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Abstract

In this work we propose a differential geometric motivation for Nesterov’s accel-
erated gradient method (AGM) for strongly-convex problems. By considering
the optimization procedure as occurring on a Riemannian manifold with a natural
structure, The AGM method can be seen as the proximal point method applied
in this curved space. This viewpoint can also be extended to the continuous time
case, where the accelerated gradient method arises from the natural block-implicit
Euler discretization of an ODE on the manifold. We provide an analysis of the
convergence rate of this ODE for quadratic objectives.

1 Introduction
The core algorithms of convex optimization are gradient descent (GD) and the accelerated gradient
method (AGM). These methods are rarely used directly, more often they occur as the building blocks
for distributed, composite, or non-convex optimization. In order to build upon these components, it is
helpful to understand not just how they work, but why. The gradient method is well understood in this
sense. It is commonly viewed as following a direction of steepest descent or as minimizing a quadratic
upper bound. These interpretations provide a motivation for the method as well as suggesting a
potential convergence proof strategy.

The accelerated gradient method in contrast has an identity crisis. Its equational form is remarkably
malleable, allowing for many different ways of writing the same updates. We list a number of these
forms in Table 1. Nesterov’s original motivation for the AGM method used the concept of estimate
sequences. Unfortunately, estimate sequences do not necessarily yield the simplest accelerated
methods when generalized, such as for the composite case (Beck and Teboulle 2009, Nesterov
2007), and they have not been successfully applied in the important finite-sum (variance reduced)
optimization setting.

Because of the complexity of estimate sequences, the AGM method is commonly motivated as a form
of momentum. This view is flawed as a way of introducing the AGM method from first principles, as
the most natural way of using momentum yields the heavy ball method instead:

xk+1 = xk − γ∇f
(
xk
)

+ β
(
xk − xk−1

)
,

which arises from discretizing the physics of a particle in a potential well with additional friction.
The heavy-ball method does not achieve an accelerated convergence rate on general convex problems,
suggesting that momentum, per se, is not the reason for acceleration. Another contemporary view is
the linear-coupling interpretation of Allen-Zhu and Orecchia [2017], which views the AGM method
as an interpolation between gradient descent and mirror descent. We take a more geometric view in
our interpretation.

In this work we motivate the AGM by introducing it as an application of the proximal-point method:

xk = arg min
x

{
f(x) +

η

2

∥∥x− xk−1∥∥2} .
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The proximal point (PP) method is perhaps as foundational as the gradient descent method, although
it sees even less direct use as each step requires solving a regularized subproblem, in contrast to the
closed form steps for GD and AGM. The PP method gains remarkable convergence rate properties in
exchange for the computational difficulty, including convergence for any positive step-size.

We construct the AGM by applying a dual form of the proximal point method in a curved space.
Each step follows a geodesic on a manifold in a sense we make precise in Section 4. We use the
term curved with respect to a coordinate system, rather than a coordinate free notion of curvature
such as the Riemannian curvature. We first give a brief introduction to the concepts from differential
geometry necessary to understand our motivation. The equational form that our argument yields is
much closer to those that have been successfully applied in practice, particularly for the minimization
of finite sums [Lan and Zhou, 2017, Zhang and Xiao, 2017].

2 Connections
An (affine) connection is a type of structure on a manifold that can be used to define and compute
geodesics. Geodesics in this sense represent curves of zero acceleration. These geodesics are more
general concepts than Riemannian geodesics induced by the Riemannian connection, not necessarily
representing the shortest path in any metric. Indeed, we will define multiple connections on the same
manifold that lead to completely different geodesics.

Given a n dimensional coordinate system, a connection is defined by n3 numbers at every point x
on the manifold, called the connection coefficients (or Christoffel symbols) Γ kij(x). A geodesic is a
path γ : [0, 1]→M (in our caseM = Rn) between two points x and y can then be computed as the
unique solution γ(t) = x(t) to the system of ordinary differential equations [Lee, 1997, Page 58, Eq
4.11]:

d2γi

dt2
.
=
d2xi

dt2
+
∑
j,k

Γ ijk(x)
dxj

dt

dxk

dt
= 0,

with boundary conditions x(0) = x and x(1) = y. Here xi denotes the ith component of x expressed
in the same coordinate system as the connection.

3 Divergences induce Hessian manifold structure
Let φ be a smooth strongly convex function defined on Rn. The Bregman divergence generated by φ:

Bφ(x, y) = φ(x)− φ(y)−
〈
∇φ(y), x− y

〉
,

and its derivatives can be used to define a remarkable amount of structure on the domain of φ. In
particular, we can define a Riemannian manifold, together with two dually flat connections with
biorthogonal coordinate systems [Amari and Nagaoka, 2000, Shima, 2007]. This structure is also
known as a Hessian manifold. Topologically it isM = Rn with the following additional geometric
structures.

Riemannian structure
Riemannian manifolds have the additional structure of a metric tensor (a generalized dot-product),
defined on their tangent spaces. We denote the vector space of tangent vectors at a point x as TxM.
If we express the tangent vectors with respect to the Euclidean basis, the metric at a point x is a
quadratic form with the Hessian matrix H(x) = ∇2

xB(x, y) = ∇2φ(x) of φ at x:

gx(u, v) = uTH(x)v.

Biorthogonal coordinate systems
Central to the notion of a manifold is the invariance to the choice of coordinate system. We can
express a point on the manifold as well as a point in the tangent space using any coordinate system
that is most convenient. Of course, when we wish to perform calculations on the manifold we must
be careful to express all quantities in that coordinate system. Euclidean coordinates ei are the most
natural on our Hessian manifold, however there is another coordinate system which is naturally dual
to ei, and ties the manifold structure directly to duality theory in optimization.
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Table 1: Equivalent forms of Nesterov’s method for µ-strongly convex, L-smooth f . Proofs of the
stated relations are available in the appendix.

Form Name Algorithm Relations

Nesterov [2013]
form I

yk =
αγvk + γxk

αµ+ γ

xk+1 = yk − 1

L
∇f(yk),

vk+1 = (1− α) vk + αµ

γ
yk − α

γ
∇f(yk)

αNes =
√
µ/L

γNes = µ.

Nesterov [2013]
form II

xk+1 = yk − 1

L
∇f(yk),

yk+1 = xk+1 + β
(
xk+1 − xk

) βNes =
√
L−√µ√
L+
√
µ

Sutskever et al.
[2013]

pk+1 = βpk − 1

L
∇f

(
xk + βpk

)
,

xk+1 = xk + pk+1

pk+1
Sut = xk+1

Nes − x
k
Nes,

ykNes = xkSut + βpkSut.

Modern
Momentum1

pk+1 = βpk +∇f(xk),

xk+1 = xk − 1

L

(
∇f(xk) + βpk+1

)
.

xkmod = xkSut + βpkSut = ykNes,

pkmod = −LpkSut.

Auslender and
Teboulle [2006]

yk = (1− θ)x̂k + θzk,

zk+1 = zk − γ

θ
∇f(yk),

x̂k = (1− θ)x̂k + θzk+1.

θAT = 1− βNes,

x̂kAT = xkNes,

ykAT = ykNes = xkmod,

γAT = 1/L.

Lan and Zhou
[2017]

x̃k = α(xk−1 − xk−2) + xk−1,

xk =
x̃k + τxk−1

1 + τ
,

gk = ∇f(xk),

xk = xk−1 − 1

η
gk.

xkLan = zkAT,

xkLan = ykAT,

ηLan =
γAT

θAT
,

τLan =
1− θAT

θAT
,

αLan = 1− θAT.

Recall that for a convex function φ we may define the convex conjugate φ∗(y) =
maxx {〈x, y〉 − φ(x)} . The dual coordinate system we define simply identifies each point x, when
expressed in Euclidean (“primal”) coordinates, with the vector of “dual” coordinates:

y = ∇φ(x).

Our assumptions of smoothness and strong convexity imply this is a one-to-one mapping, with inverse
given by x = ∇φ∗(y). The remarkable fact that the gradient of the conjugate is the inverse of the
gradient is a key building block of the theory in this paper.

The notion of biorthogonality refers to natural tangent space coordinates of these two systems. A
tangent vector v at a point x can be converted to a vector u of dual (tangent space) coordinates using
matrix multiplication with the Hessian [Shima, 2007]:

u = H(x)v, (1)

Given the definition of the metric above, it is easy to see that if we have two vectors v1 and v2, we
may express v2 in dual coordinates u2 so that the metric tensor takes the simple form:

gx(v1, v2) = vT1 H(x)v2 = vT1 H(x)
(
H(x)−1u2

)
= vT1 u2,

which is the biorthogonal relation between the two tangent space coordinate systems.

Dual Flat Connections
There is an obvious connection Γ (E) we can apply to the Hessian manifold, the Euclidean connection
that trivially identifies straight lines in Rn as geodesics. Normally when we perform gradient descent

1PyTorch & Tensorflow (for instance) implement this form. Evaluating the gradient and function at the
current iterate xk instead of a shifted point makes it more consistent with gradient descent when wrapped in a
generic optimization layer.
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Figure 1: Illustrative geodesics for f(x) = 1
4
‖Ax‖4 , with A = [2, 1; 1, 3]. Viewing them from both

coordinate systems highlights the duality. Contour lines are for f and f∗ respectively.

in Rn we are implicitly following a geodesic of this connection. The connection coefficients Γ (E)k
ij

are all zero when this connection is expressed in Euclidean coordinates. A connection that has
Γ kij = 0 with respect to some coordinate system is a flat connection.

The Hessian manifold admits another flat connection, which we will call the dual connection, as it
corresponds to straight lines in the dual coordinate system established above. In particular each dual
geodesic can be expressed in primal coordinates γ(t) as a solution to the equation:

∇φ (γ(t)) = at+ b,

for vectors a, b representing the initial velocity and point respectively (both represented in dual
coordinates) that depend on the boundary conditions. This is quite easy to solve using the relation
∇φ−1 = ∇φ∗ discussed above. For instance, a geodesic γ : [0, 1] → M between two arbitrary
points x and y under the dual connection could be computed explicitly in Euclidean coordinates as:

γ(t) = ∇φ∗ (t∇φ(y) + (1− t)∇φ(x)) .

If we instead know the initial velocity we can find the endpoint with:

y = ∇φ∗
(
∇φ(x) +H(xk)v

)
. (2)

The flatness of the dual connection Γ (D) is crucial to its computability in practice. If we instead try
to compute the geodesic in Euclidean coordinates using the geodesic ODE, we have to work with the
connection coefficients which involve third derivatives of φ (taking the form of double those of the
Riemannian connection Γ (R)):

Γ
(D)k
ij (x) = 2Γ

(R)k
ij =

[
H(x)−1 (∇H(x))i

]
kj
,

The Riemannian connection’s geodesics are similarly difficult to compute directly from the ODE
(they also can’t generally be expressed in a simpler form).

4 Bregman proximal operators follow geodesics
Bregman divergences arise in optimization primarily through their use in proximal steps. A Bregman
proximal operation balances finding a minimizer of a given function f with maintaining proximity to
a given point y, measured using a Bregman divergence instead of a distance metric:

xk = arg min
x

{
f(x) + ρBφ(x, xk−1)

}
. (3)

A core application of this would be the mirror descent step [Nemirovski and Yudin, 1983, Beck and
Teboulle, 2003], where the operation is applied to a linearized version of f instead of f directly:

xk = arg min
x

{〈
x,∇f(xk−1)

〉
+ ρBφ(x, xk−1)

}
.

Bregman proximal operations can be interpreted as geodesic steps with respect to the dual connection.
The key idea is that given an input point xk−1, they output a point x such that the velocity of the
connecting geodesic is equal to −∇ 1

ρf(x) at x. This velocity is measured in the flat coordinate
system of the connection, the dual coordinates. To see why, consider a geodesic γ(t) = (1 −
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t)∇φ(xk−1) + t∇φ(xk). Here xk−1 and xk are in primal coordinates and γ(t) is in dual coordinates.
The velocity is d

dtγ(t) = ∇φ(xk)−∇φ(xk−1). Contrast to the optimality condition of the Bregman
prox (Equation 3):

−1

ρ
∇f(xk) = ∇φ(xk)−∇φ(xk−1).

For instance, when using the Euclidean penalty the step is:

xk = arg minx
{
f(x) + ρ

2

∥∥x− xk−1∥∥2}.
The final velocity is just xk − xk−1, and so xk − xk−1 = − 1

ρ∇f(xk), which is the solution of the
proximal operation.

5 Primal-Dual form of the proximal point method
The proximal point method is the building block from which we will construct the accelerated
gradient method. Consider the basic form of the proximal point method applied to a strongly convex
function f . At each step, the iterate xk is constructed from xk−1 by solving the proximal operation
subproblem given an inverse step size parameter η:

xk = arg min
x

{
f(x) +

η

2

∥∥x− xk−1∥∥2} . (4)

This step can be considered an implicit form of the gradient step, where the gradient is evaluated at
the end-point of the step instead of the beginning:

xk = xk−1 − 1

η
∇f(xk),

which is just the optimality condition of the subproblem in Equation 4, found by taking the derivative
∇f(x) + ηx− ηxk−1 to be zero. A remarkable property of the proximal operation becomes apparent
when we rearrange this formula, namely that the solution to the operation is not a single point but a
primal-dual pair, whose weighted sum is equal to the input point:

xk +
1

η
∇f(xk) = xk−1.

If we define gk = ∇f(xk), the primal-dual pair obeys a duality relation: gk = ∇f(xk) and
xk = ∇f∗(gk), which allows us to interchange primal and dual quantities freely. Indeed we may
write the condition in a dual form as:

∇f∗
(
gk
)

+
1

η
gk = xk−1, (5)

which is the optimality condition for the proximal operation:

gk = arg min
g

{
f∗(g) +

1

2η

∥∥g − ηxk−1∥∥2} .
Our goal in this section is to express the proximal point method in terms of a dual step, and while this
equation involves the dual function f∗, it is not a step in the sense that gk is formed by a proximal
operation from gk−1.

We can manipulate this formula further to get an update of the form we want, by simply adding and
subtracting gk−1 from 5:

∇f∗
(
gk
)

+
1

η
gk =

1

η
gk−1 +

(
xk−1 − 1

η
gk−1

)
,

Which gives the updates:

gk = arg min
g

{
f∗(g)−

〈
g, xk−1 − 1

η
gk−1

〉
+

1

2η

∥∥g − gk−1∥∥2} ,
xk = xk−1 − 1

η
gk.

We call this the primal-dual form of the proximal point method.
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6 Acceleration as a change of geometry
The proximal point method is rarely used in practice due to the difficulty of computing the solution to
the proximal subproblem. It is natural then to consider modifications of the subproblem to make it
more tractable. The subproblem becomes particularly simple if we replace the proximal operation
with a Bregman proximal operation with respect to f∗,

gk = arg min
g

{
f∗(g)−

〈
g, xk−1 − 1

η
gk−1

〉
+ τBf∗(g, gk−1)

}
.

We have additionally changed the penalty parameter to a new constant τ , which is necessary as the
change to the Bregman divergence changes the scaling of distances. We discuss this further below.

Recall from Section 4 that Bregman proximal operations follow geodesics. The key idea is that we
are now following a geodesic in the dual connection of φ = f∗, using the notation of Section 3, which
is a straight-line in the primal coordinates of f due to the flatness of the connection (Section 3). Due
to the flatness property, a simple closed-form solution can be derived by equating the derivative to 0:

∇f∗(gk)−
[
xk−1 − 1

η
gk−1

]
+ τ∇f∗(gk)− τ∇f∗(gk−1) = 0,

therefore gk = ∇f
(

(1 + τ)
−1
[
xk−1 − 1

η
gk−1 + τ∇f∗(gk−1)

])
.

This formula gives gk in terms of the derivative of known quantities, as∇f∗(gk−1) is known from
the previous step as the point at which we evaluated the derivative at. We will denote this argument
to the derivative operation y, so that gk = ∇f(yk). It no longer holds that gk = ∇f(xk) after the
change of divergence. Using this relation, y can be computed each step via the update:

yk =
xk−1 − 1

η g
k−1 + τyk−1

1 + τ
.

In order to match the accelerated gradient method exactly we need some additional flexibility in the
step size used in the yk update. To this end we introduce an additional constant α in front of gk−1,
which is 1 for the proximal point variant. The full method is as follows:

Bregman form of the accelerated gradient method

yk =
xk−1 − α

η g
k−1 + τyk−1

1 + τ
,

gk = ∇f(yk),

xk = xk−1 − 1

η
gk. (6)

This is very close to the equational form of Nesterov’s method explored by Lan and Zhou [2017], with
the change that they assume an explicit regularizer is used, whereas we assume strong convexity of f .
Indeed we have chosen our notation so that the constants match. This form is algebraically equivalent
to other known forms of the accelerated gradient method for appropriate choice of constants. Table 1
shows the direct relation between the many known ways of writing the accelerated gradient method
in the strongly-convex case (Proofs of these relations are in the Appendix). When f is µ-strongly
convex and L-smooth, existing theory implies an accelerated geometric convergence rate of at least
1−

√
µ
L for the parameter settings [Nesterov, 2013]:

η =
√
µL, τ = L

η , α= τ
1+τ .

In contrast, the primal-dual form of the proximal point method achieves at least that convergence rate
for parameters:

η =
√
µL, τ = 1

η , α = 1.

The difference in τ arises from the difference in the scaling of the Bregman penalty compared to
the Euclidean penalty. The Bregman generator f∗ is strongly convex with constant 1/L whereas
the Euclidean generator 1

2 ‖·‖
2 is strongly convex with constant 1, so the change in scale requires

rescaling by L.
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6.1 Interpretations
After the change in geometry, the g update no longer gives a dual point that is directly the gradient of
the primal iterate. However, notice that the term we are attempting to minimize in the g step:

f∗(g)−
〈
g, xk−1 − α

η
gk−1

〉
,

has a fixed point of∇f∗
(
gk
)

= xk−1− α
η g

k, which is precisely an α-weight version of the proximal
point’s key property from Equation 5. Essentially we have relaxed the proximal-point method. Instead
of this relation holding precisely at every step, we are instead constantly taking steps which pull g
closer to satisfying it.

6.2 Inertial form
The primal-dual view of the proximal point method can also be written in terms of the quantity
zk−1 = xk−1 − α

η g
k−1 instead of xk−1. This form is useful for the construction of ODEs that model

the discrete dynamics. Under this change of variables the updates are:

gk = arg min
g

{
f∗(g)−

〈
g, zk−1

〉
+

1

2η

∥∥g − gk−1∥∥2} ,
zk = zk−1 − 1

η
gk − α

η

(
gk − gk−1

)
. (7)

6.3 Relation to the heavy ball method
Consider Equation 6 with α = 0, which removes the over-extrapolation before the proximal operation.
If we define β = τ

1+τ we may write the method as:

xk = xk−1 − 1

η
f ′(yk−1), yk = βyk−1 + (1− β)xk.

We can eliminate xk from the yk update above by plugging in the xk step equation, then using the yk
update from the previous step in the form (1− β)xk−1 = yk−1 − βyk−2 :

yk = βyk−1 + (1− β)

(
xk−1 − 1

η
f ′(yk−1)

)
= βyk−1 − (1− β)

1

η
f ′(yk−1) +

[
yk−1 − βyk−2

]
= yk−1 − (1− β)

1

η
f ′(yk−1) + β

[
yk−1 − yk−2

]
.

This has the exact form of the heavy ball method with step size (1− β) /η and momentum β. We
can also derive the heavy ball method by starting from the saddle-point expression for f :

min
x
f(x) = min

x
max
g
{〈x, g〉 − f∗(g)} .

The alternating-block gradient descent/ascent method on the objective 〈x, g〉 − f∗(g) with step-size
γ is simply:

gk = gk−1 +
1

γ

[
xk−1 −∇f∗(gk−1)

]
, xk = xk−1 − γgk.

If we instead perform a Bregman proximal update in the dual geometry for the g part, we arrive at the
same equations as we had for the primal-dual proximal point method but with α = 0, yielding the
heavy ball method. In order to get the accelerated gradient method instead of the heavy ball method,
the extra inertia that arises from starting from the proximal point method instead of the saddle point
formulation appears to be crucial.

7 Dual geometry in continuous time
The inertial form (Equation 7) of the proximal point method can be formulated as an ODE in a very
natural way, by mapping zk − zk−1 → ż and gk − gk−1 → ġ, and taking x and g to be at time t.
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This is the inverse of the Euler class of discretizations applied separately to the two terms, which is
the most natural way to discretize an ODE. The resulting proximal point ODE is:

ġ = fg(z, g, t)
.
= −1

τ
∇f∗ (g) +

1

τ
z,

ż = fz(z, g, t)
.
= −1

η
g − α

η
ġ.

We have suppressed the dependence on t of each quantity for notational simplicity. We can treat g
more formally as a point g ∈M on a Hessian manifoldM. Then the solution for the g variable of
the ODE is a curve γ(t) : I → TM from an interval I to the tangent bundle on the manifold so the
velocity γ̇(t) ∈ TgM obeys the ODE: γ̇(t) = fg(z, g, t). The right hand side of the ODE is a point
in the tangent space of the manifold at γ(t), expressed in Euclidean coordinates.

We can now apply the same partial change of geometry that we used in the discrete case. We will
consider the quantity fg(z, g, t) to be a tangent vector in dual tangent space coordinates For the
φ = f∗ Hessian manifold, instead of its primal tangent space coordinates (which would leave the
ODE unchanged). The variable g remains in primal coordinates with respect to φ, so we must add to
the ODE a change of coordinates for the tangent vector, yielding:

ġ =
(
∇2f∗(g)

)−1
fg(z, g, t),

where we have used the inverse of Equation 1, with φ = f∗. We can rewrite this as:

fg(z, g, t) = ∇2f∗(g)ġ =
d

dt
∇f∗(g),

giving the AGM ODE system:

d
dt∇f

∗(g) = − 1
τ∇f

∗ (g) + 1
τ z, ż = − 1

η g −
α
η ġ.

It is now easily seen that the implicit Euler update for the g variable with z fixed now corresponds to
the solution of the Bregman proximal operation considered in the discrete case. So this ODE is a
natural continuous time analogue to the accelerated gradient method.

Convergence in continuous time
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Figure 2: Paths for the quadratic problem
f(x) = 1

2
xTAx with A = [2, 1; 1, 3].

The natural analogy to convergence in continuous time is
known as the decay rate of the ODE. A sufficient condition
for an ODE with parameters u = [z; g] to decay with
constant ρ is:

‖u(t)− u∗‖ ≤ exp (−tρ) ‖u(0)− u∗‖ ,

where u∗ is a fixed point. We can relate this to the discrete
case by noting that exp(−tρ) = limk→∞(1 − t

kρ)k, so
given our discrete-time convergence rate is proportional to
(1−

√
µ/L)k, we would expect values of ρ proportional

to
√
µ/L if the ODE behaves similarly to the discrete

process. We have been able to establish this result for both
the proximal and AGM ODEs for quadratic objectives
(proof in the Appendix in the supplementary material).

Theorem 1. The proximal and AGM ODEs decay with
at least the following rates for µ-strongly convex and L-
smooth quadratic objective functions when using the same hyper-parameters as in the discrete
case:

ρprox ≥
√
µ

√
µ+
√
L
, ρAGM ≥ 1

2

√
µ
L .

Figure 2 contrasts the convergence of the discrete and continuous variants. The two methods have
quite distinct paths whose shape is shared by their ODE counterparts.
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8 Related Work
The application of Bregman divergence to the analysis of continuous time views of the accelerated
gradient method has recently been explored by Wibisono et al. [2016] and Wilson et al. [2018]. Their
approaches do not use the Bregman divergence of f∗, a key factor of our approach. The Bregman
divergence of a function φ occurs explicitly as a term in a Hamiltonian, in contrast to our view of φ
as curving space. The accelerated gradient method has been shown to be modeled by a momentum of
the form ODE Ẍ + c(t)Ẋ +∇f(x) = 0 by Su et al. [2014]. Natural discretizations of their ODE
result in the heavy-ball method instead of the accelerated gradient method, unlike our form which
can produce both based on the choice of α. The fine-grained properties of momentum ODEs have
also been studied in the quadratic case by Scieur et al. [2017].

A primal-dual form of the regularized accelerated gradient method appears in Lan and Zhou [2017].
Our form can be seen as a special case of their form when the regularizer is zero. Our work extends
theirs, providing an understanding of the role that geometry plays in unifying acceleration and implicit
steps.

The Riemannian connection induced by a function has been heavily explored in the optimization
literature as part of the natural gradient method [Amari, 1998], although other connections on this
manifold are less explored. The dual-flat connections have primarily seen use in the information-
geometry setting for optimization over distributions [Amari and Nagaoka, 2000].

The accelerated gradient method is not the only way to achieve accelerated rates among first order
methods. Other techniques include the Geometric descent method of Bubeck et al. [2015], where a
bounding ball is updated at each step that encloses two other balls, a very different approach. The
method described by Nemirovski and Yudin [1983] is also notable as being closer to the conjugate
gradient method than other accelerated approaches, but at the expense of requiring a 2D search
instead of a 1D line search at each step.

9 Conclusion

We believe the tools of differential geometry may provide a new and insightful avenue for the analysis
of accelerated optimization methods. The analysis we provide in this work is a first step in this
direction. The advantage of the differential geometric approach is that it provides high level tools that
make the derivation of acceleration easier to state. This derivation, from the proximal point method
to the accelerated gradient method, is in our opinion not nearly as mysterious as the other known
approaches to understanding acceleration.
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Appendix
A Reformulations of the accelerated gradient method

Form II

This simplification is described in Nesterov [2013] which we reproduce for completeness. Recall that
Form I is given by the updates:

yk =
αγvk + γxk

αµ+ γ
,

xk+1 = yk − 1

L
∇f(yk),

vk+1 = (1− α) vk +
αµ

γ
yk − α

γ
∇f(yk).

Nesterov specifies the requirement that γ = (1 − α)γ + αµ. When α =
√
µ/L then γ must then

satisfy:

γ = (1−
√
µ/L)γ + µ

√
µ/L,

∴ 1 = (1−
√
µ/L) +

µ

γ

√
µ/L,

∴
√
µ/L) =

µ

γ

√
µ/L,

∴ µ = γ

We may rewrite the yk definition as:

(αµ+ γ) yk = αγvk + γxk,

∴ vk =
1

αγ

[
(αµ+ γ) yk − γxk

]
.

Plugging this into the v step:

vk+1 = (1− α) vk +
αµ

γ
yk − α

γ
∇f(yk)

=
1− α
αγ

[
(αµ+ γ) yk − γxk

]
+
αµ

γ
yk − α

γ
∇f(yk)

=
1

γ

[
(1− α)µyk +

(
1− α
α

)
γyk + αµyk

]
− 1− α

α
xk − α

γ
∇f(yk)

=
1

αγ

[
αµyk + (1− α) γyk

]
− 1− α

α
xk − α

γ
∇f(yk)

=
1

α

[
yk
]
− 1− α

α
xk − α

γ
∇f(yk)

= xk +
1

α

(
yk − xk

)
− α

γ
∇f(yk)

= xk +
1

α

(
xk+1 − xk

)
.
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For yk, we start with using γ = µ, then apply the v simplification;

yk =
αγvk + γxk

αγ + γ

=

(
αγxk−1 + γ

(
xk − xk−1

))
+ γxk

αγ + γ

= xk +

(
αγxk−1 + γ

(
xk − xk−1

))
− αγxk

αγ + γ

= xk +
αγ
(
xk−1 − xk

)
+ γ

(
xk − xk−1

)
αγ + γ

= xk +
γ − αγ
αγ + γ

(
xk − xk−1

)
.

Note that by multiplying by
√
L/µ we get:

µ− µ
√
µ/L

µ
√
µ/L+ µ

=

√
L−√µ
√
µ+
√
L

= β.

Sutskever’s form

Recall Sutskever’s form:
pk+1

Sut = βpkSut −
1

L
∇f

(
xkSut + βpkSut

)
,

xk+1
Sut = xkSut + pk+1

Sut .

and Nesterov’s form:
xk+1

Nes = ykNes −
1

L
∇f(ykNes),

yk+1
Nes = xk+1

Nes + β
(
xk+1

Nes − x
k
Nes

)
.

We will show that using the substitutions:

pk+1
Sut = xk+1

Nes − x
k
Nes,

ykNes = xkSut + βpkSut,

applied to Sutskever’s form gives Nesterov’s form. We start with the momentum term:

pk+1
Sut = βpkSut −

1

L
∇f

(
ykNes

)
,

∴ xk+1
Nes − x

k
Nes = β

(
xkNes − xk−1Nes

)
− 1

L
∇f

(
ykNes

)
,

∴ xk+1
Nes +

1

L
∇f

(
ykNes

)
= xkNes + β

(
xkNes − xk−1Nes

)
.

Defining: ykNes := xk+1
Nes + 1

L∇f
(
ykNes

)
and applying on the right gives Nesterov’s y update:

ykNes = xkNes + β
(
xkNes − xk−1Nes

)
.

Modern form

We want:
pk+1

Mod = βpkMod +∇f(xkMod),

xk+1
Mod = xkMod −

1

L

(
∇f(xkMod) + βpk+1

Mod

)
.

Starting from Sutskever’s form,

pk+1
Sut = βpkSut −

1

L
∇f

(
xkSut + βpkSut

)
,

xk+1
Sut = xkSut + pk+1

Sut .
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Define xkMod = xkSut + βpkSut. Note that this is equal to ykNes by definition. So we have:

xkSut = xkMod − βpkSut.

Plugging that into the Sutskever step

xk+1
Mod − βp

k+1
Sut = xkMod − βpkSut + pk+1

Sut ,

∴ xk+1
Mod = xkMod +

(
pk+1

Sut − βp
k
Sut

)
+ βpk+1

Sut

= xkMod −
1

L
f ′
(
xkMod

)
+ βpk+1

Sut .

Then define pkmod = −LpkSut, so the update becomes:

xk+1
Mod = xkMod −

1

L

(
∇f

(
xkMod

)
+ βpk+1

Sut

)
.

The momentum update changes from:

pk+1
Sut = βpkSut −

1

L
∇f

(
xkSut + βpkSut

)
,

to:
− 1

L
pk+1

mod = −β 1

L
pkmod −

1

L
∇f

(
xkMod

)
,

∴ pk+1
mod = βpkmod +∇f

(
xkMod

)
.

Auslender & Teboulle form

ykAT = (1− θAT)x̂kAT + θATz
k
AT,

zk+1
AT = zkAT −

γAT

θAT
∇f(ykAT),

x̂k+1
AT = (1− θAT)x̂kAT + θATz

k+1
AT .

We first eliminate ykAT from the x̂k+1
AT update:

x̂k+1
AT = (1− θAT)x̂kAT + θATz

k+1
AT

= (1− θAT)x̂kAT + θAT

(
zkAT −

γAT

θAT
∇f(ykAT)

)
= x̂k + θAT

(
zkAT − x̂kAT

)
− γAT∇f

(
x̂k + θAT

(
zkAT − x̂kAT

))
.

This notational similarity with Nesterov’s xk+1
Nes = ykNes − 1

L∇f(ykNes) suggests matching

ykNes = xkmod = ykAT = x̂k + θAT
(
zkAT − x̂kAT

)
,

as well as γAT = 1
L and

xkNes = x̂kAT.

Note that using using the step for x̂ we can rearrange to get:

zk+1
AT =

1

θAT
x̂k+1

AT − (1− θAT)

θAT
x̂kAT.

Now to determine θ we simplify using this substitution:

ykAT = x̂kAT + θAT
(
zkAT − x̂kAT

)
= x̂kAT + θAT

(
1

θAT
x̂kAT −

(1− θAT)

θAT
x̂k−1AT

)
= x̂kAT + θAT

(
1− θAT

θAT
x̂kAT −

(1− θAT)

θAT
x̂k−1AT

)
= x̂kAT + (1− θAT)

(
x̂kAT − x̂k−1AT

)
.

So my matching constants against Nesterov’s method we have βNes = 1− θAT.
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Lan form

x̃kLan = αLan(xk−1Lan − x
k−2
Lan ) + xk−1Lan ,

xkLan =
x̃kLan + τLanx

k−1
Lan

1 + τLan
,

gkLan = ∇f(xkLan),

xkLan = xk−1Lan −
1

ηLan
gkLan.

Now we can eliminate x̃ from the updates to give

xkLan =
τLanx

k−1
Lan + xk−1Lan + αLan(xk−1Lan − x

k−2
Lan )

1 + τLan
,

Also consider the yk update for the AT method:

ykAT = (1− θAT)x̂kAT + θATz
k
AT,

We can write this to not involve x̂, giving:

ykAT = (1− θAT)yk−1AT + θATz
k
AT + (1− θAT)θAT

(
zkAT − zk−1AT

)
.

This form suggests matching the iterates with:

xkLan = ykAT, xkLan = zkAT.

Under this matching, the constants need to satisfy the following relations:

(1− θAT) =
τLan

1 + τLan
,

(
θAT + θAT − θ2AT

)
=

1 + αLan

1 + τLan
,

(1− θAT) θAT =
αLan

1 + τLan
.

The settings:

τLan =
1− θAT

θAT
, αLan = 1− θAT,

result in these three constraints being satisfied:

τ

1 + τ
=

1−θ
θ

1 + 1−θ
θ

=
1− θ

θ + 1− θ
= 1− θX,

1 + α

1 + τ
=

1 + 1− θ
1 + 1−θ

θ

=
2θ − θ2

θ + 1− θ
= 2θ − θ2X,

α

1 + τ
=

1− θ
1 + 1−θ

θ

=
θ − θ2

1
X.

Matching the xkLan step xkLan = xk−1Lan − 1
ηLan

gkLan. requires 1
ηLan

= γAT
θAT

also.

B Continuous time theory

Lemma 2. Consider a linear ODE of the form:

u̇ = A (u− u∗) ,
Where A is real and diagonalizable but not necessarily normal or symmetric, and x∗ is the fixed
point. Then

‖u(t)− u∗‖ ≤ maxj exp (tRe[λj ]) ‖u(0)− u∗‖ ,
where λj are eigenvalues of A with real part Re[λj ].
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Proof. Because the inhomogeneous term Au∗ is constant w.r.t time, without loss of generality we
can reduce our problem to a homogenous ODE by shifting the origin:

u̇ = Au.

The solution of a linear ODE of this form is given in closed form using the matrix exponential:

u(t) = exp (tA)u(0),

we can use this formula to bound the norm of u(t):

∴ ‖u(t)‖ ≤ ‖exp (tA)‖ ‖u(0)‖ ,

where ‖·‖ is the spectral norm. If A is diagonalizable with A = Udiag(λ1, . . . λ, d)U−1 then the
matrix exponential can be expressed as:

exp (tA) = U

 exp(tλ1) 0 0

0
. . . 0

0 0 exp(tλd)

U−1.
The spectral norm is given by the largest absolute value of the eigenvalues, so we must consider the
interaction of the real and complex parts. For an eigenvalue λ = a + bi of A, the norm takes the
simple form:

|exp(tλ)| = exp (ta+ tbi)

= |exp (ta)| |exp (tbi)|
= |exp (ta)| .

So the spectral norm is given by the maximum over the eigenvalues λj of exp (tRe[λj ]).

Theorem 3. Consider the following linear ODE:

u̇ = A (u− u∗) ,

A : 2n× 2n =

[
−I − 1

η I +H−1

ηI −ηH−1
]
,

where H : n × n is a real, positive definite and symmetric matrix with minimum eigenvalue µ
and maximum eigenvalue L. This corresponds to the proximal ODE for a quadratic function
f(x) = 1

2 (x− x∗)T H (x− x∗), with u = [x; g] and u∗ = [x∗; 0]. Then the decay rate of the ODE
towards the origin u∗ = 0 can be bounded as follows for η =

√
µL:

‖u(t)− u∗‖ ≤ exp (−tρ) ‖u(0)− u∗‖ ,

ρ =

√
µ

√
µ+
√
L
.

Proof. We will take the approach of bounding the real parts of the eigenvalues of A, so that we can
directly apply Lemma 2.

Let UΛUT = H be the eigen-decomposition of H . Note that the operation of conjugation by U
leaves the identity matrix unchanged (UIUT = I). Each block of A is just a weighted combination
of the identity matrix and H−1, so this implies that conjugation of a block by it’s self gives a diagonal
matrix. We can use this idea to define a similarity transform that converts A into a matrix where each
of the four blocks are diagonal. In particular we have:[

U 0
0 U

]T [
A11 A12

A21 A22

] [
U 0
0 U

]
=

[
UA11U

T UA12U
T

UA21U
T UA22U

T

]
,

where we have written A in terms of its 4 constituent n× n blocks. Each block is a weighted sum of
the identity matrix and the diagonal matrix of inverse eigenvalues of H, for instance:

UA12U
T = −1

η
I + Λ−1.
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Next we construct a permutation matrix Π : 2n × 2n with the goal of converting D into a block
diagonal matrix with 2× 2 blocks along the diagonal, where each block has the structure of A as if it
was applied to a 1D optimization problem, with H being replaced by one of the d eigenvalues of H .
This is achieved with the permutation matrix Π that is zero except for:

Π2i,i = 1, Π2i+1,d+i = 1, i = 1 . . . n.

For instance, in the n = 2 case the matrix is: 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
This matrix has the effect of interleaving the primal dual pairs (per coordinate) instead of having all
the primal coordinates together followed by all the dual coordinates. So when we conjugate using Π
we get:

ΠT

[
U 0
0 U

]T
A

[
U 0
0 U

]
Π =


T1 0 . . .

0
. . . 0

... 0 Td

 ,
where each T is a 2× 2 matrix of the described form:

Ti =

[
−1 − 1

η + λ−1i
η −ηλ−1i

]
.

The eigenvalues of a block diagonal matrix are just the eigenvalues of the blocks concatenated, and
since there is a similarity transform between A and this block diagonal matrix, we have effectively
reduced our problem to considering 1D quadratics, with curvature between µ and L, for fixed η.

Recall that for a matrix
[
a b
c d

]
the eigenvalues are given by the two roots of a quadratic, namely:

ν± =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

We use the notation ν to avoid confusion between the eigenvalues of the T blocks and those of H .
For a block Ti, this expression is

ν
(i)
+ = −1

2
− ηλ−1i

2
± 1

2

√(
1 + ηλ−1i

)2 − 4
(
ηλ−1i + 1− ηλ−1i

)
Suppose that the discriminate (the quantity under the square root) is negative, then

Re
[
ν
(i)
±

]
= −1

2
− ηλ−1i

2
,

this is obviously at least as small as −ρ = −
√
µ

√
µ+
√
L
, since the largest value of ρ possible is when

µ = L, in which case ρ = 1
2 . So consider instead the case where the discriminate is positive. We

need only consider the v+ root as it is strictly larger. Then we will use the concavity of the square
root function to bound ν+,

h(x) ≤ h(y) + 〈∇h(y), x− y〉

For h =
√
·, with y =

(
−1− ηλ−1i

)2
and x =

(
−1− ηλ−1i

)2 − 4. We get:

ν
(i)
+ ≤ −

1

2
− ηλ−1i

2
+

1

2

√(
1 + ηλ−1i

)2 − 4

4
(
1 + ηλ−1i

)
= − 1(

1 + ηλ−1i
) .

Therefore:

ν
(i)
+ ≤ −

1(
1 + ηλ−1i

) ≤ − 1

(1 + η/µ)
= −

√
µ

√
µ+
√
L

= −ρ.

Thus we have shown that the real parts of all eigenvalues of A are less than −ρ.
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Theorem 4. Consider the following linear ODE:

u̇ = A (u− u∗) ,

A : 2d× 2d =

[
− α
ητH − 1

η I + α
ητ I

1
τH − 1

τ I

]
,

where H : d × d is a real, positive definite and symmetric matrix with minimum eigenvalue µ
and maximum eigenvalue L. This corresponds to the AGM ODE for a quadratic objectivef(x) =
1
2 (x− x∗)T H (x− x∗), with u = [x; g] and u∗ = [x∗; 0]. The decay rate of this ODE towards the
origin u∗ = 0 can be bounded as follows for η =

√
µL, τ = L/η, and α ∈ [0, 1]:

‖u(t)‖ ≤ exp (−tρ) ‖u(0)‖ ,

ρ =
1

2

√
µ

L
.

Proof. We can apply the same proof technique as for Theorem 3, we omit the details. The 2 × 2
block diagonal matrices are:

Ti =

[
− α
ητ λi −

1
η + α

ητ
1
τ λi − 1

τ

]
.

For eigenvalues λi of H . The two eigenvalues of Ti are:

ν
(i)
± = − α

2ητ
λi −

1

2τ
± 1

2

√(
α

ητ
λi +

1

τ

)2

− 4
λi
ητ

The discriminate here is always non-positive. To see why, we plug in the constants η and τ :(
α

L
λi +

√
µ

L

)2

− 4
λi
L
≤ 2

α2

L2
λ2i + 2

µ

L
− 4

λi
L

≤ 2
λi
L

+ 2
µ

L
− 4

λi
L

= 2
µ

L
− 2

λi
L

≤ 0.

So the real part is given by the quantity outside the square root, namely:

Re
[
ν
(i)
±

]
= − α

2ητ
λi −

1

2τ
= −αλi

2L
− 1

2

√
µ

L
≤ −1

2

√
µ

L
.

Using Lemma 2 gives the result.

C The standard heavy ball ODE

The standard heavy-ball ODE for a quadratic f(x) = 1
2x

THx is

ẍ+ (1− β) ẋ+ γHx = 0.

Which can be written in first-order form in terms of a momentum parameter p as:

ẋ = p,

ṗ = − (1− β) p− γHx. (8)

The constants that result in optimal convergence rate for the discretize heavy ball method:

xk+1 = xk + pk

pk = βpk−1 − γ∇f(xk)
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which can also be written as:

xk+1 = xk − γHxk + β
(
xk − xk−1

)
,

are:

β =

√
L−√µ
√
L+
√
µ
, γ =

4(√
L+
√
µ
)2 . (9)

Theorem 5. Consider the following ODE:

u̇ = A (u− u∗) ,

A =

[
0 I
−γH − (1− β) I

]
.

This is the ODE in Equation 8 written in matrix form for a combined iterate u. For the parameters
given in Equation 9, this ODE has decay rate at least:

‖u(t)− u∗‖ ≤ exp (−tρ) ‖u(0)− u∗‖ ,

where ρ =

√
µ

√
L+
√
µ
.

Proof. We can reduce the problem to considering the eigenvalues of 2× 2 matrices as we did for the
proximal and AGM ODEs. We have matrices of the form:

Ti =

[
0 1
−γλi − (1− β)

]
,

whose eigenvalues are given by the general formula

ν± =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

Simplifying:

ν± = −1

2
(1− β)± 1

2

√
(1− β) 2 − 4γλi.

Note that:

1− β = 2

√
µ

√
L+
√
µ
.

The choice of step size ensures that the discriminant is always non-positive:(
2
√
µ

√
L+
√
µ

)2

− 4
4λi(√

L+
√
µ
)2 ≤

(
2
√
µ

√
L+
√
µ

)2

− 4

(
2
√
µ

√
L+
√
µ

)2

≤ 0

Therefore the decay rate is bounded by the real part of the eigenvalues, which is − 1
2 (1− β).
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