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Fig. 1. Sample frames from the experiment. (1) The male character in the FK condition, and (2) the same frame in the IK condition and (3) in the IK full error
condition where hand tracking was lost for the character’s right hand which subsequently remains hanging at shoulder height. (4) The female character in
the IK hybrid condition: When tracking for the hand is lost around waist height (character’s right hand), the hand will be moved to a rest position. (5) The
character’s right hand moved to a rest position. (6) Both hands moved to a rest position.

Social virtual reality uses motion tracking to place people in virtual environ-
ments as animated avatars. Often this tracking only measures the position
and orientation of the head and hands, and from this estimates the body pose.
Optical hand tracking is an important technology to enable such avatars,
but can frequently fail and cause motion errors when the hands are visually
obscured. This paper presents three amelioration strategies to handle these
errors and demonstrates experimentally that all three are effective in reduc-
ing their impact. This setting is also used to explore general issues around
study design for motion perception. Different strategies for presenting stim-
uli and soliciting input are compared. The presence of a simultaneous recall
task is shown to reduce but not eliminate sensitivity to motion errors. Finally,
it is shown that motion errors are interpreted, at least in part, as a shift in
interlocutor personality.
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1 INTRODUCTION
With continuous improvements in optical hand tracking technology,
first-person camera-based hand tracking is increasingly preferred
over controller-based tracking in Virtual Reality. 1st person camera-
based tracking relies on cameras mounted on the VR headset, and
computer vision to detect the hands within the camera image. This
controller-free tracking allows users more natural interaction with
the virtual environment, increasing enjoyment and engagement.
However, optical hand tracking can still fail frequently due to sub-
optimal visual conditions. For example, the user’s hand may leave
the visibility space of the head cameras, or one hand may occlude
the other, or the hand may be moving too fast, creating motion blur
in the camera image. When hand tracking is lost in these scenarios,
the default solution is to leave the hand of the user’s avatar hanging
where it was last tracked, and, when tracking resumes, the hand
suddenly pops to the new position, creating a jump in the body
motion. This prominent error in the rendered motion may decrease
perceptions of realism and impact user experience.

In this work, we first investigate users’ perception of these motion
errors resulting from hand tracking loss for a conversational partner,
and propose and assess three different amelioration strategies for
these scenarios. We propose a method for simulating hand tracking
loss occurrences and generate samples for an perceptual experiment.
Second, we investigate aspects of experiment design. No com-

mon standards have been codified for assessing users’ perception of
motion in social interaction. We explore stimulus presentation, ques-
tion design, the impact of providing viewers with a simultaneous
task and whether errors are read as social signals.
These themes are explored through four experiments involving

several hundred participants. The first experiment confirms peo-
ple’s sensitivity to tracking errors and shows sensitivity increases
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with improved motion quality. Experiment 2 assesses the error ame-
lioration strategies, showing that all are beneficial, and compares
different survey prompts and presentation modes. Experiment 3
shows that error sensitivity is reduced when participants are given
an additional conversation-based task. Experiment 4 shows that mo-
tion errors are also interpreted, at least in part, as shifts in character
personality, which will have repercussions for social VR.

2 BACKGROUND

2.1 Motion Errors
Numerous previous studies have explored people’s sensitivity to
motion errors. For jumping animations, people were found to be
more sensitive to horizontal than vertical velocity errors, and more
sensitive to added accelerations than decelerations [23]. Hodgins
et al. [11] assessed sensitivity to fairly substantial anomalies in
facial and body motion for a scenario involving an arguing couple.
They employed subjective ratings of emotional response on longer
interaction clips and a two alternative forced choice test (2AFC)
on shorter clips comparing the severity of anomalies on a single
actor. Facial anomalies were found to be more disturbing than body
anomalies, and gaze tracking revealed that a majority of attention
was focused on the face, which may be explanatory of these results.
The important role of visual attention for error detection was also
illustrated in Harrison et al. [9]: For a simple, two link line drawing
as a proxy for a human character, people were less able to detect
changes in limb length when given a task of counting rotations or
under presence of a low contrast distractor in the scene. Context,
specifically the background shown behind a motion, can also impact
perceptions of the emotional quality of a motion [10].
For a snooker game scenario, people were found to be more

tolerant of errors when shown a realistic versus an abstract visual
environment [22]. This may have been caused by response bias:
people were more likely to report errors in the abstract environment
whether or not they were there.

Body tracking in VR significantly increases users’ embodiment
and social presence [7], and some work has investigated the impact
of tracking errors on user experience. Embodiment was found to
degrade for an athletic task as latency exceeds 125ms, and severly so
over 300ms [28], and latency sensitivity is influenced by the speed
of the motion performance [12]. In a social task, no decline in social
presence was found for even severe lag and jitter, but certain errors
impacted embodiment, enjoyment and perceived usability [27].

For avatar-object interaction, tracked motion will frequently not
align perfectly with the virtual objects and a choice between pre-
serving visual fidelity (not allowing the hand to penetrate objects) or
preserving motion fidelity has to be made. Users have been found to
prefer preservation of visual fidelity, though their task performance
was better under preservation of motion fidelity [2].

For an error-prone task in VR using hand-tracking, displaying the
embodied hand wrongly moving into the symmetrically opposite
direction elicited a neural response consistent with semantic or
conceptual violations, different from the neural response to self-
generated errors [21]. This difference was larger the more body
ownership a participant felt for the virtual body.

Limited work has assessed the impact of errors on co-speech
gesture. Perceptual work often focused on validating synthesis al-
gorithms [14] or measuring perceived personality (e.g. [17, 18, 24])
and emotion (e.g. [3]). Adding discontinuities to gesture was found
to decrease the impression of Emotional Stability [24], so errors may
have the impact of changing the perceived character personality,
rather than being viewed as errors. Previous work has also found
limited sensitivity for detecting mismatches between an agents’
voices and gestures [6], suggesting a potential of mitigating per-
ceptual effects of tracking failures of conversational partners with
substituted motion. However, while some errors in gesture motion
may go unnoticed, temporal misalignment can have a significant
impact on the perceived speech: Bosker and Peeters [1] report a man-
ual a McGurk effect where the timing of a beat gesture (a rhythmic
gesture with a non-meaningful shape) can influence the vowel a
listener perceives and potentially change the perceived meaning.

2.2 Study Design
In running a perceptual study, a large number of variables must be
determined that can each impact the results. Do you put the motion
in context or view it in isolation? Are there distracting activities or
gaze draws or is the participant free to focus on the stimuli? Is it
more important to measure awareness of errors or their impact on
subjective criteria like presence or personality?What is the best way
to present stimuli and is there a preferred question formulation? At
this point, there are no established standards and many variations
on the exemplars above have been used. Some of these challenges
have also been discussed in Zell et al. [30], as well as specifically for
evaluation of co-speech gesture in Wolfert et al. [29].
Two standard techniques developed for evaluating video qual-

ity were compared by Nehmé et al. [19] for detecting errors in 3D
models. The Double Stimulus Impairment Scale (DSIS) provides a ref-
erence, pristine video, followed by a degraded version. The user rates
the level of degradation on a discrete 5-point scale: Imperceptible
(5), Perceptible but not annoying (4), Slightly annoying (3), Annoy-
ing (2), Very annoying (1), with a recommended 10s presentation.
The Absolute Category Ratings with Hidden Reference (ACR-HR)
presents each impaired video individually and has it rated on a
5-point quality scale: bad, poor, fair, good and excellent. Other stan-
dard alternatives include Pairwise Comparison (PC), where users
pick one of two options, and the Subjective Assessment Methodol-
ogy for Video Quality (SAMVIQ), which uses a 101-point scale to
rate a single video and allows users to change earlier ratings after
viewing more videos. Nehmé et al. found DSIS to be more stable
and accurate for finding errors in geometry viewed in VR, meaning
that fewer subjects were required to reach a particular error level.
ACR rates looked to become comparable after a learning phase.

Comparing the use of user ratings, eye gaze and EEG for detecting
errors in video, Tauscher et al. [25] found each to be informative
in different ways. For example, saccades gave a useful measure of
attention, and EEG required large errors to produce a signal.
Using free text response versus ratings on a predefined scale

for character personality judgements, some overlap in results was
found, but different personality traits were more prominent in the
different forms of rating [16].
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Viewing perspective may also impact people’s perception of error.
In an exercise where people were asked to adjust their avatar’s
weight to match their own, participants, particularly males, made
more error in first person than third person perspective [26].

3 METHOD
There were 4 main user studies, designed to investigate users’ gen-
eral sensitivity to motion errors (Exp. 1, Sec. 4), perception of ame-
lioration strategies under varying study design (Exp. 2, Sec. 5), in-
fluence of task attention (Exp. 3, Sec. 6), and motion error induced
shifts in personality perception (Exp. 4, Sec. 7).

3.1 Procedure
Due to pandemic restrictions, all experiments were video-based and
were completed from users’ homes. To ensure visual perception to
be as close to a VR experience as possible, a minimum screen size
of 13” was required and all videos were automatically played in full
screen mode, could only be played once, and had to be played to
completion before participants were able to answer prompts. Fair
reimbursement was used to ensure response validity [13]. An Insti-
tutional Review Board approved the study prior to data collection.
All perceptual experiments were created with Qualtrics and dis-

tributed via Amazon Mechanical Turk. Participants received $15
per hour. Except where noted, there were 100 participants per sub-
experiment. The term sub-experiment refers to a between-subject
condition and is chosen to distinguish from the motion conditions
(Sec. 3.3). There were main 4 experiments, each consisting of 1-5
sub-experiments. Experiments lasted approximately 1 hour, except
for DSIS (see Table 1) which took approximately 1.5 hours.

Participants first self-reported their eligibility to participate (e.g.
adequate English knowledge and no visual impairments) and gave
informed consent. Next, they received instructions for the experi-
ment and watched a video clip presenting examples of the range of
stimuli to follow. After the example video, the experiment started.
A trial always consisted of watching a video clip followed by a
question prompt. In DSIS only, participants watched two video clips
(the clean version of a clip followed by a degraded version) instead
of one before reaching the question prompt. The current and total
trial numbers were presented throughout the experiment to inform
participants of their progress.

Since we are particularly interested in understanding sensitivity
to error during social interaction, test clips were selected of indi-
vidual people engaged in dialogue from the Talking With Hands
16.2 M dataset [15]. This consisted of high quality, full body, motion
capture data, along with speech audio. The input motion was the
same for each experiment and consisted of 10 different clips from
each of 10 motion captured subjects (7 male and 3 female), for a total
of 100 utterances. Each clip was approximately 20 seconds long and
selected to contain coherent speech without interruptions by the
conversation partner.
The high-quality original motion was processed to mimic 1st

person camera-based VR tracking using an inverse kinematics al-
gorithm referred to as “three point IK” (3pt IK). For this, the six
degrees of freedom of the head and hands were extracted from the
motion capture and used to generate a new full body motion with

the custom 3pt IK solver contained in the Oculus VR SDK. The solver
takes as input the 3D world positions and rotations of the head and
the two hands and estimates the upper body pose and root position.
Tracking failures were simulated as described in the next section.

All motion data was rendered on a male or female model de-
pending on the performer’s gender. The used 3pt IK algorithm only
reconstructs the upper body motion, therefore the lower body is
faded out and a framing is selected that shows the character from
mid-thigh to the top of his/her head, as shown in Fig. 1, mimick-
ing what may be observed during conversational interaction with
another person.

3.2 Simulating Tracking Failures
Five measures were implemented using the Unity3D game engine
to simulate when tracking loss would likely occur during inside-out
tracking. We first determined common error sources by consulting
VR tracking developers and then tuned error source thresholds
by empirically comparing to actual hand tracking losses with the
Oculus Quest 1.

To simulate the percentage of each hand that was visible for the
head cameras, one hand was colored in red, one in green, and a
virtual camera was placed on the character’s head, with a field of
view of 160 degrees and tilted 15 degrees downwards. The virtual
head camera’s image was rendered to an image which was analyzed
for the number of red and green pixels pertaining to the hands. The
number of colored pixels found was scaled according to the distance
from the camera image’s center to account for the strong distortion
resulting from the wide camera field of view.
Hand tracking may also fail if too few fingers are visible to the

head cameras; e.g. even with a large portion of the back of the
hand being visible, the hand may not be identified as such without
visible fingers. To account for this, we virtually divide the hand into
segments, including the base, mid, and tip of each finger. Rays are
cast from the location of the head camera to the hand segments and
visibility is assessed by the number of segments reached successfully.
Tracking is considered dropped if there is less than 40% visibility.

We assess the hand’s angle with respect to the line of projection
of the head camera by calculating the dot product between the
following vectors: (1) The vector connecting the camera to hand,
and (2) the vector connecting the base of the hand to the base of the
middle finger. The absolute value of dot product is 1 if the vectors
are parallel and reaches 0 as they become perpendicular to each
other. We define an inadequate hand-camera angle as a dot product
larger than 0.75.
To account for the constraints of a physical head camera losing

focus for objects very close to the lens, we define the minimum
distance of the hand from the head camera required for visibility
as 0.12 m. To account for motion blur obscuring the image of a
physical head camera, we define a maximum speed of 3 m/s of the
hand above which visibility is lost.

3.3 Error Amelioration Strategies
We developed a number of error amelioration strategies for handling
hand tracking failures. In embodied VR applications, people’smotion
must normally be reconstructed with only data on the location of the

3



SAP ’21, September 16–17, 2021, REMOTELY Ferstl et al.

Abbreviation Full Name Prompt Responses
DSIS Double Stimu-

lus Impairment
Scale

Please rate the motion error in the sec-
ond clip compared to the first

Imperceptible(5), Perceptible but not an-
noying(4), Slightly annoying(3), Annoy-
ing(2), Very annoying(1)

DSIS_NP Non-Paired
DSIS

Please rate the motion error in this clip. as above

ACR Absolute Cate-
gory Rating

Please rate the motion quality in this
clip.

Excellent, Good, Fair, Poor, Bad

NAT_L Likert Natural-
ness

The motion in this clip appears natural Strongly agree - Strongly disagree (7
point, standard Likert labels on each
value)

ERR_L Likert Error This motion contains errors as above
Table 1. Prompts used to measure error in different sub-experiments.

head and two hands. As described in Sec. 3.1, 3pt IK reconstruction
is simulated by feeding the motion-captured head and hand data to
the IK solver contained in the Oculus VR SDK. The output of this
process produces the highest quality stimuli used in the experiments
because the hand data is always present. It is referred to as clean,
since no errors have been introduced.
1st person camera-based hand tracking uses cameras mounted

on the VR headset to reconstruct the hand pose. This can fail when
the optical quality is too low due to the hands being too far from
the cameras, self-occlusions, the hand angle being parallel to the
lines of projection and/or motion blur. To simulate the impact of
these error sources, we calculate their likely occurrence during the
motion sequence, as described in Sec. 3.2. When one of these errors
occur for some number of frames, tracking is considered dropped
and the hand location is frozen at the last valid frame. In the full
error motion condition, no attempt is made to lessen the impact of
this error. In practice, additional tracking failures may occur due to
object occlusion or poor lighting, but those are not modeled here.
Three amelioration strategies were devised for reducing the im-

pact of these unavoidable tracking errors. They provided the re-
maining motion conditions:

(1) fade: Upon loss of hand tracking, the joint angles of the respec-
tive hand and arm are frozen. When tracking resumes, the
hand is re-aligned with the tracking position by interpolating
the respective joint angles over time to create a smooth tran-
sition with similar speed to the other gesture motion. This
strategy should work well for speakers with high gesture
frequency, where tracking losses are usually short.

(2) rest: If hand tracking has been lost for longer than 0.4 seconds,
the hand is moved to a rest position (hand hanging by the
side of the body). If tracking resumes within 0.4 seconds, the
hand is re-aligned with the tracking position by interpolat-
ing the respective joint angles over time to create a smooth
transition. This strategy addresses severe tracking losses of
long duration, avoiding prolonged unnatural poses such as
the hand hanging in mid-air.

(3) hybrid: If hand tracking has been lost for longer than 2 sec-
onds, or if hand tracking was lost around waist height for at
least 0.08 seconds, move the hand to a rest position. If hand
tracking is lost and the previous two conditions do not apply,

use fade. Motivation for using the height of the hand upon oc-
clusion comes from the frequent loss of hand tracking when
subjects move their hands to a rest position by the side of the
body, normally leading to the virtual hands remaining hang-
ing at waist height where tracking was lost. This solution
attempts to find a balance between leaving the hand hanging
in an awkward position for too long and too quickly retract-
ing a hand when tracking may resume from the same general
location. This strategy seeks to combine the advantages of
fade and rest, with potential to perform the best.

We also considered predictive models of error amelioration. Ex-
periments were performed using motion momentum at occlusion
time to predict they trajectory, with damping to slow the motion;
however, this did not yield good results. In addition, we observed
large differences in gesture style between speakers and therefore
believe a good model for addressing the complexities of gesture mo-
tion prediction would need to be speaker-specific. For versatility and
robustness, we therefore chose the above amelioration strategies.

3.4 Statistical Analysis
All data was fit with Cumulative Link Mixed Models (CLMMs),
which compare differences in distributions of ordinal data [4, 5].
CLMMs treat responses as categorical, ordered data, which is an
appropriate approach for Likert data. Analysis was performed in R
using the ordinal package. Post-hoc analysis was performed with
least square means and pairwise comparisons using Tukey correc-
tion, using the lsmeans package in R.

4 EXP. 1: MOTION ERROR SENSITIVITY
The first goal of Experiment 1 was to confirm that the errors in wrist
position were noticeable. For this, two conditions were compared:
clean, the highest quality motion with no artificial errors, and full
error, which contained all errors with no amelioration strategy.
The second goal was to compare two different forms of motion

reconstruction. The target VR application receives as input 6 DOF
(degree of freedom) information for the head and hands and uses
an IK algorithm to solve for a full body skeleton pose from these
three points. This is a heavily underspecified problem and hence
the resulting body pose may not always be natural. This increased
error in the body pose may impact people’s ability to notice errors
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Fig. 2. Perceived Error for FK and IK basedmotion reconstructions, including
the clean (unmodified) and full error conditions.

in the wrist position. It may also be that future algorithms are able
to better reconstruct the body pose from the three input points. For
both these reasons, we want to compare people’s sensitivity to error
in the 3pt IK scenario and a higher quality motion baseline. For
the latter, we directly use the input motion capture and generate
errors in the motion by freezing the joint angles during the periods
when tracking is expected to be lost. This creates higher quality
body motion, with the same periods of tracking error. We dub this
reconstruction method FK, because it relies on forward kinematics
to determine the pose from joint angles, and refer to the 3pt IK
reconstruction method as IK.
There were two sub-experiments, one for IK and one for FK

stimuli. Each contained the clean and full error conditions. The
test motion was generated from the 100 clips described in Sec. 3.3.
For each sub-experiment, there were two sets of clips, with one
half of the clips having errors introduced in one set and the other
half having errors in the other set, and participants were equally
distributed across the two clip sets. 40 participants partook in each
sub-experiment. This experiment was run without speech audio.
The prompt used in this experiment was “This motion contains

errors,” which participants rated on a 7-point Likert scale, ranging
from Strongly Agree to Strongly Disagree.

4.1 Results
For FK, the mean for the clean clips was 3.05 (SD 1.73) on a 7-point
Likert scale and for full error, the mean was 5.16 (SD 1.98), plotted
in Fig. 2. The distributions are significantly different, (z=29.33, p<2e-
16), reflecting that people reliably detected more error in the clips
that had jumps in the wrist position.

For IK, the mean for the clean clips was 4.38 (SD 1.87) on a 7-point
Likert scale and for full error, the error condition, the mean was
5.05 (SD 1.71), plotted in Fig. 2. The distributions are significantly
different, (z=11.73, p<2e-16), again showing that people reliably
detected more error in the clips with jumps in the wrist position.

A secondary analysis compared performance on the two motion
types, FK and IK, by forming a single cumulative link model on the
data for both sub-experiments. This showed significant main effects
for condition (z=32.75, p<2e-16) and motion type (z=21.78, p<2e-16),
as well as a significant interaction between them (z=-17.97, p<2e-16).

Post-hoc analysis with least square means using Tukey correction
shows that for the clean condition, people observed significantly
less error for the FK reconstruction (z=-21.78, p<.0001). In the full
error condition, they observed significantly more error with the FK
reconstruction (z=3.653, p=0.0015).

4.2 Discussion
First, Experiment 1 confirmed that the errors generated by simulated
drops in hand tracking were noticeable to observers with both
motion reconstruction methods. Second, the best quality motion
condition (clean) was seen as having significantly more error for
the IK reconstruction than FK. This indicates that participants were
sensitive to the errors introduced by the IK processing. Error ratings
of the full error clips were much closer across motion conditions, but
still significantly higher in the FK condition. While the difference
was small, it seems to indicate that participants found tracking
errors more noticeable when the base motion quality was higher.

5 EXP. 2: AMELIORATION STRATEGIES AND PROMPT
DESIGN

There were two objectives for Experiment 2. First, we wanted to
understand which amelioration strategy would be most effective
for addressing the inevitable tracking errors. Second, we wanted
to understand whether question type and response form impact
the results obtained. There were five sub-experiments, each using
a different prompt to obtain ratings (Table 1), and separate sets of
participants. The prompts included ACR and DSIS, as two standard
metrics, along with Likert scale questions that have been common in
previous motion evaluation work. Some prompts focused on rating
the amount of error in the motion (DSIS, DSIS_NP and ERR_L),
while others focused on motion quality (ACR, NAT_L). DSIS is a
paired test, where the best quality motion for a clip is shown first,
followed by the degraded clip (or a repeat of the best quality motion).
All other tests only show a single stimuli before asking for a rating.
DSIS_NP was added as a single stimuli variant of DSIS to separate
presentation mode from response form.

Each sub-experiment contains all 5 motion conditions and all 100
utterances (Sec. 3.3). Each utterance was rendered with each motion
condition, and 5 clip sets were then formed that each contained 20
clips at each motion condition (2 per speaker). Participants were
randomly assigned to view one of these 5 sets, with approximately
20 participants per set (100 participants per sub-experiment). This
way, every motion condition of of every utterance was included
while an individual participant only saw one condition for a given
utterance.

5.1 Results
All question prompts showed significant differences between con-
ditions (see Fig. 3). For ACR, NAT_L, DSIS and ERR_L, post-hoc
analysis identified three groups: clean performed significantly better
than all other conditions, full error performed significantly worse,
and the 3 amelioration conditions were in the middle and not signif-
icantly different from each other. For DSIS and NAT_L, the p-values
for the pairwise comparisons that led to these groups are all p<0.0001
and for ACR and ERR_L, p<0.01 in all relevant comparisons. The
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Fig. 3. Ratings by condition for each of the prompts. Note that some prompts
are 5-point and some are 7.

exception to the three level groupings is DSIS_NP. For this prompt,
clean was not significantly different from hybrid (z=-1.583, p=0.51)
and hybrid was significantly better than fade (z=-3.823, p=0.0012).

There was some variation between the speakers from the dataset.
The relative ratings of the speakers is generally consistent across
the various prompts, as is the ordering of the five motion conditions.
There is variation across speakers in the average difference between
clean and full error ratings, but this variation does not appear to be
significant. (Illustrating figures in appendix.)

5.2 Discussion
Given that full error performed significantlyworse in all sub-experiments,
it is clear that all amelioration strategies led to improvement. There

was no clear separation between the amelioration approaches as
they were often statistically indistinguishable. With caution, we
suggest that the fade strategy may be slightly worse. The main
weaknesses of fade - potentially leaving an arm in awkward position
for an extended period - will likely be more apparent in prolonged
conversations; because our stimuli were short and consisted of seg-
ments with gesturing that lead to quicker recovery this weakness
may not have become as apparent.
In terms of question choice, all conditions except DSIS_NP pro-

vided the same groupings of conditions ratings on this dataset, so
would lead to the same result on this test. A closer inspections
suggests that prompts based on error (DSIS, ERR_L and DSIS_NP)
worked particularly well for differentiating the full error case from
the rest, but did not offer as much separation for clean from the ame-
lioration conditions. A possible explanation is that people viewed
the error prompts as an identification task and could identify issues
with full error particularly well, but they provided a more holistic
judgment for the naturalness/quality questions which better sep-
arated the top four conditions. A participant may notice sudden
jumps in the motion and still decide that the overall motion quality
was good or natural. However, when specifically prompted to re-
port if the motion contained errors, the participant may also agree.
Finally, NAT_L shows more variation in the amelioration ratings
than ACR. Further testing should be performed to confirm this hy-
pothesis, but it appears that NAT_L may be a good candidate for a
holistic judgment of motion style where differences are subtle.

6 EXP. 3: INFLUENCE OF TASK
In real world applications of character technology, users are (hope-
fully) engaged with the experience, interacting with characters,
trying to complete game goals, etc. Their attention is not fully fo-
cused on trying to detect motion errors. Experiment 3 is designed
to investigate if users are less sensitive to motion errors when given
an interaction task that requires their attention, thus providing a
more realistic test context. Participants were told they would be
asked a question on the character’s dialog after each clip. The ques-
tions were multiple choice and required close listening to the dialog.
Examples include: “What happened to the driver? a) He was killed,
b) He fled the scene, c) He was in an accident, or d) He won the race”
and “The speaker talks about a... a) Lego movie, b) Disney movie,
c) Theatre performance, or d) A horror movie.” Content questions
were presented together with and the motion quality rating ques-
tion. Two sub-experiments were run as part of this experiment. One
used the Likert Error rating prompt ERR_L and the other the the
Likert Naturalness prompt NAT_L (Table 1).

6.1 Results
Fig. 4 shows the results for both sub-experiments. For NAT_L, clean
was significantly better than all other conditions and full error was
worse. Hybrid was significantly better than fade (z=3.127, p=0.015)
and there was a tendency for rest to also be significantly better than
fade (z=2.717, p=0.052). There was no significant difference between
hybrid and rest (z=0.416, p=0.994).
For ERR_L, clean was only significantly better than full error

and fade (z=-3.653, p=0.0024), with no significant difference for
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hybrid (z=-1.784, p=0.38) and rest (z=-1.537, p=0.54). There was no
significant difference between hybrid, rest, and fade. Full error was
significantly worse than all conditions.
Fig. 5 shows a comparison of the results from Exp. 2 with those

from Exp. 3 that added content questions. For NAT_L, comparing
the base model and the model that included content questions, there
is no significant difference for the clean condition (z=-2.858, p=0.12),
but all the conditions with some error are rated significantly lower in
the base model than for the model with additional content recall task
(hybrid z=-4.163, p=0.0013, fade z=-3.973, p=0.0028, rest z=-4.820,
p=0.0001, full error z=-5.562, p<.0001). For ERR_L, in all cases, the
error ratings are significantly lower in the base model than in the
model with dialog content questions. Notably, the spread between
conditions is much larger in the base case.

For each participant, we calculated their average score and aver-
age accuracy answering questions for each of the error conditions.
Regression lines for the extreme cases of full error and clean are
plotted in Fig. 6. The lines for the other error conditions lie between
these, but are omitted for visual clarity. Participants who were more
accurate answering questions also tended to be more accurate in
their motion error detection.

Fig. 4. Ratings for Exp. 3 (Influence of Context) across condition for both
the error detection and naturalness sub-experiment.

Fig. 5. Combined ratings for the base version of the experiment and the
version that included content questions.

Fig. 6. Regression lines fit to scatter plots of participants’ accuracy answer-
ing questions and ratings of motion. For visual simplicity, only the extreme
full error and clean conditions are shown. The amelioration conditions lie in
between (full plot included in Appendix).

6.2 Discussion
Even with the added question answering task, all the amelioration
techniques improved participants impression of motion quality,
both in terms of naturalness and the amount of error. There is
more evidence that fade is the weakest of the techniques, with
significantly lower naturalness ratings than hybrid and a tendency
for them to be lower than rest. It was also the only amelioration
condition that participants rated with significantly more error than
clean, although the difference between the amelioration conditions
was not significant. The naturalness prompt is more effective at
separating the amelioration conditions from the best case (clean).
This may suggest that people are not consciously aware of things
they would call errors in the amelioration case, but still find the
motion quality lower. This provides more evidence that NAT_L may
be a good candidate for assessing subtle motion variation.

The presence of a conversational task reduced sensitivity to mo-
tion quality differences, as expected. People noticed error less in
clips with error and thought clips with error were more natural than
participants not engaged in a conversational task.

Since participants who were more accurate at answering the ques-
tions also tended to be more accurate in their motion observations,
it does not appear that people were dividing limited attentional
resources between the two tasks. Rather, it seems like some partic-
ipants paid more careful attention to all aspects of the task than
others. Alternatively, some participants might have had more diffi-
culty with the conversational task, perhaps due to speaker accents,
leading them to use more attentional resources for listening to the
speech, resulting in less available resources (and hence lower per-
formance) for the motion observation task, while also doing more
poorly on the conversational task.

In both tests, it appears that there was less variance as a function
of an additional conversational task for the ‘easy’ condition. For
ERR_L, it is easiest to detect that error is present in full error. It is
similarly easiest to detect that the clean clips are natural.

7



SAP ’21, September 16–17, 2021, REMOTELY Ferstl et al.

7 EXP. 4: PERSONALITY PERCEPTION
Noticeable motion errors may degrade users’ experiences. They also,
or alternatively, may shift their impression of the person they are
interacting with. Previous work has established that small changes
in the performance of gesture can reliably influence the perceived
personality of a character (e.g. [24]). We sought to understand if
the motion errors produced by tracking loss can also impact per-
ceived personality, establishing that such errors lead to a shift in
the impression of an interlocutor.
An experiment was conducted using the same IK stimuli from

Experiment 1 which included just the clean and full error conditions.
The stimuli presentation was structured in the same way, but in
this experiment, instead of rating error, participants were asked to
rate the character’s personality by providing Likert responses to the
prompts of the Ten-Item Personality Inventory for each clip [8]. This
is a compact instrument for measuring the Five Factor personality
model (Extroversion, Openness to Experience, Emotional Stability,
Agreeableness and Conscientiousness)[20], a widely used model
of personality in social psychology. 45 participants partook in this
experiment, 22 saw the first set of motions and 23 the second.

7.1 Results
Results are summarized in Fig. 7 and show small, but consistent
variation across the personality traits. Since there is no reason to
expect a relationship across personality traits, a separate cumulative
link model was used to analyze each personality trait individually.
If we use conservative Bonferroni correction to adjust our alpha to
𝑝 ≤ 0.01 to account for the five tests, the differences for Extroversion
(z=-3.084, p=0.0020) and Openness to Experience (z=-2.68, p=0.0074)
are statistically significant. The differences for Agreeableness (z=-
2.31, p=0.021), Conscientiousness (z=1.34, p=0.18), and Emotional
Stability (z=-2.045, p=0.041) were not. For both Extroversion (clean
mean=4.11 SD=1.26, full error mean=3.99, SD = 1.26) and Openness
to Experience (clean mean=4.199 SD=1.088, full error mean=4.126,
SD =1.092 ), the presence of error shifts the perceived perception
towards the negative end of the scale.

Fig. 7. Ratings for Exp. 4 comparing the perceived personality of clips with
and without error.

7.2 Discussion
The significant differences in Extroversion and Openness to Experi-
ence, and nearly significant changes in Agreeableness and Emotional
Stability, suggest that the presence of error is shifting people’s im-
pression of the avatar, instead merely being viewed as a technical

flaw. For all traits where the change was significant or nearly so,
the error shifted the trait towards the more negative end of the
spectrum. This could suggest that there was a general halo effect,
where the error led to people making more negative interpretations
of the people overall. In all cases, however, the differences are very
small so caution should be used in determining the importance of
this effect.

8 DISCUSSION AND CONCLUSION
In this work, we study hand tracking loss for conversational interac-
tion. First, we proposed a method for simulating headset-based hand
tracking loss occurrences on error-free motion-captured data and
we assess participants’ sensitivity to these errors, including effects
on perceived personality. Next, we propose three error amelioration
strategies and show that each improves perceived motion quality.
Finally, we investigate study design questions.

While all three error amelioration strategies improved perceived
motion quality, there was a tendency for fade to be worse than
the others, rest and hybrid. Sensitivity to motion quality was lower
when engaged in a conversational recall task, but amelioration still
made a significant improvement. Sensitivity to motion errors was
also higher for higher quality base motion.
Most question prompts were able to separate the stimuli into

three levels: clean, ameliorated error (fade, rest, hybrid) and full er-
ror. Prompts based on gauging error produced particularly distinct
ratings for the high error case, but performed less well in terms
of separating the amelioration and clean stimuli. Indeed, ERR_L in
Exp. 3 and DSIS_NP in Exp. 2 did not always produce significantly
different ratings for the clean baseline and amelioration conditions.
Overall, a naturalness Likert scale better separated the clean and
amelioration conditions and was a good choice in this study when
holistic judgment of motion style was desired. We found no ad-
vantage of prior showing of the clean reference motion (DSIS) for
motion error sensitivity.
The presence of error significantly lowered the perception of

the personality traits Extroversion and Openness to Experience,
indicating the people in part interpret error as a “feature” of their
interlocutor. The magnitude of this change was small, however.

There is room for improvement in the amelioration strategy since
none was consistently indistinguishable from the clean motion. Ma-
chine learning methods could be used for determining optimal re-
sponse when tracking fails. Another improvement could come from
applying amelioration strategies directly to the IK input: By feeding
a hypothesized pose into the IK algorithm, the rest of the body pose
is adjusted accordingly and would likely lead to an overall more
natural appearance of the motion. It would also be interesting to
test these strategies in VR where they could be applied to a person’s
own avatar. Different strategies may be preferable in a first person
versus third person view; while for a third person view, the most
visually appealing solution may be preferred, in a first person view,
the solution spatially closest to the user’s hands may best preserve
user engagement and presence. Users may also alter their gesture
behavior due to awareness of the limited tracking performance,
and therefore in-VR gesture behavior may differ from the captured
motion used in this study.

8
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APPENDIX
Fig. 8 extends Fig. 6 to include all motion conditions: It shows regression lines that are fit to the scatter plots of participants’ accuracy
answering questions and ratings of motion. Fig. 9 shows the ratings from Experiment 2 per speaker, averaged over all conditions. They are
broken down by condition in Fig. 11.

Fig. 8. Regression lines fit to scatter plots of participants’ accuracy answering questions and ratings of motion, for all motion conditions.
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Fig. 9. Ratings by speaker from Exp. 2 with the various prompts, averaged over all conditions. In all cases, the speakers are sorted by their order in the NAT_L
experiment.

Fig. 10. Ratings by speaker from Exp. 2 for the naturalness Likert scale. From left, the clean condition, the full error condition and the difference.
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Fig. 11. Ratings by speaker from Exp. 2 with the various prompts. In all cases, the speakers are sorted by their order in the NAT_L experiment.
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