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Abstract
Modeling distributions on Riemannian manifolds
is a crucial component in understanding non-
Euclidean data that arises, e.g., in physics and
geology. The budding approaches in this space
are limited by representational and computational
tradeoffs. We propose and study a class of nor-
malizing flows that uses convex potentials from
Riemannian optimal transport. These flows are
universal and can model distributions on any com-
pact Riemannian manifold without requiring do-
main knowledge of the manifold to be integrated
into the architecture. We demonstrate that these
flows can model standard distributions on spheres,
and tori, on synthetic and geological data.

1. Introduction
Today’s generative models have had wide-ranging successes
of modeling non-trivial probability distributions that nat-
urally arise in fields such as physics (Köhler et al., 2019;
Rezende et al., 2019), climate science (Mathieu & Nickel,
2020), and reinforcement learning (Haarnoja et al., 2018).
Generative modeling on “straight” spaces (i.e., Euclidean)
are pretty well-developed and include (continuous) normal-
izing flows (Rezende & Mohamed, 2015; Dinh et al., 2016;
Chen et al., 2018), generative adversarial networks (Good-
fellow et al., 2014), and variational auto-encoders (Kingma
& Welling, 2014; Rezende et al., 2014).

In many applications however, data resides on spaces with
more complicated structure, e.g. Riemannian manifolds such
as spheres, tori, and cylinders. Using Euclidean generative
models on this data is problematic from two aspects: first,
Euclidean models will allocate mass in ‘infeasible’ areas of
the space; and second, Euclidean models will often need to
squeeze mass in zero volume subspaces. Moreover, knowl-
edge of the space geometry can improve the learning process
by incorporating an efficient geometric inductive bias.

*Equal contribution 1UCL 2Facebook AI Research 3Weizmann.
Correspondence to: Samuel Cohen <TODO>, Brandon Amos
<brandon.amos.cs@gmail.com>, Yaron Lipman <TODO>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Illustration of a discrete c-concave function (in blue) over
a base manifoldM (in bold straight line).

Flow-based generative models are the state-of-the-art in
Euclidean settings and are starting to be extended to Rie-
mannian manifolds (Rezende et al., 2020; Mathieu & Nickel,
2020; Lou et al., 2020). However, in contrast with some
models in the Euclidean case (Kong & Chaudhuri, 2020;
Huang et al., 2020), the representational capacity and uni-
versality of these models is not well-understood. Moreover,
some of these approaches are tailored to specific choices of
Riemannian manifolds, which limits their applicability.

In this paper we introduce the Riemannian Convex Potential
Map (RCPM), a generic model for generative modeling on
arbitrary Riemannian manifolds that enjoys universal repre-
sentational power. RCPM (illustrated in fig. 2) is based on
Optimal Transport (OT) over Riemannian manifolds (Mc-
Cann, 2001; Villani, 2008; Sei, 2013; Rezende et al., 2020)
and generalizes the convex potential flows in the Euclidean
setting by Huang et al. (2020). We prove that RCPMs
are universal flows on any compact Riemannian manifold,
which comes from the fact that our discrete c-concave po-
tential functions are universal. Our experimental demonstra-
tions show that RCPMs are competitive and can model the
standard tasks on spheres and tori.

2. Related Work
Euclidean potential flows. Most related to our work, is
the work by Huang et al. (2020) that leveraged Euclidean
optimal transport, parameterized using input convex neural
networks (ICNNs) (Amos et al., 2017) to construct univer-
sal normalizing flows on Euclidean spaces. Similarly, Ko-
rotin et al. (2021); Makkuva et al. (2020) compute optimal
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Figure 2. Illustration of a Riemannian convex potential map on a sphere. From left to right: 1) base distribution µ of a mixture of wrapped
Gaussians, 2) learned c-convex potential, 3) mesh grid distorted by the exponential map of the Riemannian gradient of the potential, 4)
transformed distribution ν.

transport maps via ICNNs. Riemannian optimal transport
replaces the standard Euclidean convex functions with so-
called c-convex or c-concave functions, and the Euclidean
translation by exponential map. Unfortunately, the notion
of c-convex or c-concave functions is intricate and a sim-
ple characterization of such functions is not known. Our
approach is to approximate arbitrary c-concave functions
on general Riemannian manifolds using discrete c-concave
functions that are simply the minimum of a finite number of
translated squared intrinsic distance functions, see Figure
fig. 1. Intuitively, this construction resembles the approx-
imation of a Euclidean concave function as the minimum
of a finite collection of affine tangents. Although simple,
we prove that discrete c-concave functions are in fact dense
in the space of c-concave functions and therefore replac-
ing general c-concave functions with discrete c-concave
functions leads to a universal Riemannian OT model. Re-
lated, Gangbo & McCann (1996) considered OT maps of
discrete measures which are defined via discrete c-concave
functions.

Exponential map flows. Sei (2013); Rezende et al.
(2020) propose distinct parameterizations for c-convex func-
tions living on the sphere specifically. The latter applies it to
training flows on the sphere using the construction from Mc-
Cann’s theorem. Our work can be seen as a generalization
of the exponential-map approach in Rezende et al. (2020) to
arbitrary Riemannian manifolds. Also, by contrast with this
work, the flows defined using our discrete c-concave layers
are universal.

Other Riemannian flows. Mathieu & Nickel (2020); Lou
et al. (2020) propose extensions of continuous normalizing
flows to the Riemannian manifold setting. These are flexible
with respect to the choice of manifold, but their representa-
tional capacity is not well-understood and solving ODEs on
manifolds can be expensive. In parallel, (Brehmer & Cran-
mer, 2020) proposed a method for simultaneously learning
the manifold data lives on and a normalizing flow on the
learned manifold.

Optimal transport on Riemannian manifolds Optimal
transport on spherical manifolds has been extensively stud-

ied from theoretical standpoints. In particular, (Figalli &
Rifford, 2009; Loeper, 2009; Kim & McCann, 2012) study
the regularity (continuity, smoothness) of transport maps on
spheres and other non-negatively curved manifolds. Reg-
ularity and smoothness are more intricate on negatively
curved manifolds, in particular hyperbolic spaces. Neverthe-
less, several works demonstrated that transport can be made
smooth by changing the Riemannian cost slightly (Lee & Li,
2012). Alvarez-Melis et al. (2020); Hoyos-Idrobo (2020)
leverage this to learn transport maps on hyperbolic spaces,
in which case maps are parameterized as hyperbolic neural
networks.

3. Background
In this section, we introduce the relevant background on
normalizing flows and Riemannian optimal transport theory.

3.1. Normalizing flows

Normalizing flows parameterize probability distributions
ν ∈ P(M), on a manifoldM, by pushing a simple base
(prior) distribution µ ∈ P(M) through a diffeomorphism1

s :M→M.

In turn, sampling from distribution ν amounts to transform-
ing samples x taken from the base distribution via s:

y = s(x) ∼ ν, where x ∼ µ. (1)
In the language of measures, ν is the push-forward of the
base measure µ through the transformation s, denoted by
ν = s#µ. If densities exist, then they adhere the change of
variables formula

ν(y) = µ(x)|det Js(x)|−1, (2)
where we slightly abuse notation by denoting the densities
again as µ, ν. In practice, a normalizing flow s is often
defined as a composition of simpler, primitive diffeomor-
phisms s1, . . . , sT :M→M, i.e.,

s = sT ◦ · · · ◦ s1. (3)
For a more substantial review of computational and rep-
resentational trade-offs inherent to this class of model on
Euclidean spaces, we refer to Papamakarios et al. (2019).

1A diffeomorphism is a differentiable bijective mapping with a
differentiable inverse.
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3.2. c-convexity and concavity

Let (M, g) be a smooth compact Riemannian manifold
without boundary, and c(x, y) = 1

2d(x, y)
2, where d(x, y)

is the intrinsic distance function on the manifold. We use the
following generalizations of convex and concave functions:

Definition 1. A function φ :M→ R ∪ {+∞} is c-convex
if it is not identically +∞ and there exists ψ :M→ R ∪
{±∞} such that

φ(x) = sup
y∈M

(−c(x, y) + ψ(y)) (4)

Definition 2. A function φ :M→ R∪{−∞} is c-concave
if it is not identically −∞ and there exists ψ :M→ R ∪
{±∞} such that

φ(x) = inf
y∈M

(c(x, y) + ψ(y)) (5)

We denote the space of c-concave functions onM as Ĉ(M).
We also note that if ψ is c-concave, −ψ is c-convex, hence
c-concavity results can be directly extended into c-convexity
results by negation. We also use the c-infimal convolution:

ψc(y) = inf
x∈M

(c(x, y)− ψ(x)) . (6)

c-concave functions φ satisfy the involution property:

φcc = φ. (7)

WhenM is a product of spheres or a Euclidean space, (e.g.,
spheres, tori), Ĉ(M) is a convex space (Figalli et al., 2010b;
Figalli & Villani, 2011) where a convex combinations of
c-concave functions are c-concave. In the caseM = Rd
and c(x, y) = −xT y, Euclidean concavity is recovered.

3.3. Riemannian Optimal Transport

Optimal transport deals with finding efficient ways to push
a base probability measure µ ∈ P(M) to a target measure
ν ∈ P(M), i.e., s#µ = ν. Often s considered is more
general than a diffeormorphism, namely a transport plan
which is a bi-measure onM×M.

WhenM is a smooth compact manifold with no boundary,
µ, ν ∈ P(M), and µ has density (i.e., is absolutely con-
tinuous w.r.t. the volume measure of M), Theorem 9 of
McCann (2001) shows that there is a unique (up-to µ-zero
sets) transport map t :M→M minimizing the transport
cost

C(s) =

∫
M
c(x, s(x))dµ(x) (8)

while pushing µ to ν, namely s#µ = ν. Furthermore, this
OT map is given by

t(x) = expx [−∇φ(x)] , (9)

where φ is a c-concave function, exp is the Riemannian
exponential map, and∇ is the Riemannian gradient. Note
that equivalently t(x) = expx [∇ψ(x)] for c-convex ψ.

As a consequence, there always exists a (Borel) mapping
t : M → M such that t#µ = ν where t is of the form
of eq. (9). The issue of regularity and smoothness of OT
maps is a delicate one and has been extensively studied (see
e.g. Villani (2008); Figalli et al. (2010b); Figalli & Villani
(2011)); in general, OT maps are not smooth, but can be seen
as a natural generalization to normalizing flows, relaxing the
smoothness of s. Henceforth, we will call OT maps “flows.”
In fact, our discrete c-concave functions, the gradient of
which are shown to approximate general OT maps, define
piecewise smooth maps.

Constant-speed geodesics η : [0, 1] →M between a sam-
ple x (from µ) and t(x) can also be recovered µ-almost
everywhere on the manifold (Figalli & Villani, 2011) as

η(l) = expx [−l∇φ(x)] . (10)

In particular, for a geodesic starting at x0 ∈M, η(0) = x0
and η(1) = t(x0).

4. Riemannian Convex Potential Maps
Our goal is to compute generating flows on Riemannian
manifolds that are optimal transport maps t : M → M.
The key idea is to build upon the theory of McCann (2001)
and parameterize the space of optimal transport maps by
c-concave functions φ :M→M, see definition 2. Given
a c-concave function, the flow t is computed via eq. (9).
This requires computing the intrinsic gradient of φ, and
computing the exponential map onM.

4.1. Discrete c-concave functions

Let {yi}i∈[m] ⊂ M be a set of m discrete points, where
[m] = {1, 2, . . . ,m}, and define the function ψ to be

ψ(x) =

{
αi if x = xi

+∞ otherwise
(11)

where αi ∈ R are arbitrary. Plugging this choice in defini-
tion 2 of c-concave functions, we get that

φ(x) = min
i∈[m]

(c(x, yi) + αi) (12)

is c-concave. We denote the collection of these functions
overM by Ĉd(M). We will use this modeling metaphor for
parameterizing c-concave functions. Therefore our learn-
able parameters of a single c-concave function ψ will consist
of

θ = {(yi, αi)}i∈[m] ⊂M× R. (13)

Let i? = argmini∈[m] (c(x, yi) + αi). The discrete c-
concave function in eq. (12) is differentiable, except where
two pieces c(x, yi)+αi meet, and if x belongs to the cut lo-
cus of yi? onM, which is of volume measure zero (Takashi,
1996). Excluding such cases, the gradient of φ at x takes
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the form:
∇xφ(x) = ∇x

[
c(x, yi?) + α?

]
= ∇xc(x, yi?) = − logx(yi?),

(14)

where log is the logarithmic map on the manifold. See fig. 1
for an illustration of a discrete c-concave function. Intu-
itively, the optimal transport generated by discrete c-concave
functions is piecewise constant as exp(−∇xφ(x)) =
exp(−(− logx(yi?))) = yi? . This is connected to semi-
discrete optimal transport, which aims at finding transport
maps between continuous and discrete probability measures
(Peyre & Cuturi, 2019). In our setting, the map transports
positive-volume masses towards locations yi’s.

Relation to the Euclidean concave case. In the Eu-
clidean setting, i.e., whenM = Rd and c(x, y) = −xT y, a
Euclidean concave (closed) function φ can be expressed as

φ(x) = inf
y∈Rd

(
−xT y + ψ(y)

)
.

Replacing Rd with a finite set of points yi ∈ Rd, i ∈ [m],
leads to the discrete Legendre-Fenchel transform (Lucet,
1997); it basically amounts to approximating the concave
function φ via the minimum of a collection of affine func-
tions. This transform can be shown to converge to φ under
refinement (Lucet, 1997). We will next prove convergence
of discrete c-concave functions to their continuous counter-
parts.

Expressive power of discrete c-concave functions. Let
us show that eq. (12) can approximate arbitrary c-concave
functions φ :M → R ∪ {∞} on compact manifoldsM.
We will prove the following theorem:
Theorem 1. For compact, boundaryless, smooth manifold
M, we have Ĉd(M) dense in Ĉ(M).

By dense we mean that for every φ̂ ∈ Ĉ(M) there exists
a sequence φε ∈ Ĉd(M), where ε ↓ 0, so that for almost
all x ∈ M we have that φε(x) → φ̂(x) and ∇xφε(x) →
∇xφ̂(x), as ε ↓ 0.

The proof is based on a construction of φε using an ε-net
of M. A set of points {yi}i∈[m] ⊂ M is called ε-net if
M ⊂ ∪i∈[m]B(yi, ε), where B(yi, ε) is the ε-radius ball
centered at yi. Formulated differently, every point y ∈M
has a point in the net that is at-most ε distance away. On
compact manifolds, for arbitrary ε > 0, there exists a finite
ε-net {yi}i∈[m]. Note that m→∞ as ε ↓ 0, but it is finite

for every particular ε. Our candidate for approximating φ̂ is:

φε(x) = min
i∈[m]

(
c(x, yi)− φ̂c(yi)

)
, (15)

where φ̂c is the infimal c-convolution (see eq. (6)) of φ̂. The
approximation in eq. (15) is motivated by the involution
property (eq. (7)). In particular, φ̂ = (φ̂c)c, and therefore

φ̂(x) = inf
y∈M

(
c(x, y)− φ̂c(y)

)
.

Proof. Let φ̂ :M→ R be an arbitrary c-concave function
overM. Let ε ↓ 0 denote a sequence of positive numbers
converging monotonically to zero. We will show that φε
defined in eq. (15) converges uniformly to φ̂ overM and
furthermore, that their Riemannian gradients ∇φε(x) con-
verge pointwise to∇φ̂(x) for almost all x ∈M (i.e., up to
a set of zero volume).

Uniform convergence. We start by noting that φ̂c is also
c-concave by definition, and Lemma 2 in McCann (2001)
implies that φ̂c is |M|-Lipschitz, namely∣∣∣φ̂c(x)− φ̂c(y)∣∣∣ ≤ |M|d(x, y),
for all x, y ∈ M. We denote by |M| the diameter ofM,
that is:

|M| = sup
x,y∈M

d(x, y), (16)

and |M| < ∞ since M is compact. In particular φ̂c is
either everywhere infinite (non-interesting case), or is finite
(in fact, bounded) overM.

Next, we establish an upper bound. For all x ∈M:

φ̂(x) = inf
y∈M

(
c(x, y)− φ̂c(y)

)
≤ min
i∈[m]

(
c(x, yi)− φ̂c(yi)

)
= φε(x).

(17)

Note that this upper bound is true for all choices of yi. Next,
we show a tight lower bound.

Furthermore, Lemma 1 in McCann (2001) asserts that
c(x, y) = 1

2d(x, y)
2 is also |M|-Lipschitz as a function

of each of its variables. Therefore, using the ε-net, we get
that for each x, y ∈M there exists i ∈ [m] so that

c(x, y)− φ̂c(y) ≥ c(x, yi)− φ̂c(yi)− 2|M|ε
leading to

φ̂(x) = inf
y∈M

(
c(x, y)− φ̂c(y)

)
≥ min
i∈[m]

(
c(x, yi) + φ̂c(yi)

)
− 2|M|ε

= φε(x)− 2|M|ε

(18)

Therefore we have that φε converge uniformly inM to φ̂.

Pointwise convergence of gradients. Let O ⊂ M be the
set of points where the gradients of φ̂ and φε (for the en-
tire countable sequence ε) are not defined, then O is of
volume-measure zero on M. Indeed, the functions φ̂, φε
are differentiable almost everywhere onM by Lemmas 2
and 4 in McCann (2001). Furthermore, if we denote by t̂
the optimal transport defined by φ̂, as discussed in Chapter
13 in Villani (2008) the set of all x ∈ M for which t̂(x)
belongs to the cut locus is of measure zero. We add this set
to O, keeping it of measure zero.
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Fix x ∈ M \ O, and choose an arbitrary ρ > 0. We show
convergence of ∇xφε(x) → ∇xφ̂(x) by showing we can
take element ε small enough so that the two tangent vectors
∇xφε(x),∇xφ̂(x) ∈ TxM are at most ρ apart.

Lemma 7 in (McCann, 2001) shows that the unique mini-
mizer of

h(y) = c(x, y)− φ̂c(y)

is achieved at y∗ = expx[−∇xφ̂(x)]. In particular,
∇xφ̂(x) = − logx(y?). As explained above, y∗ is not on
the cut locus of x.

Recall that∇xc(x, y) = − logx(y) (McCann, 2001), which
is a continuous function of y in vicinity of y∗. Therefore
there exists an ε′ > 0 so that if y ∈ B(y∗, ε

′) we have
that ‖− logx(y) + logx(y∗)‖ < ρ, where the norm is the
Riemannian norm in the tangent space at x, i.e., TxM.

Consider the set

Aδ = {y ∈M | h(y) < h(y∗) + δ}

Since h(y) is continuous (in fact, Lipschitz) and y∗ is its
unique minimum, we can find a 0 < δ sufficiently small so
that Aδ ⊂ B(y∗, ε

′). This means that any y /∈ B(y∗, ε
′) sat-

isfies h(y) ≥ h(y∗)+ δ. On the other hand, from continuity
of h we can find ε < ε′ so that all y ∈ B(y∗, ε) we have
h(y) < h(y∗) + δ.

Now consider the element φε. Due to the ε-net we know
there is at-least one yi ∈ B(y∗, ε) leading to

h(yi) < h(y∗) + δ,

and as mentioned above every y /∈ B(y∗, ε
′) satisfies

h(y) ≥ h(y∗) + δ. This means that the yi that achieves
the minimum of h(yi) among all i ∈ [m] in eq. (15) has to
reside inB(y∗, ε

′), and φε(x) = c(x, yi)−φ̂c(yi) in a small
neighborhood of x. Therefore, ∇xφε(x) = − logx(yi).
Since∇xφ̂(x) = − logx(y∗) and d(yi, y∗) < ε′, our choice
of ε′ implies that

∥∥∥∇xφ̂(x)−∇xφε(x)∥∥∥ < ρ.

4.2. RCPM flow architecture

Now that we have set-up an expressive approximation to
c-concave functions we can take the same route as Rezende
et al. (2020), and define individual flow blocks sj , j ∈ [T ]
(see eq. (3)) using the exponential map as suggested by
McCann’s theorem. In particular, each flow block sj is
defined as follows:

sj(x) = exp(−∇xφj(x)), j = 1, . . . , T (19)

φj(x) = min
i∈[m]

(
c(x, y

(j)
i ) + α

(j)
i

)
. (20)

We learn both locations y(j)i ∈M and offsets α(j)
i ∈ R for

i ∈ [m] and j ∈ [T ]; these form our model parameters θ.
We also consider multi-layer blocks as detailed later.

4.3. Universality of RCPM

We next build upon theorem 1 to show RCPM is universal.
We show that a single block s, i.e., eqs. (19) and (20) with
T = 1 can already approximate arbitrary the optimal trans-
port t : M → M. Due to the theory of McCann (2001)
(see sect. 3.3) this means that s can push any absolutely
continuous base probability µ to a general ν arbitrarily well.

Theorem 2. If µ, ν are two probability measures in P(M)
and µ is absolutely continuous w.r.t volume measure ofM,
then there exists a sequence of discrete c-concave potentials
φε, where ε ↓ 0, such that

exp [−∇φε]
p−→ t,

where t is the optimal map pushing µ to ν and p denotes
convergence in probability.

Proof. Let φε be the sequence from eq. (15). It is enough
to show pointwise convergence of exp[−∇φε(x)] to t(x) =
exp[−∇φ̂(x)] for µ-almost every x. Note, as above, that
the set of points O ⊂ M where the gradients of φ and φε
are not defined is of µ-measure zero. So fix x ∈M \O.

Theorem 1 implies that the tangent vector∇xφε(x) ∈ TxM
converges in the Riemannian norm over TxM to∇xφ(x) ∈
TxM. Furthermore, from the Hopf-Rinow Theorem exp is
defined over all TxM and it is continuous where it is defined
(McCann, 2001). This shows the pointwise convergence.

As a result of theorem 2, the multi-block version of RCPM
is also universal, because individual blocks can approximate
the identity arbitrarily well according to theorem 1.

5. On Implementing and Training RCPMs
We now describe how to train Riemannian convex potential
maps and how to increase their flexibility and expressivity
through architectural choices preserving c-concavity.

5.1. Variants of RCPM

Our basic model is multi-block s = sT ◦ · · · ◦ s1, where
si are defined in eqs. (19) and (20). We also consider two
variants of this model. Let us denote σ(s) = min {0, s},
the concave analog of ReLU.

Multi-layer block on convex spaces. First, in some man-
ifolds, c-concave functions form a convex space, that is con-
vex combination of c-concave functions is again c-concave.
Examples of such spaces include Euclidean spaces, spheres
(Sei, 2013), and product of spheres (e.g., tori) (Figalli et al.,
2010a). One possibility to enrich our discrete c-concave
model in such spaces is to convex combine and compose
multiple c-concave potentials which preserves c-concavity,
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similar in spirit to ICNN (Amos et al., 2017). In more de-
tail, we define the c-concave potential of a single block ϕj ,
j ∈ [T ], to be a convex combination and composition of
several discrete c-concave functions. For brevity let ϕ = ϕj ,
and define ϕ = ψK , where ψK is defined by:

ψ0 = 0i,

ψk = (1− wk−1)φk−1 + wk−1σ(ψk−1),
(21)

where k ∈ [K], wk ∈ [0, 1] are learnable weights, and φk ∈
Ĉd(M) are discrete c-concave functions used to define the j-
th block. The RCPMs from sect. 4.2 can be reproduced with
K = 1. In general RCPMs in this case are composed by T
blocks, each is built out of K discrete c-concave function.

Identity initialization. In the general case (i.e., even in
manifolds where c-concave functions are not a convex
space) one can still define

ϕj(x) = σ(φj(x)). (22)

We note that if all αi ≥ 0 at initialization, σ(φj(x)) ≡ 0.
In this case, we claim that the initial flow is the identity
map, that is s(x) = x. Indeed, the gradient of a constant
function vanishes everywhere, and by definition of the OT,
s(x) = expx[0] = x.

5.2. Learning

We now discuss how to train the proposed flow model. We
denote by νθ = s#µ, the prior density pushed by our RCPM
model s, with parameters θ. To learn a target distribution ν
we consider either minimizing the KL divergence between
the generated distribution νθ and the data distribution ν:

KL(νθ|ν) = Eνθ(x)
[
log νθ(x)− log ν(x)

]
(23)

or, minimizing the negative log-likelihood under the model:

NLL(θ) = −Eν(x) logµθ(x). (24)

We optimize either objective by stochastic gradient descent
variants.

For low-dimensional manifolds, the Jacobian log-
determinants appearing in the computation of KL/likelihood
losses can be exactly computed efficiently. For higher-
dimensional manifolds, stochastic trace estimation tech-
niques can be leveraged (Huang et al., 2020).

Depending on the considered application, it may be more
practical to parameterize either the forward mapping (from
base to target), or the backward mapping (from target to
base). For instance, in the density estimation context, the
backward map from target samples to base samples is typi-
cally parameterized, and can be trained by maximum likeli-
hood (minimizing NNL) using eq. (24).

5.3. Smoothing via the soft-min operation

While the proposed layers si are universal, they are defined
using the gradients of the discrete c-concave potentials that
take the form ∇xφ(x) = − logx(yi), where yi is the argu-
ment minimizing the r.h.s. in eq. (12) (see also eq. (14)).
This in particular means that the αi do not transfer gradients.
Intuitively, considering fig. 1, the αi represent the heights of
the different c-concave pieces and since we only work with
their derivatives, the heights are not “seen” by the optimizer.
Furthermore, potential gradients ∇xφ are discontinuous at
meeting points of c-concave pieces.

We alleviate both problems by replacing the min operation
by a soft-min operation, minγ , similarly to Cuturi & Blondel
(2017). The soft-min operation minγ is defined as

minγ(a1, . . . , an) = −γ log
n∑
i=1

exp

(
−ai
γ

)
. (25)

In particular, in the limit γ → 0, minγ → min. While
c-concavity is impacted by this modification, it is recovered
in the γ → 0 limit. Also, gradients with respect to offsets
are not zero anymore, and α(j)

i are optimized through the
training process.

5.4. Discussion

We now discuss peculiarities of our model, what is currently
proven and raise open questions and future directions.

Model The construction in Section 4, i.e., exponential map
of a discrete c-concave function, is an optimal transport
map and universal in the sense that it can approximate any
OT between an absolutely continuous µ and arbitrary ν,
over a compact Riemannian manifold. It is not, however,
a diffeomorphism. As a practical way of optimizing this
model to approximate arbitrary ν we suggested smoothing
the min operation with soft-min. If this, now differentiable
function, is c-concave then the smoothed version leads to a
diffeomorphism (flow). While we are unable to prove that
the soft version is c-concave we verified numerically that it
indeed leads to a diffeomorphism (see fig. 8, Appendix). We
leave the question of whether the softing operator preserves
c-convexity on the sphere and more general manifolds to
theoreticians. Further, the universal model that is proposed
can potentially be optimized with other methods than as a
normalizing flow, for instance by directly optimizing the
Wasserstein loss similarly to Makkuva et al. (2019) in the
Euclidean case, or through semi-discrete transport (Peyre
& Cuturi, 2019). Both would not require the map to be a
diffeomorphism. We leave such directions as future work.

Scalability We follow the approach in Rezende et al. (2020),
which relies on reformulating the log-determinant in terms
of the Jacobian and an orthonormal basis of the tangent
space. Up to multiplication with such basis, the Jacobian
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Table 1. We trained a RCPM to optimize the KL on the 4-mode
dataset shown in fig. 3 and compare the KL and ESS to the Möbius-
spline flow (MS) and exponential-map sum-of-radial flow (EM-
SRE) from Rezende et al. (2020). We report the mean and standard
derivation from 10 trials of the RCPM.

Model KL [nats] ESS

Möbius-spline Flow 0.05 (0.01) 90%

Radial Flow 0.10 (0.10) 85%

RCPM 0.003 (0.0004) 99.3%

Table 2. Comparison of the runtime per training iteration of our
model with Rezende et al. over 1000 trials with batch size of 256.

Method Runtime (sec/iteration)

Radial (NT = 1, K = 12) 2.05 · 10−3 ± 1.33 · 10−4

Radial (NT = 6, K = 5) 6.26 · 10−3 ± 2.95 · 10−4

Radial (NT = 24, K = 1) 1.92 · 10−2 ± 5.24 · 10−4

RCPM (NT = 5, K = 68) 8.79 · 10−3 ± 1.81 · 10−4

determinant term is similar to the Euclidean case suggesting
there might be ways to apply techniques from Huang et al.
(2020). The main goal of the paper was to propose a prov-
ably universal generative model on manifolds and we defer
to future work more scalable log-determinant computations.
The table shows our runtimes are comparable to Rezende
et al. (2020)

6. Experiments
In continuation to the main theoretical constructions and
universality result, in this section we present experiments
with RCPM, demonstrating its practicality and flexibility
to different manifolds and distributions. We consider syn-
thetic manifold learning tasks similar to (Rezende et al.,
2020), Lou et al. (2020) on both spheres and tori, and
a real-life application over the sphere. We cover the
different use cases of RCPMs: density estimation, map-
ping estimation and geodesic transport. We have im-
plemented our experiments with JAX (Bradbury et al.,
2018) and our source code is freely available online at:

github.com/facebookresearch/rcpm

6.1. Synthetic Sphere Experiments

KL training. Our first experiment is taken from Rezende
et al. (2020), the task is to train a Riemannian flow gener-
ating a 4-modal distribution defined on the S2 sphere via
a reverse-mode KL minimization. This experiment allows
quantitative comparison of the different models’ theoretical

True RCPMs

Figure 3. Learned RCPMs on the sphere. Following Rezende et al.
(2020), we learn the first density with the reverse KL, and following
Lou et al. (2020), we learn the second with maximum likelihood.

True RCPM

Figure 4. We trained an RCPM νθ to learn a 3-modal density ν on
the torus T 2 = S1 × S1 (KL: 0.03, ESS: 94.7).

and practical expressiveness. We report results obtained
with their best performing models, namely a Mobius-spline
flow and a radial flow. The latter is an exponential-map flow
with radial layers (24 block of 1 component). We train a 5-
block RCPM. The exponential map and the intrinsic distance
required for RCPMs are closed-form for the sphere. More
implementation details are provided in the Supplementary,
including a description of a light random hyper-parameter
search we conducted to find the best models.

Results are logged in table 1. Notably, our model signifi-
cantly outperforms both baseline models with a KL of 0.003,
almost an order of magnitude smaller than the runner-up
with a KL of 0.05. This highlights the expressive power of
the RCPM model class. We also provide a visualization of
the trained RCPM in fig. 3 (top row), where we show KDE
estimates performed in spherical coordinates with a band-
width of 0.2. Finally, we compare the runtime per training
iteration of our model with Rezende et al. (2020)’s mod-
els over 1000 trials with a batch size of 256. Our model’s
speed is comparable to theirs while leading to significantly
improved KL/ESS.

Likelihood training. Next, we demonstrate an RCPM
trained via maximum likelihood on a more challenging
dataset, the checkerboard, also studied in Lou et al. (2020).
Figure 3 (bottom) shows the RCPM generated density on

http://github.com/facebookresearch/rcpm


Riemannian Convex Potential Maps

Base RCPM Target

Figure 5. We trained a 7-block RCPM flow to learn to map a base density over ground mass on earth of 90 million years ago such a
density over current earth. To learn, we minimize the KL divergence between the model and the target distribution.

Figure 6. Plot of the transport geodesics arising from a 1-block
RCPM trained in the setting of fig. 5, and following eq. (10). In
particular, we observe that samples stretch according to continental
movements.

True RCPM

Figure 7. We trained a 6-blocks RCPM in the density estimation
setting. In particular, the base distribution is the uniform distri-
bution on the sphere and the target ν consists of samples on the
ground of current earth.

the right. The RCPM is able to recover the density rather
accurately in this challenging setting. We found visualizing
the density of our model challenging because some regions
had unusually high density values around the poles. We
hence binarized the density plot. We provide the original
density in fig. 9 (Supplementary).

6.2. Torus

We now consider an experiment on the torus: T 2 = S1×S1.
Also on this manifold, exponential map and intrinsic dis-
tance required for RCPMs are known in closed-form (given
properties of product manifolds). Note, that exponential
map flows in Rezende et al. (2020) do not apply to this set-
ting as their c-concave layers are specific to the sphere. This
is in contrast with our construction that is readily applied
to any manifold where the exponential map and intrinsic
distance are closed-form or can be estimated.

We train a 6-block RCPM model (with 1 layer per block)
by KL minimization. As can be inspected from fig. 4, the
RCPM model is able to recover the target density accurately,
and the model achieves a KL of 0.03 and an ESS of 94.7.

6.3. Case Study: Continental Drift

Finally, we consider a real-world application of our model
on geological data in the context of continental drift (Wilson,
1963). We aim to demonstrate the versatility and flexibil-
ity of the framework with three distinct settings: mapping
estimation, density estimation, and geodesic transport, all
through the lens of RCPMs. The source map in figs. 5 to 7
is © 2020 Colorado Plateau Geosystems Inc.

Mapping estimation. We begin with mapping estimation.
We aim to learn a flow t mapping the base distribution of
ground mass on earth 90 million years ago (fig. 5, left), to
a ground mass distribution on current earth (fig. 5, right) –
the target. We train a 7-blocks RCPM with 3-layers blocks
(see sect. 5.1 by minimizing the KL divergence between the
model and target distributions. In fig. 5 (Middle), we show
the RCPM result, where it successfully learns to recover the
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target density over current earth. Hence, the mapping t can
be used to map mass from ‘old’ earth to current earth.

Transport geodesics. Next, we demonstrate the use of
transport geodesics induced by exponential-map flows. We
train a 1-block RCPM which allows to recover approxi-
mations of optimal-transport geodesics following eq. (10).
In particular, these curves are induced by transport map-
pings exp(t∇φ), t ∈ [0, 1], which we visualize for a grid of
starting points x0 on the sphere in fig. 6. Such geodesics
illustrate the optimal transport evolution of earth ground
across times. This relates to the well-known and studied
geological process of continental drift (Wilson, 1963). In
particular, North-American and Eurasian tectonic plates
move away from each other at a small rate per year, which
is illustrated in eq. (10). Denote as ’junction’ the junction
between Eurasian and North-American continents in ‘old’
earth. We observe that particles x0 located at the right of
the junction will have geodesics transporting them towards
the right, while particles located at the left of such junction
will be transported towards the left, which is the expected
behavior given the evolution of continental locations across
time (see fig. 5 left and right).

Density estimation. Finally, we consider RCPMs as den-
sity estimation tools. In this setting, we aim to learn a flow
from a known base distribution (e.g., uniform on the sphere)
to a target distribution (e.g., distribution of mass over earth)
given samples from the latter. We train an RCPM model
with 6 blocks (and 1 layer per block) by maximum likeli-
hood. We show the results for this experiment in fig. 7. We
observe that the model is able to recover the distribution of
mass on current earth.

7. Conclusion
In this paper, we propose to build flows on compact Rieman-
nian manifolds following the celebrated theory of McCann
(2001), that is using exponential map applied to gradients
of c-concave functions. Our main contribution is observing
that the rather intricate space of c-concave functions over ar-
bitrary compact Riemannian manifold can be approximated
with discrete c-concave functions. We provide a theoretical
result showing that discrete c-concave functions are dense
in the space of c-concave functions. We use this theoretical
result to prove that maps defined via a discrete c-concave
potentials are universal. Namely, can approximate arbitrary
optimal transports between an absolutely continuous source
distribution and arbitrary target distribution on the manifold.

We build upon this theory to design a practical model,
RCPM, that can be applied to any manifold where the expo-
nential map and the intrinsic distance are known, and enjoys
maximal expressive power. We experimented with RCPM,

and used it to train flows on spheres and tori, on both syn-
thetic and real data. We observed that RCPM outperforms
previous approaches on standard manifold flow tasks. We
also provided a case study demonstrating the potential of
RCPMs for applications in geology.

Future work includes training flows on more general mani-
folds, e.g., manifolds defined with signed distance functions
(Gropp et al., 2020), and using RCPM on other manifold
learning tasks where the expressive power of RCPM can
potentially make a difference. One particular interesting
venue is generalizing the estimation of barycenters (means)
of probability measures on Euclidean spaces to the Rieman-
nian setting through the use of discrete c-concave functions.
Other directions include considering other methods of train-
ing the OT maps, for instance via semi-discrete transport
and methods similar to Makkuva et al. (2019), along with
studying whether the smoothing heuristic proposed in our
paper preserves c-concavity.
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A. Manifold Operations
We briefly describe manifold operations, on a Riemannian
manifoldM with metric g, used in this paper. Specifically,
we define the exponential map exp and the intrinsic mani-
fold distance dM.

Exponential map. Let x ∈ M, v ∈ TxM and consider
the unique geodesic γ : [0, 1]→M such that γ(0) = x and
γ′(0) = v. The exponential map at x, expx : TxM→M,
is defined as

expx(v) = γ(1). (26)

Intrinsic distance. Define the length of a curve γ :
[0, 1]→M as

L(γ) =

∫ 1

0

‖γ′(t)‖g dt, (27)

where ‖γ′(t)‖g means taking the norm of the velocity γ′(t)
at Tγ(t)M with respect to the metric g of the manifoldM.
Then, the intrinsic distance dM between x, y ∈M is:

dM(x, y) = inf
γ
L(γ) (28)

where the inf is over curves γ : [0, 1]→M where γ(0) =
x and γ(1) = y. IfM is complete (see e.g., Hopf-Rinow
Theorem) the intrinsic distance is realized by a geodesic.

Sphere. On the n-sphere Sn, the exponential map and the
intrinsic distance are provided as closed-form expressions.
In particular, if x, y ∈ Sn and v ∈ TxSn,

expx(v) = x cos(‖v‖) + v

‖v‖
sin(‖v‖) (29)

dSn(x, y) = arccos(xT y), (30)

where ‖·‖ is the standard Euclidean norm.

Product manifolds. We now consider operations on prod-
uct manifolds of the form M = M1 × . . . ×Ml. The
squared intrinsic distance is simply

d2M(x, y) = d2M1
(x1, y1) + . . .+ d2Ml

(xl, yl). (31)

Here x = (x1, . . . , xl), and xj ∈ Mj , j ∈ [l] (and simi-
larly for y). The exponential map on the product manifold is
the cartesian product of exponential maps on the individual
manifolds. An instantiation of such product that will be
considered in experiments is the torus S1×S1. In that case,
we can use eqs. (29) and (30) to get the exponential map
and squared intrinsic distance in closed-form.

B. Proof of c-concavity of the multi-layer
potential

Proof. The proof is by induction. Constant functions are
c-concave, hence ψ0 is c-concave. Also, ψ1 = (1− w0)φ0
is c-concave by the assumption of convexity of the space
of c-concave functions. Next, assuming ψk−1(x) is c-
concave, σ(ψk−1) is also c-concave (because σ preserves
c-concavity), and ψk(x) is c-concave because convex combi-
nations of c-concave functions are c-concave. In conclusion,
ϕ = ψK is c-concave

C. Additional experimental and
implementation details

C.1. Synthetic Sphere

We conducted a hyper-parameter search over the parameters
in table 3 to find the flows used in our demonstrations and ex-
periments. We report results from the best hyper-parameters
obtained by randomly sampling the space of parameters.
The α values are initialized from U [αmin, αmin + αrange].
Also, γ1 corresponds to the softing coefficient of the soft-
min operation of discrete c-concave potentials, and γ2 to the
softing coefficient of the soft-min operation in the identity
initialization (see sects. 5.1 and 5.3).

Table 3. Hyper-parameter sweep for our sphere results

Adam

learning rate [10−6, 10−1]

β1 [0.1, 0.3, 0.5, 0.7, 0.9]

β2 [0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999]

Flow Hyper-parameters

Nb. of Components yi [50, 1000]

αmin [10−5, 10]

αrange [10−3, 1]

γ1 [0.01, 0.05, 0.1, 0.5]

γ2 [None, 0.01, 0.05, 0.1, 0.5]

Jacobian Log-Determinants We now verify empirically
whether the RPCM define diffeomorphisms in practice. We
compute Jacobian log-determinants of the flow trained on
the 4-modal density taken from Rezende et al. (2020) for



Riemannian Convex Potential Maps

Figure 8. Jacobian log-determinants for points uniformly sampled
on the sphere.

Original Density Binarized Density

Figure 9. Binarized density of the sphere checkerboard

106 points uniformly sampled on the sphere, and observe
that all these are positive (see fig. 8).

Binarized checkerboard density. We found it difficult
to visualize the learned density of our model on the checker-
board because a few regions have unusually high values that
mess up the ranges of the colormap. For visualization pur-
poses, we binarize the density values by taking the portion
of the density greater than the uniform density. Figure 9
shows the original and binarized densities of our models.

C.2. Torus

Model. We provide details on the model used in the torus
demonstration. The RCPM is composed of 6 single-layer
blocks of 200 components, and the softing parameter is set
to 0.5. Adam’s learning rate is set to 6e−4 and the betas to
(0.9, 0.99).

Data. The target density is of a form inspired by the target
densities in Rezende et al. (2020)):

p(θ1, θ2) =
1

3

3∑
i=1

pi(θ1, θ2) (32)

pi(θ1, θ2) ∝ exp [cos(θ1 − a1i ) + cos(θ2 − a2i )] (33)

where a1 = [4.18, 6.7], a2 = [4.18, 4.7], a3 = [4.18, 2.7],
and θ1, θ2 ∈ [0, 2π].

C.3. Continental Drift

Mapping estimation. We continue with details on the
model used in the mapping estimation setting of the conti-
nental drift case study. The RCPM is composed of 7 blocks
containing each 3 layers with 200 components, and the soft-
ing coefficient is set to 0.2. Adam’s learning rate is set to
2e−3 and β = (0.9, 0.99).

Transport geodesics. We now discuss the transport
geodesics setting. The RCPM is composed of a single block
(hence allowing to recover the optimal transport geodesics)
containing 3 layers with 200 components, and the softing
coefficient is set to γ = 0.2. Adam’s learning rate is set to
2e−3 and β = (0.9, 0.99).

Density estimation. Finally, we provide details on the
model used in the density estimation setting. The RCPM is
composed of 6 single-layer blocks containing each 400 com-
ponents, and the softing coefficient is set to 6e−2. Adam’s
learning rate is set to 2e−3 and β = (0.9, 0.99).

Data. The earth densities are obtained by leveraging
the code from https://github.com/cgarciae/
point-cloud-mnist-2D to turn Mollweide earth im-
ages into spherical point clouds, converting to Euclidean
coordinates, and applying kernel density estimation to
such point clouds both for visualization, and to get log-
probabilities when they are required (e.g., in the mapping
estimation setting, where access to log-probabilities from
the base – old earth – is needed to train the model). We will
release the point cloud samples for both datasets used in the
experiments in our final code.

https://github.com/cgarciae/point-cloud-mnist-2D
https://github.com/cgarciae/point-cloud-mnist-2D
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