
Prescriptive and Descriptive Approaches to Machine-Learning
Transparency

David Adkins
davidadkins@fb.com

Meta AI
USA

Bilal Alsallakh∗
bilalsal@fb.com

Meta AI
USA

Adeel Cheema
acheema@fb.com

Meta AI
USA

Narine Kokhlikyan
narine@fb.com

Meta AI
USA

Emily McReynolds
emcr@fb.com

Meta AI
USA

Pushkar Mishra∗
pushkarmishra@fb.com

Meta AI
UK

Chavez Procope
cprocope@fb.com

Meta AI
USA

Jeremy Sawruk∗
jsawruk@fb.com

Meta AI
USA

Erin Wang
yulinw@fb.com

Meta AI
USA

Polina Zvyagina
polinaz@fb.com

Meta AI
USA

ABSTRACT
Specialized documentation techniques have been developed to com-
municate key facts about machine-learning (ML) systems and the
datasets and models they rely on. Techniques such as Datasheets,
FactSheets, and Model Cards have taken a mainly descriptive ap-
proach, providing various details about the system components.
While the above information is essential for product developers
and external experts to assess whether the ML system meets their
requirements, other stakeholders might find it less actionable. In
particular, ML engineers need guidance on how tomitigate potential
shortcomings in order to fix bugs or improve the system’s perfor-
mance. We survey approaches that aim to provide such guidance
in a prescriptive way. We further propose a preliminary approach,
called Method Cards, which aims to increase the transparency and
reproducibility of ML systems by providing prescriptive documenta-
tion of commonly-used ML methods and techniques. We showcase
our proposal with an example in small object detection, and demon-
strate how Method Cards can communicate key considerations for
model developers. We further highlight avenues for improving the
user experience of ML engineers based on Method Cards.

∗Equal contribution (authors list in alphabetical order).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI ’22, Apr 30– May 05, 2022, New Orleans, LA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3491101.3519724

CCS CONCEPTS
• Software and its engineering → Documentation; • Comput-
ing methodologies →Machine learning.

KEYWORDS
Method Cards, Developer Experience, Transparency

ACM Reference Format:
David Adkins, Bilal Alsallakh, Adeel Cheema, Narine Kokhlikyan, Emily
McReynolds, Pushkar Mishra∗, Chavez Procope, Jeremy Sawruk∗, Erin
Wang, and Polina Zvyagina. 2022. Prescriptive and Descriptive Approaches
to Machine-Learning Transparency. In Extended Abstracts of the CHI 2022
Conference on Human Factors in Computing Systems. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3491101.3519724

1 INTRODUCTION
With the rapid adoption of machine learning (ML) in practical
applications, ML-specific documentation has become crucial to their
transparency and to the user experience of different stakeholders of
ML. In contrast to traditional software systems, the documentation
of ML-based systems is an emerging area that poses new challenges
and requirements. A variety of initiatives have been undertaken
over the past few years to address these challenges. These initiatives
aim to provide systematic ways to document ML-based systems.

The above-mentioned initiatives has focused on describing var-
ious components of ML-based systems. For example, Datasheets
for Datasets [Gebru et al. 2021] focus on providing key details
about the datasets used to develop ML models. Similarly, Model
Cards [Mitchell et al. 2019] aim to communicate key facts about in-
dividual models such as their intended use, training and evaluation
data, and relevant metrics. In addition, FactSheets [Arnold et al.
2019] aim to act as declarations of conformity for AI services by
providing relevant details to the consumers of these services. While

https://doi.org/10.1145/3491101.3519724
https://doi.org/10.1145/3491101.3519724

CHI ’22, Apr 30– May 05, 2022, New Orleans, LA Adkins, et al.

the above solutions advance the transparency of ML-based systems,
their descriptive nature might limit their actionability for certain
stakeholders. For example, ML engineers need specific information
on how to retrain the system and how to mitigate certain problems,
yet such knowledge is often sparsely documented.

We review and propose prescriptive solutions that aim to pro-
vide greater transparency into ML-based systems and to improve
the experience of their developers. Our proposal caters mainly to
expert stakeholders such as model developers and external model
reviewers. Our contributions encompass:

• Motivating the need for a prescriptive approach to ML trans-
parency, and surveying existing initiatives and forms of this
approach (Section 3).

• Proposing Method Cards as a preliminary means to foster
ML transparency and reproducibility, and improve the user
experience of ML engineers (Section 4).

In section 5 we compare our proposals with previous work, and
outline potential directions for future work.

2 BACKGROUND AND MOTIVATION
Providing transparency into ML systems involves distinct chal-
lenges. Here we provide an overview of three complementary ap-
proaches that contribute to ML transparency, along with a motivat-
ing example for prescriptive ones.

2.1 Transparency Through Documentation
The ABOUT ML initiative [Raji and Yang 2019] advocates docu-
mentation as a practical intervention to provide clarity into deci-
sion making in ML systems for stakeholders. The authors explain
the value of both external and internal documentation such as es-
tablishing trust and demonstrating fairness [Holstein et al. 2019].
Furthermore, the authors argue that documentation is both an ar-
tifact and a process, showing how developing the documentation
fosters ML developers to think critically about every step in the ML
lifecycle. Accordingly, the initiative is led by the Partnership on AI
consortium which continues to develop this process.

Documenting software systems is a long-standing goal of soft-
ware engineering. Some of the emerging documentation initiatives
for ML-based systems have adapted existing methods while others
necessarily take a novel approach. Datasheets [Gebru et al. 2021],
and to an extent Model Cards [Mitchell et al. 2019], grew from
experiences with hardware specification documentation. Dataset
Nutrition Labels [Chmielinski et al. 2020; Holland et al. 2018] and
FactSheets [Arnold et al. 2019] are further prominent examples of
these initiatives. Hind et al [Hind et al. 2020] report on the experi-
ence of AI teams in using FactSheets, and provide recommendations
for easing the collection and flexible presentation of AI facts to pro-
mote transparency.

2.2 Transparency Through Reproducibility
The ability of stakeholders to reproduce an ML system significantly
increases its transparency [Haibe-Kains et al. 2020]. In addition to
testing the system on their own data points, reproducibility enables
stakeholders to retrain the ML models independently. Besides en-
suring trust in the system and its components, the ability to retrain
the ML models is crucial to analyze and debug these models.

Reproducibility in ML cannot be simply solved by making the
source code available. The nature of ML algorithms and how they
are trained make it challenging to warrant reproducibility of the
results [Sculley et al. 2015]. Bell and Kampman [Bell and Kampman
2021] proposed ideas to foster this reproducibility, inspired by the
recent reformation in psychology. Examples for these areMultiverse
analysis [Steegen et al. 2016], preregistration [Nosek et al. 2012], and
encouraging the publication of negative results. Likewise, several
proposals have been made to quantify and accordingly improve
reproducibility [Pineau et al. 2021; Raff 2019].

2.3 Transparency Through Interpretability
Lipton [Lipton 2018] analyzes in detail the notion of transparency
in interpretability. The author argues how transparency in this
context is the opposite of “black-boxness” as it helps understanding
the mechanism by which the model works. Such understanding
can be at the level of the entire model, at the level of individual
components such as parameters, and at the level of the training
algorithm.

Weller [Weller 2019] identifies different use cases of transparency,
and distinguishes between two types of interpretability solutions
to support them: global (how an overall system works) and local
(explaining a particular prediction). The author surveys available
techniques for both types and argues how the transparency enabled
by them can be provide insights into important model characteris-
tics such as robustness and fairness.

2.4 Illustrative Example
Consider a team of ML engineers tasked with developing an image
object detector for a specific application. The team has a variety of
choices to make such as the model type to use (e.g. convolutional
networks vs. Vision Transformers), the training paradigm (e.g. su-
pervised vs. self-supervised learning, etc.), the architecture type
(e.g. ResNet vs. VGGNet), the optimizer to use, and the input pre-
processing operations to mention a few. To speed up the ideation
process and to obtain a benchmarking baseline, the team starts
by finetuning a Single-Shot Detector (SSD) with a ResNet-50 as a
backbone convolutional network pre-trained on ImageNet. This
transfer-learning paradigm is very popular, especially when the
training data is limited. They resize their images to 640𝑥480 to
maintain the aspect ratio, and train their model following the same
training script used to train the backbone model. However, there
are a variety of nuances that impact the performance and reliability
of their model. A few examples of these issues are:

• The resizing operation in popular deep-learning frameworks
has a subtle aliasing flaw [Parmar et al. 2021].

• The input size used was shown to induce parity issues in
ResNet models [Alsallakh et al. 2021a], leading to skewness
in the learned filters.

• The default 0-padding used in ResNet was shown to impact
small object detection [Alsallakh et al. 2021b], leading to
blind spots.

• Transfer learning from a supervised model trained on Ima-
geNet can lead to conflicts between the ImageNet categories
and the objects of the target domain [Zoph et al. 2020].

Prescriptive and Descriptive Approaches to Machine-Learning Transparency CHI ’22, Apr 30– May 05, 2022, New Orleans, LA

Fortunately, it is possible to mitigate the above issues by making
careful architectural, training, and preprocessing choices. However,
these issues might not be widely known among practitioners and
are often left unaddressed. Our goal is to provide ML engineers with
actionable guidance on available ML methods and how to use them
effectively in the systems they intend to develop. In contrast to the
descriptive documentation techniques mentioned in Section 2.1, our
guidance follows a prescriptive approach. As an rough metaphor,
Model Cards and FactSheets are analogous to user manuals that
are shipped with software programs and automobiles. While we
aim to create prescriptive solutions that are analogous to computer
programming recipes [Press et al. 1989] and car repair manuals.

3 A PRESCRIPTIVE APPROACH TO ML
TRANSPARENCY

Software engineering has a long history of employing prescriptive
models [Ludewig 2003] for various purposes such as effective dif-
fusion [Raghavan and Chand 1989], safety certification [Hawkins
et al. 2013], and error analysis [Meng and Amalathas 2019]. A key
distinction between descriptive and prescriptive models is that the
former describe an existing system, while the latter specify how a
new system should be created [Ludewig 2003].

Descriptive approaches such as documenting general informa-
tion of an existing system can sometimes be viewed by ML prac-
titioners as time-consuming with a lack of incentives and/or in-
telligibility concerns about the documentation [Miceli et al. 2021].
Prescriptive approaches, on the other hand, provide explicit instruc-
tions on how to develop and deploy a solution on how to handle
unexpected situations. This is useful in a variety of engineering
disciplines both for modeling solutions [Finger and Dixon 1989;
Heldal et al. 2016] and for guiding troubleshooting efforts [Eliasson
et al. 2015; Wong et al. 2019]. Specific methods have been devised to
support the documentation process of prescriptive software models
[Clements et al. 2003].

The Machine Learning community has recently started employ-
ing prescriptive approaches to developing ML systems. The pre-
scriptive nature of such approaches directly contribute to the trans-
parency of the ML system, especially from the perspective of ML
engineers and external reviewers. The following initiatives by the
ML community involve prescriptive aspects and are targeted either
at ML engineers or at ML researchers.

Guidelines and Design Patterns. A number of design patterns
have recently emerged in the ML community, both among practi-
tioners [Apple 2019; Lakshmanan et al. 2020; Microsoft 2021; PAIR
2019; Shibui 2020], and among researchers [Washizaki et al. 2022;
Yokoyama 2019]. These patterns tackle various aspects of model
development and deployment, data and problem representation,
training, serving and operation, reproducibility, quality-control and
responsible AI usage. These patterns as well as complementary
anti-patterns [Washizaki et al. 2019] capture best practices and are
very helpful to replicate successful solutions in new applications.

Recipes. As one of the leading deep-learning frameworks, Py-
Torch [Paszke et al. 2019] maintains a list of recipes 1, defined as

1Official PyTorch Recipes: https://pytorch.org/tutorials/recipes/recipes_index.html

“bite-sized, actionable examples of how to use specific PyTorch fea-
tures”. In contrast to the standard documentation 2, these recipes
focus on executable solutions and demonstrate best practices estab-
lished by the framework developers and its community.

PWCMethods. The PapersWith Code (PWC) community project
has recently started maintaining a catalog of ML methods proposed
in the research community for various ML tasks 3. The catalog
features a categorization of the method by task or data modality as
well as an informative community-generated description of each
method, along with statistics about its usage (Figure 1). Unlike
Model Cards and FactSheets, these descriptions are independent of
any specific models or systems, focusing instead on the underlying
ML methods available in the literature, with ML researchers as the
main audience.

Reproducibility Checklists. Over the past few years, the ML
research community has developed a reproducibility checklist, with
the goal of ensuring that research articles and results are easy
to reproduce [Pineau et al. 2021]. The checklist includes specific
instructions regarding the models and algorithms presented, the
datasets used, and the code shared, in addition to expectations
regarding any theoretical claim or experimental results.

MLCheat Sheets. A variety of cheat sheets have been developed
to provide an overview of ML algorithms. These sheets typically
provide a flow chart on how to choose an algorithm for a spe-
cific problem, as in the ones developed by Microsoft Azure 4 or by
SAS 5. Similarity, ML Flashcards serve as a quick reference of ML
concepts 6. Additionally, several practitioners have compiled best
practices for training ML models [Ang 2018; He et al. 2019]. Such
guides help ML developers understand the strengths and limita-
tions of available methods for crucial model components such as
normalization and regularization.

Interactive Hyperparameter Visualizations. A variety of in-
teractive widgets aim to help ML engineers in making informed
choices of their model’s hyperparameters by visualizing how these
choices impact the model. Examples include basic convolution arith-
metic 7, choosing t-SNE parameters [Wattenberg et al. 2016], and
understanding the impact of padding choices [Yuan et al. 2021].

4 METHOD CARDS
We propose Method Cards to guide ML engineers throughout the
process of model development. Analogous to Model Cards, these
cards aim to communicate key information about ML methods. The
information comprises both prescriptive and descriptive elements,
putting the main focus on ensuring that ML engineers are able to
use these methods properly. The cards aim to support developers at
multiple stages of the model-development process such as training,
testing, and debugging. For this purpose, we propose a structure
for the cards, outlined in Figure 2.
2PyTorch Documentation https://pytorch.org/docs/stable/index.html
3https://paperswithcode.com/methods
4https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-
algorithm-use/
5https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet
6https://machinelearningflashcards.com/
7Convolution Visualizer by Edward Yang: https://ezyang.github.io/convolution-
visualizer/

https://pytorch.org/tutorials/recipes/recipes_index.html
https://pytorch.org/docs/stable/index.html
https://paperswithcode.com/methods
https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/
https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/
https://docs.microsoft.com/en-us/azure/machine-learning/algorithm-cheat-sheet
https://machinelearningflashcards.com/
 https://ezyang.github.io/convolution-visualizer/
 https://ezyang.github.io/convolution-visualizer/

CHI ’22, Apr 30– May 05, 2022, New Orleans, LA Adkins, et al.

Figure 1: Documenting ML methods in Papers With Code. For each method, the documentation includes brief textual and
graphical descriptions, a list of papers that introduce or use the method, and a list of ML tasks the method is suited for.

For each prompt in Method Cards, the method creators are ex-
pected to provide sufficient instructions and documentation to
guide ML engineers. These instructions should help the engineers
in choosing suited preprocessing steps, model components, and hy-
perparameters for their task. Furthermore, the instructions should
make these engineers aware of how their choices potentially im-
pact the model’s behavior, how to evaluate this impact, and how
to handle prediction errors accordingly. Finally, the instructions
should explicitly inform the engineers on responsible usage of the
method by addressing potential fairness and privacy concerns.

The instructions and documentation needed for the prompts in
Method Cards can be enriched with the prescriptive approaches
outlined in Section 3. IBM’s FactSheets provide several examples
that demonstrate how to format and deliver such rich information
at multiple levels of detail in a usable way.

4.1 Granularity of ML Methods
The sections and prompts we propose in Figure 2 focus on ML
methods that are sufficient to produce a proper ML model with
defined input, output, and task. Examples for these are object de-
tection methods such as Single-shot Detectors [Liu et al. 2016] and
language modelling methods such as Generative Pre-trained Trans-
formers (GPT) [Radford et al. 2019]. It is possible to create Model
Cards for the models created using these methods.

We refer to ML methods that focus on specific parts of a model
asML components, following the PWC terminology. Examples
of these are pooling, regularization, and normalization operations.
These components correspond to specific prompts in our proposed
Method Cards, specifically, the ones in “Data Preparation” and
“Modelling and Training”. The ML community is constantly study-
ing these components, identifying their strengths and weaknesses

in different ML applications. PWC provides a good overview of
these studies, which can help the creators of Method Cards provide
actionable recommendations about these components.

Likewise,ML systems often encompass multiple ML models, as
well as non-ML components such as data acquisition and human-in-
the-loop interfaces. Examples of these are fraud detection systems
that rely onMLmodels to identify abnormal behavior and on human
reviewers to take appropriate action when an automated decision
could not be determined reliably. Providing transparency into such
systems and services require artifacts similar to FactSheets.

4.2 Maintaining Method Cards
Within corporations,ML teams can benefit frommaintainingmethod
cards for their common use cases. These cards can be curated collec-
tively and updated regularly as the team experiments with various
components and parameterizations, and as they gain insights about
their method’s weaknesses and edge cases. Such documentation is
important for onboarding new ML engineers and to enable them
to maintain the ML models and to retrain them when needed. As
such, Method Cards offer a systematic way to communicate best
ML practices identified by the team.

Since ML methods share a variety of components and can have
similar goals, their cards can naturally overlap. It is often possible
to categorize these methods into a hierarchy, and to document
shared information into cards that correspond to high levels in the
hierarchy. For example, methods based on convolutional neural
networks can inherit generic considerations related to these models
such as choosing a suited input size (Section 2.4). Likewise, object
detection methods can inherent common considerations such as
evaluation metrics and data preparation. The hierarchy used to
categorize PWC Methods could serve as a useful reference.

Prescriptive and Descriptive Approaches to Machine-Learning Transparency CHI ’22, Apr 30– May 05, 2022, New Orleans, LA

Method Card Template

Basic Method Information

• Name, version, and application domain(s).
• Method purpose and appropriate uses.
• Method definition, published literature, reference imple-
mentation.

• Example input and output.

Safety and Troubleshooting

• Inappropriate uses and common usage pitfalls.
• Known weaknesses, biases, and privacy leakage.
• How to detect biases in the model internals.
• Common failure modes, potential root causes, and pos-
sible mitigations via hyperparameter tuning or training
data expansion.

Data Preparation

• Input and output format, shape, and data type.
• Data transformation and normalization.
• Recommended sampling and balancing.
• Recommended batching scheme and batch size.
• Required data augmentation and shuffling.
• Validation and train-test splitting schemes.

Modelling and Optimization

• Architecture family and components used.
• A list of hyperparameters, along with applicable values
and their known impact.

• Training objective(s), loss(es), and optimizer(s).

• Parameter initialization / self pre-training / transfer from
a trained baseline (specify datasets).

• Regularization scheme, capacity selection.
• If applicable, learning rate and schedulers.
• Weight quantization, recommended bit depth.
• Possibilities to compile the model graph.
• Parallelization at training and inference time.
• Recommended model compression techniques.

Method Benchmarking
• Performance metric(s) and applicable threshold(s).
• Threshold selection.
• Fairness evaluation and subgroup comparison.
• Overfitting detection.
• Training and inference time efficiency.
• Available benchmarks.

Interpretability and Explainability
• Applicable feature attribution methods, and how they can
help explain model predictions.

• How to identify influential training instances behind a
specific model prediction.

• How to identify internal concepts and features learned
using the method.

Robustness
• Known vulnerabilities to adversarial attacks, and recom-
mended mitigation.

• Out-of-distribution behavior.
• Detecting and mitigating data and model drifts.

Figure 2: Suggested sections in Method Cards, along with the prompts they capture. Providing instructions for each prompt
offers guidance to ML engineers and helps external reviewers evaluate the maturity of the model development processes.

.

4.3 An Example of Method Cards
In the appendix we provide an example method card, created for
traffic light detection using an SSD. The card exemplifies how a team
of ML engineers can collectively document the nuances mentioned
in Section 2.4, both based on published literature and on their
own observations and experiences. Notice how the information
presented is independent of a specific model. For example, the
challenges of using SSDs for small object detection are inherent to
the method, and can potentially impact any model developed using
this method. Likewise, many challenges arise from the nature of the
problem, such as the similarity of red traffic lights with automobile
tail lights.

In the example, we used concise descriptions and instructions
to avoid turning the curation and consumption of Method Cards
into a burden. Nevertheless, the curators can elaborate on certain
prompts by providing links to executable notebooks, articles, and
further materials needed to clarify the prompts.

5 DISCUSSION
Possible Applications. Besides serving as a tool for prescriptive

documentation, Method Cards, can further support building inter-
active tools to improve ML development processes. For example, a
formal specification of certain prompts can be used to allow gener-
ating ML code templates. These templates serve as a useful starting
points that ML developers can adapt, and help reducing potential
coding errors as demonstrated in ClassyVision templates [Adcock
et al. 2019]. As another application, Method Cards can power ML-
aware code analyzers that aim can issue warnings when the code
uses unrecommended parameter combinations. For examples a
Method Card can include a rule that an RMSProp optimizer should
be used if MobileNet or EfficientNet are used as a convolutional
feature extractor instead of the default SGD with momentum.

Our effort to explore prescriptive solutions started in response
to preliminary interviews we conducted with ML engineers who
work on various ML problems in practical applications. Of their
frequent pain points are the ability to make informed choices when
designing and training new models, as well as finding solutions to

CHI ’22, Apr 30– May 05, 2022, New Orleans, LA Adkins, et al.

improve the accuracy of existing models. As such, Method Cards
aim to fill one of the gaps identified by the Model Cards authors:

It seems unlikely, at least in the near term, that model
cards could be standardized or formalized to a degree
needed to prevent misleading representations of model
results (whether intended or unintended). It is therefore
important to consider model cards as one transparency
tool among many, which could include, for example,
algorithmic auditing by third-parties, [...]” - [Mitchell
et al. 2019, p. 9].

While Model Cards and FactSheets put main focus on documenting
existing models, Method Cards focus more on the underlying me-
thodical and algorithmic choices that need to be considered when
creating and training these models. As a rough analogy, if Model
Cards and FactSheets provide nutrition information about cooked
meals, Method Cards provide the recipes.

Comparison with PWC Methods. PWC Methods have mainly fo-
cused on offering a catalog of methods extracted fromML literature,
designed to be usable mainly for researchers. On the other hand,
Method Cards have ML engineers and algorithmic reviewers as
target users, focusing on transparent, reproducible, and responsi-
ble usage of these methods. Ultimately, interested stakeholders in
the ML community can augment PWC Methods with the prescrip-
tive information we proposed in our template to help meet these
requirements.

The Usability of Method Cards. A major challenge in offering
documentation-based transparency is the effort needed by ML engi-
neers to develop the needed artifacts [Miceli et al. 2021], compared
with the perceived benefits. Finding the appropriate level of detail is
a key to alleviate the burden and maximize the value, as the authors
of FactSheets reported [Hind et al. 2020]. Accordingly, we consider
the template suggested in Figure 2 to be an reference example, and
encourage ML engineers to refine the prompts to fit their needs.
Furthermore, interactive interfaces can help presenting the infor-
mation at multiple levels of detail. For example, detailed answers
can help onboard new team members, while summarized bullet
lists are more suited for external reviewers.

6 CONCLUSION
We presented an overview of prescriptive approaches in ML doc-
umentation and their ability to facilitate transparency into ML
algorithms. We further presented Method Cards that leverage de-
scriptive and prescriptive elements to directly address the chal-
lenges surrounding algorithmic transparency. Unlike Model Cards,
these cards do not describe specific ML models, focusing instead on
providing guidance on how to properly use ML methods to define
and train these models. This helps increase reproducibility of ML
and enables external reviewers to determine the appropriateness of
the methods used in ML-based solutions. Furthermore, this enables
ML engineers to develop best practices to mitigate potential short-
comings and to improve the system’s performance. We presented
an example of Method Cards along with potential applications in
generating templates and powering static analyzers of ML code.

REFERENCES
A. Adcock, V. Reis, M. Singh, Z. Yan, L. van der Maaten, K. Zhang, S. Motwani, J.

Guerin, N. Goyal, I. Misra, L. Gustafson, C. Changhan, and P. Goyal. 2019. Classy
Vision. https://github.com/facebookresearch/ClassyVision.

Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, Shubham Muttepawar, Edward
Wang, Sara Zhang, David Adkins, and Orion Reblitz-Richardson. 2021a. Debugging
the Internals of Convolutional Networks. In eXplainable AI approaches for debugging
and diagnosis - NeurIPS Workshop.

Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, Jun Yuan, and Orion Reblitz-
Richardson. 2021b. Mind the Pad – CNNs Can Develop Blind Spots. In Intl. Confer-
ence on Learning Representations (ICLR).

Long Ang. 2018. A bunch of tips and tricks for training deep neural networks.
(2018). https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-
deep-neural-networks-3ca24c31ddc8

Apple. 2019. Human interface guidelines for machine learning. (2019). https://
developer.apple.com/design/human-interface-guidelines/machine-learning/

Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta,
Aleksandra Mojsilović, Ravi Nair, K Natesan Ramamurthy, Alexandra Olteanu,
David Piorkowski, et al. 2019. FactSheets: Increasing trust in AI services through
supplier’s declarations of conformity. IBM Journal of Research and Development 63,
4/5 (2019), 6–1.

Karsten Behrendt, Libor Novak, and Rami Botros. 2017. A deep learning approach
to traffic lights: Detection, tracking, and classification. In 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 1370–1377.

Samuel J Bell and Onno P Kampman. 2021. Perspectives on Machine Learning from
Psychology’s Reproducibility Crisis. ICLR Workshop on Science and Engineering of
Deep Learning arXiv:2104.08878 (2021).

Kasia S Chmielinski, Sarah Newman, Matt Taylor, Josh Joseph, Kemi Thomas, Jessica
Yurkofsky, and Yue Chelsea Qiu. 2020. The dataset nutrition label (2nd Gen):
Leveraging context to mitigate harms in artificial intelligence. In NeurIPS Workshop
on Dataset Curation and Security.

Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith Stafford. 2003. Docu-
menting software architectures: views and beyond. In 25th International Conference
on Software Engineering, 2003. Proceedings. IEEE, 740–741.

Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, and Jonn Lantz. 2015. Architecting
in the automotive domain: Descriptive vs prescriptive architecture. In 2015 12th
Working IEEE/IFIP Conference on Software Architecture. IEEE, 115–118.

Susan Finger and John R Dixon. 1989. A review of research in mechanical engineering
design. Part I: Descriptive, prescriptive, and computer-based models of design
processes. Research in engineering design 1, 1 (1989), 51–67.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021. Datasheets for Datasets.
Commun. ACM 64, 12 (nov 2021), 86–92. https://doi.org/10.1145/3458723

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wich-
mann, and Wieland Brendel. 2019. ImageNet-trained CNNs are biased towards tex-
ture; increasing shape bias improves accuracy and robustness.. In International Con-
ference on Learning Representations. https://openreview.net/forum?id=Bygh9j09KX

Benjamin Haibe-Kains, George Alexandru Adam, Ahmed Hosny, Farnoosh Kho-
dakarami, Levi Waldron, Bo Wang, Chris McIntosh, Anna Goldenberg, Anshul
Kundaje, Casey S Greene, et al. 2020. Transparency and reproducibility in artificial
intelligence. Nature 586, 7829 (2020), E14–E16.

Richard Hawkins, Ibrahim Habli, Tim Kelly, and John McDermid. 2013. Assurance
cases and prescriptive software safety certification: A comparative study. Safety
science 59 (2013), 55–71.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, andMu Li. 2019. Bag
of tricks for image classification with convolutional neural networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 558–567.

Rogardt Heldal, Patrizio Pelliccione, Ulf Eliasson, Jonn Lantz, Jesper Derehag, and Jon
Whittle. 2016. Descriptive vs prescriptive models in industry. In Proceedings of the
acm/ieee 19th international conference on model driven engineering languages and
systems. 216–226.

Michael Hind, Stephanie Houde, Jacquelyn Martino, Aleksandra Mojsilovic, David
Piorkowski, John Richards, and Kush R Varshney. 2020. Experiences with improv-
ing the transparency of AI models and services. In Extended Abstracts of the CHI
Conference on Human Factors in Computing Systems. 1–8.

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia Chmielin-
ski. 2018. The dataset nutrition label: A framework to drive higher data quality
standards. arXiv preprint arXiv:1805.03677 (2018).

Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna
Wallach. 2019. Improving fairness in machine learning systems: What do industry
practitioners need?. In Proceedings of the 2019 CHI conference on human factors in
computing systems. 1–16.

Valliappa Lakshmanan, Sara Robinson, and Michael Munn. 2020. Machine learning
design patterns. O’Reilly Media.

Zachary C Lipton. 2018. The Mythos of Model Interpretability: In machine learning,
the concept of interpretability is both important and slippery. Queue 16, 3 (2018),
31–57.

https://github.com/facebookresearch/ClassyVision
https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8
https://towardsdatascience.com/a-bunch-of-tips-and-tricks-for-training-deep-neural-networks-3ca24c31ddc8
https://developer.apple.com/design/human-interface-guidelines/machine-learning/
https://developer.apple.com/design/human-interface-guidelines/machine-learning/
https://doi.org/10.1145/3458723
https://openreview.net/forum?id=Bygh9j09KX

Prescriptive and Descriptive Approaches to Machine-Learning Transparency CHI ’22, Apr 30– May 05, 2022, New Orleans, LA

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. 2016. SSD: Single shot multibox detector. In
European Conference on Computer Vision. 21–37.

Jochen Ludewig. 2003. Models in software engineering–an introduction. Software and
Systems Modeling 2, 1 (2003), 5–14.

Wong Hoo Meng and Sagaya Sabestinal Amalathas. 2019. A new approach towards
developing a prescriptive analytical logic model for software application error
analysis. In Proceedings of the Computational Methods in Systems and Software.
Springer, 256–274.

Milagros Miceli, Tianling Yang, Laurens Naudts, Martin Schuessler, Diana Serbanescu,
and Alex Hanna. 2021. Documenting Computer Vision Datasets: An Invitation to
Reflexive Data Practices. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency. 161–172.

Microsoft. 2021. The HAX Toolkit. (2021). https://www.microsoft.com/en-us/
haxtoolkit/

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben
Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model
cards for model reporting. In Proceedings of the conference on fairness, accountability,
and transparency. 220–229.

Brian A Nosek, Jeffrey R Spies, and Matt Motyl. 2012. Scientific utopia: II. Restructuring
incentives and practices to promote truth over publishability. Perspectives on
Psychological Science 7, 6 (2012), 615–631.

Google PAIR. 2019. People + AI Guidebook. (2019). https://pair.withgoogle.com/
guidebook

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. 2021. On Buggy Resizing Libraries
and Surprising Subtleties in FID Calculation. arXiv preprint arXiv:2104.11222 (2021).

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, et al. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems (NeurIPS). 8024–8035.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina
Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. 2021. Improv-
ing reproducibility in machine learning research: a report from the NeurIPS 2019
reproducibility program. Journal of Machine Learning Research 22 (2021).

William H Press, Brian P Flannery, Saul A Teukolsky, William T Vetterling, et al. 1989.
Numerical recipes.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
2019. Language Models are Unsupervised Multitask Learners. (2019).

Edward Raff. 2019. A step toward quantifying independently reproducible machine
learning research. Advances in Neural Information Processing Systems 32 (2019),
5485–5495.

Sridhar A. Raghavan and Donald R. Chand. 1989. Diffusing software-engineering
methods. IEEE software 6, 4 (1989), 81–90.

Inioluwa Deborah Raji and Jingying Yang. 2019. ABOUT ML: Annotation and bench-
marking on understanding and transparency of machine learning lifecycles. arXiv
preprint arXiv:1912.06166 (2019).

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison.
2015. Hidden technical debt in machine learning systems. Advances in neural
information processing systems 28 (2015), 2503–2511.

Y. Shibui. 2020. Machine learning system design patterns. (2020). https://github.com/
mercari/ml-system-design-pattern

Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel. 2016. In-
creasing transparency through a multiverse analysis. Perspectives on Psychological
Science 11, 5 (2016), 702–712.

Hironori Washizaki, Foutse Khomh, Yann-Gaël Guéhéneuc, Hironori Takeuchi, Nao-
take Natori, Takuo Doi, and Satoshi Okuda. 2022. Software Engineering Design
Patterns for Machine Learning Applications. IEEE Computer 55, 3 (2022), 1–9.

Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc. 2019.
Studying software engineering patterns for designing machine learning systems.
In 2019 10th International Workshop on Empirical Software Engineering in Practice
(IWESEP). IEEE, 49–495.

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. 2016. How to use t-SNE
effectively. Distill 1, 10 (2016), e2.

Adrian Weller. 2019. Transparency: motivations and challenges. In Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Springer, 23–40.

Hoo Meng Wong, Sagaya Sabestinal Amalathas, and Tatana Zitkova. 2019. A prescrip-
tive logic model for software application root cause analysis. European Journal of
Electrical Engineering and Computer Science 3, 5 (2019).

Haruki Yokoyama. 2019. Machine learning system architectural pattern for improving
operational stability. In 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C). IEEE, 267–274.

Jun Yuan, Bilal Alsallakh, Narine Kokhlikyan, Vivek Miglani, and Orion Reblitz-
Richardson. 2021. Convolution Can Incur Foveation Effects. In Beyond static papers:
Rethinking how we share scientific understanding in ML-ICLR 2021 workshop.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin D Cubuk,
and Quoc V Le. 2020. Rethinking pre-training and self-training. arXiv preprint
arXiv:2006.06882 (2020).

https://www.microsoft.com/en-us/haxtoolkit/
https://www.microsoft.com/en-us/haxtoolkit/
https://pair.withgoogle.com/guidebook
https://pair.withgoogle.com/guidebook
https://github.com/mercari/ml-system-design-pattern
https://github.com/mercari/ml-system-design-pattern

CHI ’22, Apr 30– May 05, 2022, New Orleans, LA Adkins, et al.

Method Card - Traffic Light Detection

Basic Method Information

Name, version, and application domain(s): Traffic light de-
tection based on SSD, V1, for street scene analysis.

Method purpose and appropriate uses: Detect rectangular
traffic-light instances in a street scene, represented by a monoc-
ular camera image. The detector can be used in offline analysis,
e.g., to support street scene retrieval based on traffic criteria and
in similar traffic analysis tasks.

Method definition: Traffic light detection based on the SSD
object detection architecture. Published in [Behrendt et al. 2017],
reference implementation in https://github.com/bosch-ros-pkg/
bstld.

Example input and output: The Output is a list of bounding
boxes representing the detected objects, along with detection
score and detected traffic light color.

Safety and Troubleshooting

Inappropriate use and common usage pitfalls:

• Must NOT be used in autonomous driving, it is not de-
signed to handle all traffic scenarios.

• Should not be used with night-time scenes.

Known weaknesses and biases:

• Can only handle rectangular bounding boxes during train-
ing and inference.

• Biased against red traffic lights as they are very similar
to vehicle tail lights.

How to detect biases in the model internals:

• Feed a zero input and look for activation artifacts
• Average the feature maps over random inputs.
• Is the average kernel per conv. layer symmetric?

Common failure modes, root causes, and mitigation:
• Red traffic lights likely undetected if in proximity of vehi-
cles (will likely be deemed as tail lights). Consider generat-
ing training samples with such scenarios, or first applying
a car detector and masking detected cars.

• Green traffic lights with vegetation background. Consider
using a backbone that has higher shape bias and lower
texture bias [Geirhos et al. 2019].

• Traffic lights with street ads in the background. Consider
augmentation with generating data.

Data Preparation

Input and output format, shape, and data type:
• The input is a 1280×840 RGB image, with integer intensity
values in the range [0, 225]. Do not resize the image as
this can compromise the aspect ratio of the traffic lights.

• The output is a ranked list of detected traffic lights.
Each item in the list contains the bounding box
((𝑥1, 𝑦1), (𝑥2, 𝑦2)) in a relative coordinate system [0, 1] ×
[0, 1], and the production confidence normalized to [0, 1].

Data transformation and normalization: The input image
is first normalized to the range [0, 1].

Recommended sampling and balancing:
• The frames in available datasets are captured at a constant
interval. Hence, scenes at red traffic lights tend to be al-
most identical and over-represented. Consider similarity-
based sampling.

• Yellow traffic lights are limited in available datasets and
often have a larger size as they tend to be captured close
to intersections. Data augmentation should focus on in-
creasing their frequency.

Recommended batching scheme and batch size.
• Use a batch size of 4 or higher if the GPU allows.
• Ensure that batches contain diverse scenes instead of con-
secutive frames.

• Use InstanceNormalization for a batch size of 1 or 2
and BatchNorm with batch size of 4.

Required data augmentation and shuffling.
• Make sure to enable horizontal image flipping.
• Shuffle individual frames instead of batches.

Validation and train-test splitting schemes: Ensure sufficient
diversity of the different splits, especially given the sequential
nature of the collected scenes. Ensure that yellow traffic lights
are sufficiently present in the validation set as they are likely a
minority.

https://github.com/bosch-ros-pkg/bstld
https://github.com/bosch-ros-pkg/bstld

Prescriptive and Descriptive Approaches to Machine-Learning Transparency CHI ’22, Apr 30– May 05, 2022, New Orleans, LA

Method Card - Traffic Light Detection (continued)

Modelling and Optimization

Architecture family and components:
• The SSD multi-box architecture [Liu et al. 2016] with a
box predictor for each traffic light color.

• The backbone CNN can be a ResNet, a MobileNet, Effi-
cientNet or another architecture depending on available
computing capacity.

• Avoid backbones that use dilation.
• Use maxpooling instead of strided convolution.

Hyperparameters, applicable values, known impact:
• Use mirror padding to reduce artifacts. 0-padding can cre-
ate blind spots with small objects.

• Resize each input dimension to a 𝑎 · 2𝑑 + 1 where 𝑑 is
the number of pooling layers an 𝑎 is a scalar. This avoids
asymmetric filters.

Training objective(s), and optimizer(s): Use
• weighted sigmoid as classification loss and weighted
smooth L1 for localization loss.

• Hard negative miner and NMS to reduce FPs.
• RMSProp optimizer with MobileNet and SGD with
Momentum for ResNet backbone.

Parameter initialization: Use Xavier’s method if training
from scratch. If finetuning, use a checkpoint trained with self-
supervision.

Regularization scheme, capacity selection: We do NOT rec-
ommend using dropout in the box-predictor of the SSD. We
recommend an L2 regularizer with a factor of 0.00004.

Weight quantization, recommended bit depth: Given the
small size of the target objects, we recommend 32-bit FP values
to encode the weights without quantization.

Parallelization at training and inference time: We recom-
mend identical GPUs to parallelize the training, and ensuring
the batches are distributed randomly across them.

Recommended model compression techniques: Given the
small size of the target objects, compression can potentially
wash out fundamental features.

Method Benchmarking

Performance metric(s) and applicable threshold(s):
• Use Average Precision (AP) to compare models overall,
per light category, and per object size.

• Use the IoU overlap threshold to determine if a detected
object covers the ground truth instance.

• A score threshold defines the operating point.

Threshold selection: Calibrate the IoU and score thresholds
based on the intended use. If using lower thresholds for higher
recall, consider human reviewers to double check.

Overfitting detection: Standard analysis on training and test
set performance.

Training and inference time efficiency: SSDs are generally
fast both at training and at inference. A MobileNet backbone
converges within hours on BSTLD, and can perform detection
in 38𝑚𝑠 on a single-core machine.

Available benchmarks: Results on BSTLD: https://github.com/
bosch-ros-pkg/bstld#results

Interpretability and Explainability

Applicable feature attribution methods: GradCAM, LIME (ap-
plied to super-pixels), and window occlusion help determine
scene features involved in the detection.

How to identify influential training instances: Use algo-
rithms based on comparing embeddings, such as TracIn, to
identify proponents and opponents.

How to identify internal concepts and features learned: Use
TCAV when example scenes for street concepts are available.
Use NetDissect when scenes with segmentation masks are
available.

Robustness

Out-of-distribution behavior: The method is likely to depend
on regional street features, and hence to underperform on scenes
from cities outside of the training set. Also, distorted or signif-
icantly different tones of green, yellow, or red will likely be
undetected.

Detecting and mitigating data and model drifts: Traffic
lights are constantly being updated, and hence the training data
need to be regularly updated. Novel objects might resemble traf-
fic lights, incurring new false positives.

https://github.com/bosch-ros-pkg/bstld#results
https://github.com/bosch-ros-pkg/bstld#results

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Transparency Through Documentation
	2.2 Transparency Through Reproducibility
	2.3 Transparency Through Interpretability
	2.4 Illustrative Example

	3 A Prescriptive Approach to ML Transparency
	4 Method Cards
	4.1 Granularity of ML Methods
	4.2 Maintaining Method Cards
	4.3 An Example of Method Cards

	5 Discussion
	6 Conclusion
	References

