im-
pact network formation (see e.g. (Lazarsfeld & Merton;
McPherson et al., 2001)). Specifically, as a general prin-
ciple, we tend to be friends with people that are “similar”
to us, a phenomenon called homophily (“birds of a color
flock together”). A recent line of work (Anderson et al.,
2015) studies the effect of homophily in diffusion and in
cascading behavior in social networks. Of course in real
social networks there are connections between very diverse
people as well.

The hyperparametric model that we propose in this paper
can be viewed as an extension of these observations to the
IC model. The intuition is that two nodes with similar
features (interests, age, country of residence, etc.) will
in principle be more influential to each other than diverse
nodes, or similar medical characteristics between two nodes
will increase the likelihood of transmitting a disease. This
kind of observations are not captured by the traditional IC
model, as it is unaware of the individual characteristics of
each node and the homophily is present only in the network
structure.

A natural question that one can ask is whether the sigmoid
function is an appropriate function to use in order to en-
code the influence probabilities. In principle any function
that takes as input two vectors and outputs a value in [0, 1]
could work, however the definition of the sigmoid func-
tion is very relevant for our purposes, since we can adjust
the hyperparameters to capture the changes in the diffusion
probabilities as a result of the agreement or the disagree-
ment between the features of different nodes. Specifically,
if two nodes have similar value in an important feature, then
by choosing the respective coordinates of θ to be small we
are increasing the influence probability. Similarly we can
decrease the influence probability if the features are very
dissimilar. The hyperparametric assumption tells us that
there is a θ that is a good compromise over all the nodes in
the network. Additionally, assuming that the diffusion prob-
abilities are generated by the sigmoid function, our MLE
optimization problem reduces to logistic regression, which
is well-understood, in the case where every active node has
only one active parent.

B. Definitions
Definition 1 (PAC learnability). A hypothesis class H is
Probably Approximately Correct (PAC) learnable with re-
spect to some reward function r, if there exists a function
mH : (0, 1)2 → N and a learning algorithm A such that for

every ε, δ ∈ (0, 1) and every data-generating distribution D,
if we run A on m ≥ mH(ε, δ) i.i.d. samples generated by
D, it returns a hypothesis ĥ such that, with probability at
least 1− δ over the choice of the samples, it holds:

Es∼D[r(ĥ, s)] ≥ max
h∈H

Es∼D[r(h, s)]− ε.

Definition 2 (Rademacher Complexity). The Rademacher
complexity of a hypothesis classH, with respect to a reward
function r and a training set S of size m, drawn from a
distribution D is defined as:

R(H, S) =
2

m
E~σ∼{−1,1}m

[
sup
h∈H

m∑
i=1

σir(h, si)

]

where {−1, 1} symbolizes the uniform distribution with that
support.

Definition 3 (Covering Number (Shalev-Shwartz & Ben–
David, 2014)). Let A ⊆ Rd be a set of vectors. We say that
A is ε-covered by a setAε with respect to some norm p, if for
all ~a ∈ A there exists an ~aε ∈ Aε such that ||~a− ~aε||p ≤ ε.
The covering number of A is the cardinality of the smallest
Aε that ε-covers A.

Definition 4 (Lipschitz function). A function f : A → B
is ρ-Lipschitz over A, with respect to some norm α, if for
all x1, x2 ∈ A it holds:

|f(x1)− f(x2)| ≤ ρ ||x1 − x2||α .

C. The Distribution
As discussed in Section 2, a cascade C is a sequence of
disjoint subsets of nodes {V0, V1, . . . , Vn−1} that become
active in each time step, where V0 is the initial seed. Each
cascade C is associated with some probability P[C] that
depends on the seed-generating distribution D0, the struc-
ture of the graph and the diffusion probabilities of the edges
(P[C] = P[V0] · P[V1|V0] · · ·P[Vn−1|Vτ<n−1]).

Given a distribution D0 that generates the seed we want
to define a distribution D that generates samples of the
form s = ((X,u), y) as described in Section 2. We de-
fine D to be the distribution that picks a cascade C =
{V0, V1, . . . , Vn−1} with probability proportional to P[C]
and decomposes it into simpler samples of the form s =
((X,u), y). This decomposition is simple (we already de-
scribed it in Section 2): for every τ ∈ {0, 1, . . . , n − 1},
consider all the nodes v /∈ ∪τ−1

t=0 Vt that are within distance
of 1 from Vτ . For every v that became activated by Vτ (i.e.
v ∈ Vτ+1) create the sample ((Vτ , v), 1), and for every v
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that remained inactive create the sample ((Vτ , v), 0). Once
the entire list of samples for the cascade C is produced, D
returns one of them uniformly at random.

In other words, every possible sample s = ((X,u), y) is
assigned probability P[s] =

∑
C:s∈C

P[C]
# samples in C by D.

Essentially, D can be thought as a distribution that agrees
withD0 in the creation of the cascade and then picks a single
sample out of it that is representative of the entire cascade.

D. Learnability with Respect to the Diffusion
Probabilities

The first thing that one might think of is to use the samples
provided in order to learn the diffusion probabilities of the
edges or the hyperparameter θ itself. However, it is easy to
see that this approach will fail. Consider a network with
only three nodes, u1, u2, v and two edges (u1, v), (u2, v)
with probabilities 1 and 0 respectively. Consider a sample
generating distribution D that always activates both u1 and
u2. Then, no matter how many samples drawn from D we
will see, we cannot learn pu1,v and pu2,v , while we can learn
the outcome, i.e. that node v will be influenced. A simple
modification shows that the same holds for the learnability
of the hyperparameter θ.

Hence, if one wants to achieve convergence to the true
diffusion probabilities or the true hyperparameter θ, extra
assumptions on the distribution D as well as the feature
vectors of the nodes are required. This is why in this work
we are instead interested in a PAC learning guarantee and
we use the log-likelihood function, defined in Section 2, as
our reward function that allows us to interpret and utilize
samples generated by any distribution D.

E. Ommited Lemmas and Proofs, Section 3.1
As we discussed in Section 3.1, the proof of the sample
complexity involves covering numbers, but we first need
to go through the following two lemmas, that prove the
Lipschitz continuity of the local influence function and the
log-likelihood. Intuitively, this means that a small change
in the argument (hyperparameter) will only impose a small
change in the respective log-likelihood function. Hence if
we can find a cover for the space of the hyper-parameters,
we can convert it into a cover of the space of log-likelihoods
with a small increase on its size.

Lemma 2 (Lipschitz Continuity of the Local Influence Func-
tion). The local influence function of any node v ∈ V ,
fθv (X), is ρ-Lipschitz for any X ⊆ V \ {v}, i.e. for all
θ, θ′ ∈ H : ||θ − θ′||1 ≤ ε ⇒ |fθv (X) − fθ′v (X)| ≤ ρε,
where ρ depends on λ.

Proof. Fix a node v ∈ V and an X ⊆ V \{v}. If we bound

the infinite norm of the gradient of fθv (X) by ρ then this
would imply that f is ρ-Lipschitz with respect to the dual
norm, i.e. the `1-norm.

∣∣∣θfθv (X)

θθ`

∣∣∣ =
∣∣∣ θ
θθ`

(
1−

∏
u∈X∩N(v)

(1− σ(θ, xuv))
)∣∣∣

=
∣∣∣ ∑
u∈X∩N(v)

θσ(θ, xuv)

θθ`

∏
u′∈X∩N(v):u′ 6=u

(1−σ(θ, xu′v))
∣∣∣

≤
∑

u∈X∩N(v)

∣∣∣θσ(θ, xuv)

θθ`

∣∣∣·∣∣∣ ∏
u′∈X∩N(v):u′ 6=u

(1−σ(θ, xu′v))
∣∣∣

≤
∑

u∈X∩N(v)

∏
u′∈X∩N(v):u′ 6=u

(1− λ)

= |X ∩N(v)|(1− λ)|X∩N(v)|−1

where we used the fact that
∣∣∣ θσ(θxuv)

θθ`

∣∣∣ ≤ 1, since the sig-
moid function σ is 1-Lipschitz as for the `∞ norm with
respect to θ. We also used the fact that the influence proba-
bilities are bounded away from 1.

Now, since the function h(x) = x(1− λ)x−1 is maximized
for x = − 1

ln(1−λ) , we get that fθv (X) is ρ-Lipschitz, for

ρ := −1
ln(1−λ) (1− λ)−

(
1

ln(1−λ)
+1
)

5.

The Lipschitzness of the local influence function fθv eas-
ily implies the Lipschitzness of the log-likelihood of the
respective sample.

Lemma 3 (Boundness and Lipschitz continuity of the log–
likelihood function). Fix a hyperparameter θ ∈ Rd :
||θ||∞ ≤ B. Then, for any valid sample s = (X, v, y)
it holds:

1. λ ≤ fθv (X) ≤ 1− λ|X∩N(v)|,

2. |L(s, θ)| ≤ |X ∩N(v)| · ln(1/λ),

3. L(s, θ) is ρ
λ|X∩N(v)| -Lipschitz in θ with respect to the

`1 norm.

Proof. 1. The lower bound is immediate. Since X con-
tains at least one neighbor of v and the minimum influ-
ence probability of any edge is λ, node v is influenced

5Notice that there is a smooth tradeoff here, if |X ∩N(v)| is
very small then a small change in θ will impose a small change
in fθv (X) since there are not many nodes trying to influence v. If
|X ∩N(v)| on the other hand is very large then there are so many
nodes trying to do so already, that a small change in θ will not
have a significant effect on fθv (X) either.
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by the seed X with probability at least λ. For the up-
per bound, note that in the best case, all the influence
probabilities between v and its neighbors would be the
maximum possible, i.e. 1 − λ. Now, remember that
fθv (X) = 1−

∏
u∈X∩N(v)(1− pu,v(θ))⇒ fθv (X) ≤

1−
∏
u∈X∩N(v) λ ≤ 1− λ|X∩N(v)|.

2. For a sample s = ((X, v), y) we have:

|L(s, θ)| = |y ln
(
fθv (X)

)
+ (1− y) ln

(
1− fθv (X)

)
|

≤ y| ln
(
fθv (X)

)
|+ (1− y)| ln

(
1− fθv (X)

)
|

≤ y| lnλ|+ (1− y)| ln
(
1− (1− λ|X∩N(v)|)

)
|

≤ | lnλ|X∩N(v)|| = |X ∩N(v)| · ln(1/λ)

where the second inequality holds since λ ≤ fθv (X) <
1 ⇒ lnλ ≤ ln

(
fθv (X)

)
< 0 ⇒ | lnλ| ≥

| ln
(
fθv (X)

)
|, and the third inequality since |X ∩

N(v)| ≥ 1⇒ λ|X∩N(v)| ≤ λ < 1.

3. Similarly to Lemma 2, we need to bound the `∞ norm
of the gradient of L with respect to θ. Hence:

||∇θL(s, θ)||∞
= ||∇θ[y ln

(
fθv (X)

)
+ (1− y) ln

(
1− fθv (X)

)
] ||∞

=
∣∣∣∣∣∣y · ∇θfθv (X)

fθv (X)
− (1− y) · ∇θf

θ
v (X)

1− fθv (X)

∣∣∣∣∣∣
∞

≤
(∣∣∣y· 1

fθv (X)

∣∣∣+∣∣∣(1−y)· 1

1− fθv (X)

∣∣∣)·||∇θfθv (X)||∞

≤ ρ
( y
λ

+
1− y

λ|X∩N(v)|

)
≤ ρ

λ|X∩N(v)|

where the bound on the gradient of f follows from
Lemma 2.

We are now ready to prove the covering number for the
space of the log-likelihood functions. We state Lemma 1
again for completion.

Lemma 1. Let S = {((Xi, vi), yi)}mi=1 be a non-empty set
of samples and let ∆S = maxs∈S |X∩N(v)| (maximum in-
degree of a node that was activated across all samples). The
covering number of the class of all log-likelihood functions
for S is O

((
Bρd
λ∆S ε

)d)
, i.e. we can choose a discrete cover

Hε ⊆ H of size O
((

Bρd
λ∆S ε

)d)
, such that for all θ ∈ H,

there exists a θε ∈ Hε with

sup
s∈S
|L(s, θ)− L(s, θε)| ≤ ε.

Proof. Remember that the unknown hyperparameter θ lies
inH = [−B,B]d. Hence, the space of the hyperparameter
is a d-dimensional hypercube and it is known that it can be

covered by
(
Bd
ε

)d
`1-balls of radius ε.

Also, in Lemma 3 we proved that for any sample s =
((X, v), y) and for all θ, θ′ ∈ H it holds:

|L(s, θ)− L(s, θ′)| ≤ ρ

λ|X∩N(v)| ||θ − θ
′||1

This says that if the hyperparameters are separated by a
distance of ε in the `1 space then, for any sample s the
likelihoods of it with respect to θ and θ′ are within a distance
of ρ

λ|X∩N(v)| ε ≤ ρ

λmaxs∈S |X∩N(v)| ε = ρ
λ∆S

ε from each other.
Clearly, an `1 cover of radius ε over the parameter space can
be translated to a cover of the space of likelihood functions.
In particular, if the parameter space is covered by R `1-
balls of radius ε and centers θ1, . . . , θR, then the likelihood
functions Lθ1 , . . . ,LθR form a ρ

λ∆S
ε-cover of the space of

all the likelihood functions. Thus one can easily see that in
order to have an ε-cover of the space of the log-likelihoods,
we require at most O

((
Bρd
λ∆S ε

)d)
discrete θs. Hence, given

the set S, the covering number of the class is O
((

Bρd
λ∆S ε

)d)
.

The covering number allows us to consider a discrete hy-
pothesis class instead of a continuous one, and hence we can
bound its Rademacher complexity, using Massart’s lemma
for finite hypothesis classes. Subsequently, we need to as-
sociate the Rademacher complexity of the discretized class
with the Rademacher complexity of the continuous one,
something that can be done using the following lemma.

Lemma 4 (Discretization Lemma). Let H be any hypoth-
esis class and S be a set of m samples drawn from some
distribution D, and suppose thatHε is an ε-cover of S, i.e.
for any h ∈ H there exists hε ∈ Hε such that:

sup
s∈S
|r(h, s)− r(hε, s)| ≤ ε

where r(·, ·) is some reward function (in our case the log-
likelihood). Then it holds:

R(S,H) ≤ R(S,Hε) + 2ε

Proof. For any h ∈ H, let hε be a hypothesis that covers
it. Then, by the definition of the Rademacher complexity it
holds:

R(S,H) = E~σ∼{−1,1}m

[
sup
h∈H

2

m

m∑
i=1

σir(h, si)

]
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Figure 7. Three different categories of a sample. Nodes in green
are active and in red inactive. In case (iii) we know that at least
one of the three edges became activated but not which one(s).

= E~σ

[
sup
h∈H

( 2

m

m∑
i=1

σir(hε, si)

+
2

m

m∑
i=1

σi(r(h, si)− r(hε, si))
)]

≤ E~σ

[
sup
h∈H

2

m

m∑
i=1

σir(hε, si)

+ sup
h∈H

2

m

m∑
i=1

σi(r(h, si)− r(hε, si))

]

≤ E~σ

[
sup
hε∈Hε

2

m

m∑
i=1

σir(hε, si)

+ sup
h∈H

2

m

m∑
i=1

σi(r(h, si)− r(hε, si))

]

= R(S,Hε) + E~σ

[
sup
h∈H

2

m

m∑
i=1

σi(r(h, si)− r(hε, si))

]

≤ R(S,Hε) + E~σ

[
sup
h∈H

2

m

m∑
i=1

|r(h, si)− r(hε, si)|

]
≤ R(S,Hε) + 2ε

Lemma 5 (Massart’s lemma for finite hypothesis classes).
Let A = {~α1, ~α2, . . . , ~αN} be a finite set of vectors in Rm.
Then:

E~σ∼{−1,1}m
[

max
~α∈A

2

m

m∑
t=1

σtαt

]
≤ 2 ·max

α∈A
||~α||
√

2 logN

m

F. Solving the Optimization Problem
As we mentioned in Section 4 there are three distinct cases
for a sample s = ((X, v), y) in the training set S: (i) node
v was not influenced, (ii) node v was influenced and there
is only one neighbor of v in X (|X ∩N(v)| = 1) and (iii)

node v was influenced and there are more than one neighbors
of v in X (|X ∩N(v)| > 1), as shown in Figure F.

Notice that the likelihood functions corresponding in sam-
ples of the kinds (i) and (ii) are concave (by the definition
of the log-likelihood, equation (1)). Hence, if there were no
obfuscated samples the optimization problem would be con-
cave and thus efficiently solvable via iterative optimization
methods such as Gradient Descent.

Partitioning S into So that contains the obfuscated sam-
ples and S \ So that contains the samples of con-
cave likelihoods, we can express our objective function
as f̃(θ) := 1

m

∑
s∈S L(s, θ) = 1

m

∑
s∈S\So L(s, θ) +

1
m

∑
s∈So L(s, θ) =: f(θ) + ξ(θ). Optimizing f̃ can be

perceived as optimizing a concave function f under noise ξ
over a convex set.

The first approach to this problem is to ignore the obfuscated
samples (i.e. the noise) and optimize f instead of f̃ using
Gradient Descent. The success of this approach lies in
the fact that the log-likelihood of each sample is bounded
hence, if we have a small number of obfuscated samples the
maximizer of f will approximately maximize f̃ as well.

Lemma 6. Let mo denote the number of obfuscated sam-
ples in a training set S of m i.i.d. samples drawn from
D. If mom ≤ ε

∆S ln(1/λ) , and we use Gradient Descent on

f(θ) = 1
m

∑
s∈S\So L(s, θ) for T ≥

(
Bdρ
λ∆S ε

)2

iterations

with a learning rate of η =
√

B2λ2∆S

ρ2T , we can recover

θ̂ ∈ [−B,B]d such that:

f̃(θ̂) ≥ max
θ∈H

f̃(θ)− 2ε.

Proof. To simplify the notation in this proof let θ∗ =
arg maxθ f(θ) and θ̃ = arg maxθ f̃(θ).

The first thing to notice is that, as we argued before, f
is a concave function over a convex set, hence it can be
approximately optimized using GD (note that GD is used
for minimization problems but since f is concave, −f is a
convex function over a convex set and the minimum of −f
is the same as the maximum of f ).

Also, since the function f is ρ
λ∆S

-Lipschitz with respect to

the `1 norm, it is ρ
√
d

λ∆S
-Lipschitz with respect to the `2 norm.

Additionally, it holds: ||θ||2 ≤ B
√
d.

Known results on the convergence of GD (see e.g. (Shalev-
Shwartz & Ben-David, 2014)), imply that running GD

for T ≥
(
Bdρ
λ∆S ε

)2

iterations using a learning rate of

η =
√

B2λ2∆S

ρ2T will return a θ̂ ∈ H such that:

f(θ̂) ≥ f(θ∗)− ε.
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Now, we will use the fact that the noise ξ is small to show
that the maximizer of the concave function f , is an approxi-
mate maximizer for the approximate concave function f̃ :

f̃(θ̃) = f(θ̃) + ξ(θ̃) ≤ f(θ∗) + ξ(θ̃)

≤ f(θ̂) + ε+ ξ(θ̃)

≤ f(θ̂) + ξ(θ̂)− ξ(θ̂) + ε

= f̃(θ̂)− ξ(θ̂) + ε

⇒ f̃(θ̂) ≥ f̃(θ̃)− mo

m
∆S ln

1

λ
− ε

≤ f̃(θ̃)− 2ε

where the first inequality holds since θ∗ is the maximizer
of f , the second because of the GD guarantee and the third
because the log-likelihood of any sample is always negative,
hence ξ(θ) < 0, for every θ ∈ H. From Lemma 3 we know
that ∀s ∈ S,∀θ ∈ H : |L(s, θ)| ≤ ∆S ln 1

λ . Hence, using
triangle inequality we can get:

∣∣∣ξ(θ̂)∣∣∣ =

∣∣∣∣∣ 1

m

∑
s∈So

L(s, θ̂)

∣∣∣∣∣ ≤ mo

m
∆S ln

1

λ
.

Finally, the last inequality holds because of the assumption
that: mom ≤

ε
∆S ln(1/λ) .

Note that in real social networks ∆S is constant so the
running time of GD is O

(
d2

ε2

)
. However, even in cases

where we have a few nodes with super-constant degree, we
can consider the respective samples as noise (hence add
them to So) and still run GD in polynomial time at the price
of slightly increased error, due to the increase in the noise.

Corollary 1 (Efficient Learnability). Let G = (V,E)
be a directed graph and D be a distribution that gen-
erates samples of the form s = ((X, v), y). Let ∆ =
maxs∼D |X ∩N(v)|. Then, for any ε, δ ∈ (0, 1) , if we use
Maximum Likelihood Estimation on a training set of size
m ≥ m(ε, δ) = O

(
∆2 log2(1/λ)d log(Bρd/λ∆ε)+log(1/δ)

ε2

)
samples drawn i.i.d. from D, and mo

m ≤ ε
∆S ln(1/λ) , then

with probability at least 1− δ (over the draw of the training
set) it holds:

sup
θ∈H

Es∼D[L
(
s, θ
)
]− Es∼D[L

(
s, θ̂
)
] ≤ 3ε.

Moreover, the MLE runs in time polynomial in d and ε.

Proof. Follows from the proof of Theorem 1 and the
fact that θ̂ approximately optimizes the cummulative log-
likelihood over S up to an additive term of 2ε, according to
Lemma 7.

We now focus on the second approach: optimize f̃ directly.

Corollary 2 (Using (Belloni et al., 2015)). Let mo denote
the number of obfuscated samples in a training set S of
m i.i.d. samples. Then if mo

m ≤ ε
d∆S ln(1/λ) , there is a

randomized algorithm that can recover θ̂ ∈ [−B,B]d such
that:

E
[
f̃(θ̂)

]
≥ max

θ∈H
f̃(θ)− 2ε.

Proof. From Lemma 3 we know that ∀s ∈ S,∀θ ∈ H :
|L(s, θ)| ≤ ∆S ln 1

λ . Hence, using triangle inequality we
can get:

|ξ(θ)| =

∣∣∣∣∣ 1

m

∑
s∈So

L(s, θ)

∣∣∣∣∣ ≤ mo

m
∆S ln

1

λ
.

So, for mo
m ≤ ε

d∆S ln(1/λ) it holds |ξ(θ)| ≤ ε
d , for all

θ ∈ H. Also note that the convex set H = [−B,B]d is
well-rounded, according to the definition of (Belloni et al.,
2015), because it is contained between the d-dimensional
ball of radius B and the one of radius B

√
d, and that there

is a trivial membership oracle toH (just check whether all
coordinates of a vector are in [−B,B]).

Finally, note that since L is ρ
λ∆ -Lipschitz with respect to

the `1 norm, f is also ρ
λ∆ -Lipschitz with respect to the `1

norm and, as a consequence, dρ
λ∆−Lipschitz with respect to

the `∞ norm. Hence, all the requirements of the algorithm
of (Belloni et al., 2015) are satisfied, and we can apply
Simulated Annealing to recover a vector of hyperparameters
θ̂ ∈ H such that on expectation it holds:

f̃(θ̂) ≥ max
θ∈H

f̃(θ)− 2ε

which completes the proof.

Since for large enough training set S, the value mo
m will

converge to the real probability po of seeing an obfuscated
sample, the results above essentially tell us that if po is
small enough we can still optimize the function and recover
the hyperparameter despite the non-concavity of the objec-
tive function. Hence po quantifies the “difficulty” of the
optimization problem. It depends on the distribution that
generates the samples and it can be bounded in simple cases.

The following lemma provides an upper bound on that prob-
ability for the case where each node is chosen to participate
in X independently with probability pX . More involved
analysis is possible for different sample-generating distribu-
tions.

Lemma 7. Let G = (V,E) be a graph and s = ((X, v), y)
be a sample where each node of V is chosen to participate
in X independently with probability pX . The probability
po that s is obfuscated, is upper bounded by 1−

(
1− pX ·
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(1− λ)
)∆ − pX(1− pX)∆−1 · λ, where ∆ is the maximum

degree in the graph.

Proof. We want to bound the probability that we will get
an obfuscated sample, i.e. a sample for which y = 1 and
|X ∩N(v)| > 1 assuming that v /∈ X . It holds:

P[y = 1|v /∈ X] = P[(y = 1) ∩ (|N(v) ∩X| > 1)|v /∈ X]

+P[(y = 1) ∩ (|N(v) ∩X| ≤ 1)|v /∈ X]

⇓
P[(y = 1) ∩ (|N(v) ∩X| > 1)|v /∈ X] = P[y = 1|v /∈ X]

−P[(y = 1) ∩ (|N(v) ∩X| ≤ 1)|v /∈ X]

So to compute the probability of getting an obfuscated sam-
ple, we need to compute the probability of a node becoming
active given that it does not belong in X, and the probability
of becoming active while having at most one parents in X
(given that it does not belong in X).

Let’s fist upper bound the probability of node v becoming
active. Remember that each node is selected to participate in
X with probability pX , and that for the influence probability
of each edge e ∈ E holds pe ∈ [λ, 1− λ]. Hence:

P[y = 1|v /∈ X] = 1−
∏

u∈N(v)

(
1− P[u activates v]

)
= 1−

∏
u∈N(v)

(
1− pX · pu,v

)
≤ 1−

(
1− pX · (1− λ)

)∆
It remains to lower bound the probability that v becomes
active while having only one active parent. It is:

P[(y = 1) ∩ (|N(v) ∩X| ≤ 1)|v /∈ X]

= P[(y = 1) ∩ (|N(v) ∩X| = 0)|v /∈ X]

+P[(y = 1) ∩ (|N(v) ∩X| = 1)|v /∈ X]

= 0 + P[(y = 1) ∩ (|N(v) ∩X| = 1)|v /∈ X]

=
∑

u∈N(v)

pX(1− pX)|N(v)|−1 · pu,v

= pX(1− pX)|N(v)|−1 ·
∑

u∈N(v)

pu,v

≥ pX(1− pX)∆−1 · λ

Putting everything together we get the desired upper bound:

P[(y = 1) ∩ (|N(v) ∩X| > 1)|v /∈ X] ≤

1−
(
1− pX · (1− λ)

)∆ − pX(1− pX)∆−1 · λ

G. Omitted Details from the Experiments
Synthetic Graphs: As we discussed in Section 5.1 differ-
ent graph models yield graphs with different topological
properties. The ones we selected for our experiments are
the following:

• Barabási-Albert: The degree distribution of this model is
a power law and hence captures interesting properties of
the real-world social networks. We took 10 initial vertices
and added 10 edges at each step, using the preferential
attachment model, until we reached 1000 vertices.

• Kronecker graphs: This model for social networks was
introduced in (Leskovec et al., 2005). The adjacency
matrix of a Kronecker graph is generated by repeated
applications of the Kronecker product to an initial seed
matrix. In this case we started from a star graph with
4 vertices and computed the Kronecker product till we
reached 1000 vertices.

• Configuration model: The configuration model allows us
to construct a graph with a given degree distribution. We
chose 1000 vertices and a power-law degree distribution
with parameter α = 2.
• Erdös-Rényi: We used the celebrated G(n,m) model

to create a graph with 1000 vertices and 20000 edges.
G(n,m) does not capture some of the properties of real
social networks, however it is a very impactful model
with variety of applications in several areas of science.

Training Set. We randomly activate an initial seed X of
size 10% of the size of the network. X is chosen large to
ensure that there exist nodes with multiple active parents
and study whether convergence occurs even when (2) is
indeed non-concave. We choose one node v reachable from
the seed X uniformly at random. If v becomes influenced
by X its label y is set to 1, and to 0 otherwise. The seed
X , together with v and the label y form one sample s =
((X, v), y) as described in Section 3. We generate 100,000
such samples and attempt to solve the optimization problem
(2) using SGD, initializing the hyperparameters to 0 and
using a learning rate of 1/

√
T , where T is the number of

iterations.
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