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Abstract

To understand the visual world, a machine must not only
recognize individual object instances but also how they in-
teract. Humans are often at the center of such interac-
tions and detecting human-object interactions is an impor-
tant practical and scientific problem. In this paper, we ad-
dress the task of detecting 〈human, verb, object〉 triplets
in challenging everyday photos. We propose a novel model
that is driven by a human-centric approach. Our hypothesis
is that the appearance of a person – their pose, clothing,
action – is a powerful cue for localizing the objects they
are interacting with. To exploit this cue, our model learns
to predict an action-specific density over target object loca-
tions based on the appearance of a detected person. Our
model also jointly learns to detect people and objects, and
by fusing these predictions it efficiently infers interaction
triplets in a clean, jointly trained end-to-end system we call
InteractNet. We validate our approach on the recently intro-
duced Verbs in COCO (V-COCO) and HICO-DET datasets,
where we show quantitatively compelling results.

1. Introduction

Visual recognition of individual instances, e.g., detect-
ing objects [10, 9, 27] and estimating human actions/poses
[12, 32, 2], has witnessed significant improvements thanks
to deep learning visual representations [18, 30, 31, 17].
However, recognizing individual objects is just a first step
for machines to comprehend the visual world. To under-
stand what is happening in images, it is necessary to also
recognize relationships between individual instances. In
this work, we focus on human-object interactions.

The task of recognizing human-object interactions [13,
33, 6, 14, 5] can be represented as detecting 〈human, verb,
object〉 triplets and is of particular interest in applica-
tions and in research. From a practical perspective, pho-
tos containing people contribute a considerable portion of
daily uploads to internet and social networking sites, and
thus human-centric understanding has significant demand
in practice. From a research perspective, the person cate-
gory involves a rich set of actions/verbs, most of which are
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Figure 1. Detecting and recognizing human-object interactions.
(a) There can be many possible objects (green boxes) interacting
with a detected person (blue box). (b) Our method estimates an
action-type specific density over target object locations from the
person’s appearance, which is represented by features extracted
from the detected person’s box. (c) A 〈human, verb, object〉
triplet detected by our method, showing the person box, action
(cut), and target object box and category (knife). (d) Another pre-
dicted action (stand), noting that a person can simultaneously take
multiple actions and an action may not involve any objects.

rarely taken by other subjects (e.g., to talk, throw, work).
The fine granularity of human actions and their interactions
with a wide array of object types presents a new challenge
compared to recognition of entry-level object categories.

In this paper, we present a human-centric model for rec-
ognizing human-object interaction. Our central observation
is that a person’s appearance, which reveals their action and
pose, is highly informative for inferring where the target
object of the interaction may be located (Figure 1(b)). The
search space for the target object can thus be narrowed by
conditioning on this estimation. Although there are often
many objects detected (Figure 1(a)), the inferred target lo-
cation can help the model to quickly pick the correct object
associated with a specific action (Figure 1(c)).

We implement this idea as a human-centric recognition
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Figure 2. Human-object interactions detected by our method. Each image shows one detected 〈human, verb, object〉 triplet.

branch in the Faster R-CNN framework [27]. Specifically,
on a region of interest (RoI) associated with a person, this
branch performs action classification and density estimation
for the action’s target object location. The density estimator
predicts a 4-d Gaussian distribution, for each action type,
that models the likely relative position of the target object
to the person. The prediction is based purely on the human
appearance. This human-centric recognition branch, along
with a standard object detection branch [9] and a simple
pairwise interaction branch (described later), form a multi-
task learning system that can be jointly optimized.

We evaluate our method, InteractNet, on the challeng-
ing V-COCO (Verbs in COCO) dataset [14] for detecting
human-object interactions. Our human-centric model im-
proves accuracy by 26% (relative) from 31.8 to 40.0 AP
(evaluated by Average Precision on a triplet, called ‘role
AP’ [14]), with the gain mainly due to inferring the target
object’s relative position from the human appearance. In
addition, we prove the effectiveness of InteractNet by re-
porting a 27% relative improvement on the newly released
HICO-DET dataset [3]. Finally, our method can run at
about 135ms / image for this complex task, showing good
potential for practical usage.

2. Related Work

Object Detection. Bounding-box based object detectors
have improved steadily in the past few years. R-CNN, a
particularly successful family of methods [10, 9, 27], is a
two-stage approach in which the first stage proposes candi-
date RoIs and the second stage performs object classifica-
tion. Region-wise features can be rapidly extracted [16, 9]
from shared feature maps by an RoI pooling operation. Fea-
ture sharing speeds up instance-level detection and enables
recognizing higher-order interactions, which would be com-
putationally infeasible otherwise. Our method is based on
the Fast/Faster R-CNN frameworks [9, 27].

Human Action & Pose Recognition. The action and pose
of humans is indicative of their interactions with objects or
other people in the scene. There has been great progress
in understanding human actions [12] and poses [32, 2, 15]
from images. These methods focus on the human instances
and do not predict interactions with other objects. We rely
on action and pose appearance cues in order to predict the
interactions with objects in the scene.

Visual Relationships. Research on visual relationship
modeling [29, 14, 23, 34] has attracted increasing attention.
Recently, Lu et al. [23] proposed to recognize visual rela-
tionships derived from an open-world vocabulary. The set
of relationships include verbs (e.g., wear), spatial (e.g., next
to), actions (e.g., ride) or a preposition phrase (e.g., drive
on). Our focus is related, but different. First, we aim to
understand human-centric interactions, which take place in
particularly diverse and interesting ways. These relation-
ships involve direct interaction with objects (e.g., person
cutting cake), unlike spatial or prepositional phrases (e.g.,
dog next to dog). Second, we aim to build detectors that
recognize interactions in images with high precision, which
is a requirement for practical applications. In contrast, in an
open-world recognition setting, evaluating precision is not
feasible, resulting in recall-based evaluation, as in [23].

Human-Object Interactions. Human-object interactions
[13, 33, 6] are related to visual relationships, but present
different challenges. Human actions are more fine-grained
(e.g., walking, running, surfing, snowboarding) than the ac-
tions of general subjects, and an individual person can si-
multaneously take multiple actions (e.g., drinking tea and
reading a newspaper while sitting in a chair). These issues
require a deeper understanding of human actions and the
objects around them and in much richer ways than just the
presence of the objects in the vicinity of a person in an im-
age. Accurate recognition of human-object interaction can
benefit numerous tasks in computer vision, such as action-
specific image retrieval [26], caption generation [35], and
question answering [35, 24].
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Figure 3. Model Architecture. Our model consists of (a) an object
detection branch, (b) a human-centric branch, and (c) an optional
interaction branch. The person features and their layers are shared
between the human-centric and interaction branches (blue boxes).

3. Method
We now describe our method for detecting human-object

interactions. Our goal is to detect and recognize triplets of
the form 〈human, verb, object〉. To detect an interaction
triplet, we have to accurately localize the box containing a
human and the box for the associated object of interaction
(denoted by bh and bo, respectively), as well as identify the
action a being performed (selected from among A actions).

Our proposed solution decomposes this complex and
multifaceted problem into a simple and manageable form.
We extend the Fast R-CNN [9] object detection framework
with an additional human-centric branch that classifies ac-
tions and estimates a probability density over the target ob-
ject location for each action. The human-centric branch
reuses features extracted by Fast R-CNN for object detec-
tion so its marginal computation is lightweight.

Specifically, given a set of candidate boxes, Fast R-CNN
outputs a set of object boxes and a class label for each box.
Our model extends this by assigning a triplet score Sa

h,o to
pairs of candidate human/object boxes bh, bo and an action
a. To do so, we decompose the triplet score into four terms:

Sa
h,o = sh · so · sah · gah,o (1)

While the model has multiple components, the basic idea
is straightforward. sh and so are the class scores from Fast
R-CNN of bh and bo containing a human and object. Our
human-centric branch outputs two extra terms. First, sah is
the score assigned to action a for the person at bh. Second,
µa
h is the predicted location of the target of interaction for a

given human/action pair, computed based on the appearance
of the human. This, in turn, is used to compute gah,o, the
likelihood that an object with box bo is the actual target of
interaction. We give details shortly and show that this target
localization term is key for obtaining good results.

We discuss each component next, followed by an exten-
sion that replaces the action classification output sah with a
dedicated interaction branch that outputs a score sah,o for an
action a based on both the human and object appearances.
Finally we give details for training and inference. Figure 3
illustrates each component in our full framework.

3.1. Model Components

Object Detection. The object detection branch of our net-
work, shown in Figure 3(a), is identical to that of Faster R-
CNN [27]. First, a Region Proposal Network (RPN) is used
to generate object proposals [27]. Then, for each proposal
box b, we extract features with RoiAlign [15], and perform
object classification and bounding-box regression to obtain
a new set of boxes, each of which has an associated score so
(or sh if the box is assigned to the person category). These
new boxes are only used during inference; during training
all branches are trained with RPN proposal boxes.

Action Classification. The first role of the human-centric
branch is to assign an action classification score sah to each
human box bh and action a. Just like in the object classifica-
tion branch, we extract features from bh with RoiAlign and
predict a score for each action a. Since a human can simul-
taneously perform multiple actions (e.g., sit and drink), our
output layer consists of binary sigmoid classifiers for multi-
label action classification (i.e. the predicted action classes
do not compete). The training objective is to minimize the
binary cross entropy losses between the ground-truth action
labels and the scores sah predicted by the model.

Target Localization. The second role of the human-
centric branch is to predict the target object location based
on a person’s appearance (again represented as features
pooled from bh). However, predicting the precise target ob-
ject location based only on features from bh is challenging.
Instead, our approach is to predict a density over possible
locations, and use this output together with the location of
actual detected objects to precisely localize the target.

We model the density over the target object’s location as
a Gaussian function whose mean is predicted based on the
human appearance and action being performed. Formally,
the human-centric branch predicts µa

h, the target object’s 4-
d mean location given the human box bh and action a. We
then write our target localization term as:

gah,o = exp(‖bo|h − µa
h‖2/2σ2) (2)

We can use g to test the compatibility of an object box bo
and the predicted target location µa

h. In the above, bo|h is
the encoding of bo in coordinates relative to bh, that is:

bo|h = {xo − xh
wh

,
yo − yh
hh

, log
wo

wh
, log

ho
hh
} (3)

This is a similar encoding as used in Fast R-CNN [9] for
bounding box regression. However, in our case bh and bo
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Figure 4. Estimating target object density from the person features. We estimate a 4-d Gaussian density whose mean µa
h represents a

4-d offset for the target object of action a (illustrated as yellow boxes); the variance of the density is illustrated in red for the 2-d translation
offsets of (x, y) (the scaling offsets’ variance is not visualized). These target locations will be combined with the object detections bo to
detect human-object interaction triplets. This figure also shows the predicted actions and their scores from the person RoIs. The rightmost
column shows two intriguing examples: even though there are no target objects, our model predicts reasonably densities from the human
pose (these predictions will be rejected by the object detection module, which will not find an object in the high density regions).

are two different objects and moreover bo is not necessar-
ily near or of the same size as bh. The training objective is
to minimize the smooth L1 loss [9] between µa

h and bo|h,
where bo is the location of the ground truth object for the
interaction. We treat σ as a hyperparameter that we empiri-
cally set to σ = 0.3 using the validation set.

Figure 4 visualizes the predicted distribution over the tar-
get object’s location for example human/action pairs. As
we can see, a carrying appearance suggests an object in the
person’s hand, a throwing appearance suggests an object in
front of the person, and a sitting appearance implies an ob-
ject below the person. We note that the yellow dashed boxes
depicting µa

h shown in Figure 4 are inferred from bh and a
and did not have direct access to the objects.

Intuitively, our formulation is predicated on the hypothe-
sis that the features computed from bh contain a strong sig-
nal pointing to the target of an action, even if that target
object is outside of bh. We argue that such ‘outside-the-
box’ regression is possible because the person’s appearance
provides a strong clue for the target location. Moreover, as
this prediction is action-specific and instance-specific, our
formulation is effective even though we model the target
location using a uni-modal distribution. In Section 5 we
discuss a variant of our approach which allows us to handle
conditionally multi-modal distributions and predict multiple
targets for a single action.

Interaction Recognition. Our human-centric model scores
actions based on the human appearance. While effective,
this does not take into account the appearance of the target
object. To improve the discriminative power of our model,
and to demonstrate the flexibility of our framework, we can
replace sah in (1) with an interaction branch that scores an
action based on the the appearance of both the human and
target object. We use sah,o to denote this alternative term.

The computation of sah,o reuses the computation from sah
and additionally in parallel performs a similar computation
based on features extracted from bo. The outputs from the
two action classification heads, which are A-dimensional
vectors of logits, are summed and passed through a sigmoid
activation to yield A scores. This process is illustrated in
Figure 3(c). As before, the training objective is to minimize
the binary cross entropy losses between the ground-truth ac-
tion labels and the predicted action scores sah,o.

3.2. Multi-task Training

We approach learning human-object interaction as a
multi-task learning problem: all three branches shown in
Figure 3 are trained jointly. Our overall loss is the sum of
all losses in our model including: (1) the classification and
regression loss for the object detection branch, (2) the ac-
tion classification and target localization loss for the human-
centric branch, and (3) the action classification loss of the
interaction branch. This is in contrast to our cascaded infer-
ence described in §3.3, where the output of the object detec-
tion branch is used as input for the human-centric branch.

We adopt image-centric training [9]. All losses are com-
puted over both RPN proposal and ground truth boxes as in
Faster R-CNN [27]. As in [9], we sample at most 64 boxes
from each image for the object detection branch, with a ra-
tio of 1:3 of positive to negative boxes. The human-centric
branch is computed over at most 16 boxes bh that are asso-
ciated with the human category (i.e., their IoU overlap with
a ground-truth person box is ≥ 0.5). The loss for the inter-
action branch is only computed on positive example triplets
(i.e., 〈bh, a, bo〉must be associated with a ground truth inter-
action triplet). All loss terms have a weight of one, except
the action classification term in the human-centric branch
has a weight of two, which we found performs better.



3.3. Cascaded Inference

At inference, our goal is to find high-scoring triplets ac-
cording to Sa

h,o in (1). While in principle this has O(n2)
complexity as it requires scoring every pair of candidate
boxes, we present a simple cascaded inference algorithm
whose dominant computation has O(n) complexity.

Object Detection Branch: We first detect all objects (in-
cluding the person class) in the image. We apply non-
maximum suppression (NMS) with an IoU threshold of 0.3
[9] on boxes with scores higher than 0.05 (set conservatively
to retain most objects). This step yields a new smaller set
of n boxes b with scores sh and so. Unlike in training, these
new boxes are used as input to the remaining two branches.

Human-Centric Branch: Next, we apply the human-
centric branch to all detected objects that were classified
as human. For each action a and detected human box bh,
we compute sah, the score assigned to a, as well as µa

h, the
predicted mean offset of the target object location relative
to bh. This step has a complexity of O(n).

Interaction Branch: If using the optional interaction
branch, we must compute sah,o for each action a and pair
of boxes bh and bo. To do so we first compute the logits for
the two action classification heads independently for each
box bh and bo, which is O(n). Then, to get scores sah,o,
these logits are summed and passed through a sigmoid for
each pair. Although this last step is O(n2), in practice its
computational time is negligible.

Once all individual terms have been computed, the com-
putation of (1) is fast. However, rather than scoring every
potential triplet, for each human/action pair we find the ob-
ject box that maximizes Sa

h,o. That is we compute:

bo∗ = argmax
bo

so · sah,o · gah,o (4)

Recall that gah,o is computed according to (2) and mea-
sures the compatibility between bo and the expected target
location µa

h. Intuitively, (4) encourages selecting a high-
confidence object near the predicted target location of a
high-scoring action. With bo selected for each bh and action
a, we have a triplet of 〈human, verb, object〉 = 〈bh, a,
bo〉. These triplets, along with the scores Sa

h,o, are the final
outputs of our model. For actions that that do not interact
with any object (e.g., smile, run), we rely on sah and the in-
teraction output sah,o is not used, even if present. The score
of such a predicted 〈human, verb〉 pair is simply sh · sah.

The above cascaded inference has a dominant complex-
ity of O(n), which involves extracting features for each of
the n boxes and forwarding through a small network. The
pairwise O(n2) operations require negligible computation.
In addition, for the entire system, a portion of computation
is spent on computing the full-image shared convolutional
feature maps. Altogether, our system takes ∼135ms on a
typical image running on a single Nvidia M40 GPU.

4. Datasets and Metrics

There exist a number of datasets for human-object inter-
actions [19, 4, 28, 14, 3]. The most relevant for this work
are V-COCO (Verbs in COCO) [14] and HICO-DET [3]. V-
COCO serves as the primary testbed on which we demon-
strate the effectiveness of InteractNet and analyze its vari-
ous components. The newly released HICO-DET [3] con-
tains ∼48k images and 600 types of interactions and serves
to further demonstrate the efficacy of our approach. The
older TUHOI [19] and HICO [4] datasets only have image-
level labels and thus do not allow for grounding interactions
in a detection setting, while COCO-a [28] is promising but
only a small beta-version is currently available.

V-COCO is a subset of COCO [22] and has ∼5k images
in the trainval set and ∼5k images in the test set.1

The trainval set includes ∼8k person instances and on
average 2.9 actions/person. V-COCO is annotated with 26
common action classes (listed in Table 2). Of note, there are
three actions (cut, hit, eat) that are annotated with two types
of targets: instrument and direct object. For example, cut
+ knife involves the instrument (meaning ‘cut with a knife’),
and cut + cake involves the direct object (meaning ‘cut a
cake’). In [14], accuracy is evaluated separately for the two
types of targets. To address this, for the target estimation,
we train and infer two types of targets for these three actions
(i.e., they are treated like six actions for target estimation).

Following [14], we evaluate two Average Precision (AP)
metrics. We note that this is a detection task, and both AP
metrics measure both recall and precision. This is in con-
trast to metrics of Recall@N that ignore precision.

The AP of central interest in the human-object interac-
tion task is the AP of the triplet 〈human, verb, object〉,
called ‘role AP’ (AProle) in [14]. Formally, a triplet is con-
sidered as a true positive if: (i) the predicted human box bh
has IoU of 0.5 or higher with the ground-truth human box,
(ii) the predicted object box bo has IoU of 0.5 or higher with
the ground-truth target object, and (iii) the predicted and
ground-truth actions match. With this definition of a true
positive, the computation of AP is analogous to standard
object detection (e.g., PASCAL [8]). Note that this metric
does not consider the correctness of the target object cate-
gory (but only the target object box location). Nevertheless,
our method can predict the object categories, as shown in
the visualized results (Figure 2 and Figure 5).

We also evaluate the AP of the pair 〈human, verb〉,
called ‘agent AP’ (APagent) in [14], computed using the
above criteria of (i) and (iii). APagent is applicable when the
action has no object. We note that APagent does note require
localizing the target, and is thus of secondary interest.

1V-COCO’s trainval set is a subset of COCO’s train set, and its
test set is a subset of COCO’s val set. See [14] for more details. In this
work, COCO’s val images are not used during training in any way.
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Figure 5. Our results on some V-COCO test images. Each image shows one detected 〈human, verb, object〉 triplet.

5. Experiments

Implementation Details. Our implementation is based on
Faster R-CNN [27] with a Feature Pyramid Network (FPN)
[21] backbone built on ResNet-50 [17]; we also evaluate
a non-FPN version in ablation experiments. We train the
Region Proposal Network (RPN) [27] of Faster R-CNN
following [21]. For convenient ablation, RPN is frozen
and does not share features with our network (we note
that feature sharing is possible [27]). We extract 7×7 fea-
tures from regions by RoiAlign [15], and each of the three
model branches (see Figure 3) consist of two 1024-d fully-
connected layers (with ReLU [25]) followed by specific out-
put layers for each output type (box, class, action, target).

Given a model pre-trained on ImageNet [7], we first train
the object detection branch on the COCO train set (ex-
cluding the V-COCO val images). This model, which is in
essence Faster R-CNN, has 33.8 object detection AP on the
COCO val set. Our full model is initialized by this object
detection network. We prototype our human-object inter-
action models on the V-COCO train split and perform
hyperparameter selection on the V-COCO val split. After
fixing these parameters, we train on V-COCO trainval
(5k images) and report results on the 5k V-COCO test set.

We fine-tune our human-object interaction models for
10k iterations on the V-COCO trainval set with a learn-
ing rate of 0.001 and an additional 3k iterations with a rate
of 0.0001. We use a weight decay of 0.0001 and a momen-
tum of 0.9. We use synchronized SGD [20] on 8 GPUs, with
each GPU hosting 2 images (so the effective mini-batch size
per iteration is 16 images). The fine-tuning time is ∼2.5
hours on the V-COCO trainval set on 8 GPUs.

Baselines. To have a fair comparison with Gupta & Ma-
lik [14], which used VGG-16 [30], we reimplement their
best-performing model (‘model C’ in [14]) using the same

ResNet-50-FPN backbone as ours. In addition, [14] only
reported AProle on a subset of 19 actions, but we are inter-
ested in all actions (listed in Table 2). We therefore report
comparisons in both the 19-action and all-action cases.

The baselines from [14] are shown in Table 1. Our reim-
plementation of [14] is solid: it has 37.5 AProle on the 19
action classes tested on the val set, 11 points higher than
the 26.4 reported in [14]. We believe that this is mainly due
to ResNet-50 and FPN. This baseline model, when trained
on the trainval set, has 31.8 AProle on all action classes
tested on the test set. This is a strong baseline (31.8
AProle) to which we will compare our method.

Our method, InteractNet, has an AProle of 40.0 evaluated
on all action classes on the V-COCO test set. This is an
absolute gain of 8.2 points over the strong baseline’s 31.8,
which is a relative improvement of 26%. This result quan-
titatively shows the effectiveness of our approach.

Qualitative Results. We show our human-object interac-
tion detection results in Figure 2 and Figure 5. Each sub-
plot illustrates one detected 〈human, verb, object〉 triplet,
showing the location of the detected person, the action taken
by this person, and the location (and category) of the de-
tected target object for this person/action. Our method can
successfully detect the object outside of the person bound-
ing box and associate it to the person and action.

Figure 7 shows our correctly detected triplets of one per-
son taking multiple actions on multiple objects. We note
that in this task, one person can take multiple actions and
affect multiple objects. This is part of the ground-truth and
evaluation and is unlike traditional object detection tasks [8]
in which one object has only one ground-truth class.

Moreover, InteractNet can detect multiple interaction in-
stances in an image. Figure 6 shows two test images with
all detected triplets shown. Our method detects multiple
persons taking different actions on different target objects.
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19 actions all actions
mean AProle evaluated on (on val) (on test)
model B of [14] [VGG-16] 7.9 N/A
model C of [14] [VGG-16] 26.4 N/A
model C of [14] [ResNet-50-FPN] ours 37.5 31.8
InteractNet [ResNet-50-FPN] 41.9 40.0

Table 1. Comparisons with Gupta & Malik [14]. To have an
apples-to-apples comparisons, we reimplement [14]’s ‘model C’
using ResNet-50-FPN. In addition, [14] reported AProle on a sub-
set consisting of 19 actions, and only on the val set. As we eval-
uate on all actions (more details in Table 2), for fair comparison,
we also report the mean AProle on these 19 actions of val, with
models trained on train. Our reimplemented baseline of [14] is
solid, and InteractNet is considerably better than this baseline.

The multi-instance, multi-action, and multi-target results
in Figure 6 and Figure 7 are all detected by one forward pass
in our method, running at about 135ms per image on a GPU.

Ablation Studies. In Table 3–5 we evaluate the contribu-
tions of different factors in our system to the results.

With vs. without target localization. Target localization,
performed by the human-centric branch, is the key compo-
nent of our system. To evaluate its impact, we implement
a variant without target localization. Specifically, for each
type of action, we perform k-means clustering on the off-
sets between the target RoIs and person RoIs (via cross-
validation we found k = 2 clusters performs best). This
plays a role similar to density estimation, but is not aware of
the person appearance and thus is not instance-dependent.
Aside from this, the variant is the same as our full approach.

baseline [14] InteractNet InteractNet
our impl. w/o target loc.

APagent AProle APagent AProle APagent AProle
carry 62.2 8.1 63.9 14.4 64.8 33.1
catch 47.0 37.0 53.4 38.5 57.1 42.5
drink 11.9 18.1 37.5 25.4 46.0 33.8
hold 79.4 4.0 77.3 10.6 80.1 26.4
jump 75.5 40.6 75.6 39.3 74.7 45.1
kick 60.9 67.9 68.6 70.6 77.5 69.4
lay 50.1 17.8 51.1 18.6 47.6 21.0
look 68.8 2.8 61.0 2.7 59.4 20.2
read 34.9 23.3 43.2 22.0 41.6 23.9
ride 73.2 55.3 76.2 55.0 74.2 55.2
sit 76.8 15.6 75.6 15.1 76.1 19.9
skateboard 89.9 74.0 90.9 71.7 90.0 75.5
ski 84.0 29.7 83.9 28.2 84.7 36.5
snowboard 81.3 52.8 81.1 50.6 81.1 63.9
surf 94.6 50.2 94.5 50.3 93.5 65.7
talk-on-phone 63.3 23.0 74.7 23.8 82.0 31.8
throw 54.0 36.0 53.9 35.7 58.1 40.4
work-on-computer 70.2 46.1 72.6 46.9 75.7 57.3

cut
(object)
(instrument)

61.2
16.5

69.1
17.7

73.6
23.0

15.1 19.5 36.4

eat
(object)
(instrument)

75.6
26.5

80.4
26.5

79.6
32.4

2.7 2.9 2.0

hit
(object)
(instrument)

82.8
56.7

83.9
55.3

88.0
62.3

42.4 41.3 43.3
point 5.0 – 4.0 – 1.8 –
run 76.9 – 77.8 – 77.2 –
smile 60.6 – 60.3 – 62.5 –
stand 88.5 – 88.3 – 88.0 –
walk 63.9 – 63.5 – 65.4 –
mean AP 65.1 31.8 67.8 32.6 69.2 40.0

Table 2. Detailed results on V-COCO test. We show two main
baselines and InteractNet for each action. There are 26 actions de-
fined in [14], and because 3 actions (cut, eat, hit) involve two types
of target objects (instrument and direct object), there are 26+3 en-
tries (more details in § 4). We bold the leading entries on AProle.

Table 3 (a) vs. (c) shows that our target localization con-
tributes significantly to AProle. Removing it shows a degra-
dation of 5.6 points from 37.5 to 31.9. This result shows the
effectiveness of our target localization (see Figure 4). The
per-category results are in Table 2.

With vs. without the interaction branch. We also evalu-
ate a variant of our method when removing the interaction
branch. We can instead use the action prediction from the
human-centric branch (see Figure 3). Table 3 (b) vs. (c)
shows that removing the interaction branch reduces AProle
just slightly by 0.7 point. This again shows the main effec-
tiveness of our system is from the target localization.



APagent AProle
〈human, verb〉 〈human, verb, object〉

baseline [14] (our implementation) 62.1 31.0
(a) InteractNet w/o target localization 65.1 31.9
(b) InteractNet w/o interaction branch 65.5 36.8
(c) InteractNet 68.0 37.5

Table 3. Ablation studies on the V-COCO val set, evaluated by
APagent (i.e., AP of the 〈human, verb〉 pairs) and AProle (i.e., AP
of the 〈human, verb, object〉 triplets). All methods are based
on ResNet-50-FPN, including our reimplementation of [14]. Ta-
ble 2 shows the detail numbers of three entries: baseline, Interact-
Net without target density estimation, and our complete method
on the V-COCO test set.

APagent AProle
〈human, verb〉 〈human, verb, object〉

InteractNet w/ ResNet-50 65.0 35.9
InteractNet w/ ResNet-50-FPN 68.0 37.5

Table 4. Ablation on the V-COCO val for vanilla ResNet-50 vs.
ResNet-50-FPN [21] backbones.

APagent AProle
〈human, verb〉 〈human, verb, object〉

InteractNet w/ pairwise concat + MLP 67.1 37.5
InteractNet 68.0 37.5

Table 5. Ablation on the V-COCO val set about the design of the
pairwise interaction branch. See main text for explanations.

With vs. without FPN. Our model is a generic human-
object detection framework and can support various net-
work backbones. We recommend using the FPN [21] back-
bone, because it performs well for small objects that are
more common in human-object detection.

Table 4 shows a comparison between ResNet-50-FPN
and a vanilla ResNet-50 backbone. The vanilla version fol-
lows the ResNet-based Faster R-CNN presented in [17].
Specifically, the full-image convolutional feature maps are
from the last residual block of the 4-th stage (res4), on
which the RoI features are pooled. On the RoI features,
each of the region-wise branches consists of the residual
blocks of the 5-th stage (res5). Table 4 shows a degradation
of 1.6 points in AProle when not using FPN. We argue that
this is mainly caused by the degradation of the small ob-
jects’ detection AP, as shown in [21]. Moreover, the vanilla
ResNet-50 backbone is much slower, 225ms versus 135ms
for FPN, due to use of res5 in the region-wise branches.

Pairwise Sum vs. MLP. In our interaction branch, the
pairwise outputs from two RoIs are added (Figure 3). Al-
though simple, we have found that more complex variants
do not improve results. We compare with a more complex
transform in Table 5. We concatenate the two 1024-d fea-
tures from the final fully-connected layers of the interaction
branch for the two RoIs and feed it into an 2-layer MLP
(512-d with ReLU for its hidden layer), followed by action
classification. This variant is slightly worse (Table 5), indi-
cating that it is not necessary to perform a complex pairwise

drink

wine glass

eat

sandwich

hit

tennis racket

sit

chair

talk_on_phone
cell phone

ski

skis

Figure 8. False positive detections of our method.

method full rare non-rare
results from [3] 7.81 5.37 8.54
baseline [14] (our impl.) 9.09 7.02 9.71
InteractNet 9.94 7.16 10.77

Table 6. Results on HICO-DET test set. InteractNet outper-
forms the approach in [3] with a 27% relative improvement. We
also include our baseline approach, as described in Table 1.

transform (or there is insufficient data to learn this).
Per-action accuracy. Table 2 shows the AP for each ac-

tion category defined in V-COCO, for the baseline, Inter-
actNet without target localization, and our full system. We
observe leading performance of AProle consistently. The ac-
tions with largest improvement are those with high variance
in the spatial location of the object such as hold, look, carry,
and cut. On the other hand, actions such as ride, kick, and
read show small or no improvement.

Failure Cases. Figure 8 shows some false positive detec-
tions. Our method can be incorrect because of false inter-
action inferences (e.g., top left), target objects of another
person (e.g., top middle), irrelevant target objects (e.g., top
right), or confusing actions (e.g., bottom left, ski vs.surf ).
Some of them are caused by a failure of reasoning, which
is an interesting open problem for future research.

Mixture Density Networks. To improve target localiza-
tion prediction, we tried to substitute the uni-modal regres-
sion network with a Mixture Density Network (MDN) [1].
The MDN predicts the mean and variance of M relative
locations for the objects of interaction conditioned on the
human appearance. Note that MDN with M = 1 is an ex-
tension of our original approach that also learns the variance
in (2). However, we found that the MDN layer does not im-
prove accuracy. More details and discussion regarding the
MDN experiments can be found in [11].

HICO-DET Dataset. We additionally evaluate InteractNet
on HICO-DET [3] which contains 600 types of interactions,
composed of 117 unique verbs and 80 object types (identi-
cal to COCO objects). We train InteractNet on the train
set, as specified by the authors, and evaluate performance
on the test set using released evaluation code. Results are
shown in Table 6 and discussed more in [11].
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