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Abstract

We study the Cross-Entropy Method (CEM) for
the non-convex optimization of a continuous and
parameterized objective function and introduce
a differentiable variant that enables us to differ-
entiate the output of CEM with respect to the
objective function’s parameters. In the machine
learning setting this brings CEM inside of the end-
to-end learning pipeline where this has otherwise
been impossible. We show applications in a syn-
thetic energy-based structured prediction task and
in non-convex continuous control. In the control
setting we show how to embed optimal action
sequences into a lower-dimensional space. This
enables us to use policy optimization to fine-tune
modeling components by differentiating through
the CEM-based controller.

1. Introduction
Recent work in the machine learning community has shown
how optimization procedures can create new building-
blocks for the end-to-end machine learning pipeline (Gould
et al., 2016; Johnson et al., 2016; Amos et al., 2017; Amos
& Kolter, 2017; Domke, 2012; Metz et al., 2016; Finn et al.,
2017; Zhang et al., 2019; Belanger et al., 2017; Rusu et al.,
2018; Srinivas et al., 2018; Amos et al., 2018; Agrawal et al.,
2019a). In this paper we focus on the setting of optimiz-
ing an unconstrained, non-convex, and continuous objective
function fθ(x) : Rn ×Θ→ R as

x̂ := arg min
x

fθ(x), (1)

where we assume x̂ is unique and that f is parameterized
by θ ∈ Θ and has inputs x ∈ Rn. If it exists, some (sub-
)derivative∇θx̂ is useful in the machine learning setting to
make the output of the optimization procedure end-to-end
learnable. For example, θ could parameterize a predictive
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model that is generating potential outcomes conditional on x
happening that you want to optimize over. End-to-end learn-
ing in these settings can be done by defining a loss function
L on top of x̂ and taking gradient steps ∇θL. If fθ were
convex this gradient is easy to analyze and compute when it
exists and is unique (Gould et al., 2016; Johnson et al., 2016;
Amos et al., 2017; Amos & Kolter, 2017). Unfortunately
analyzing and computing a “derivative” through the non-
convex arg min in eq. (1) is not as easy and is challenging in
theory and practice. The derivative may not exist or may be
uninformative in theory, it might not be unique, and even if
it does, the numerical solver being used to compute the solu-
tion may not find a global or even local optimum of f . One
promising direction to sidestep these issues is to approxi-
mate the arg min operation with an explicit optimization
procedure that is interpreted as just another compute graph
and unrolled through. This is most commonly done with
gradient descent as in Domke (2012); Metz et al. (2016);
Finn et al. (2017); Belanger et al. (2017); Rusu et al. (2018);
Srinivas et al. (2018); Foerster et al. (2018); Zhang et al.
(2019). This approximation adds significant definition and
structure to an otherwise extremely ill-defined desiderata at
the cost of biasing the gradients and enabling the learning
procedure to over-fit to the hyper-parameters of the opti-
mization algorithm, such as the number of gradient steps or
the learning rate.

In this paper we show how to use the Cross-Entropy Method
(CEM) (De Boer et al., 2005) to approximate the deriva-
tive through an unconstrained, non-convex, and continuous
arg min. CEM for optimization is a zeroth-order optimizer
and works by generating a sequence of samples from the
objective function. We show a simple and computationally
negligible way of making CEM differentiable that we call
DCEM by using the smooth top-k operation from Amos
et al. (2019). This also brings CEM into the end-to-end
learning process in scenarios such as control where there
is otherwise a disconnection between the objective that is
being learned and the objective that is induced by deploying
CEM on top of those models.

We first study DCEM in a simple non-convex energy-based
learning setting for regression. We contrast using unrolled
gradient descent and DCEM for optimizing over a SPEN
(Belanger & McCallum, 2016). We show that unrolling
through gradient descent in this setting over-fits to the num-



The Differentiable Cross-Entropy Method

ber of gradient steps taken and that DCEM generates a more
reasonable energy surface.

We next focus on using DCEM in the context of non-convex
continuous control as a differentiable policy class that is
end-to-end learnable. This setting is especially interesting
as vanilla CEM is the state-of-the-art method for solving the
control optimization problem with neural network transition
dynamics as in Chua et al. (2018); Hafner et al. (2018). We
show that DCEM is useful for embedding action sequences
into a lower-dimensional space to make solving the control
optimization process significantly less computationally and
memory expensive. This gives us a controller that induces a
differentiable policy class parameterized by the model-based
components.

DCEM is one solution to the objective mismatch problem in
model-based reinforcement learning and control (Lambert
et al., 2020), which is the issue that arises when training
model-based components with the objective of maximizing
the data likelihood but then using the model-based compo-
nents for the objective of control — there is not necessarily
a correlation between the optimal maximum likelihood so-
lutions and the optimal solutions for controlling the system.
We use PPO (Schulman et al., 2017) to fine-tune the model-
based components, demonstrating that it is possible to use
standard policy learning for model-based RL components
in addition to maximum-likelihood fitting.

2. Background and Related Work
2.1. Differentiable optimization-based modeling in

machine learning

Optimization-based modeling is a way of integrating spe-
cialized operations and domain knowledge into end-to-end
machine learning pipelines, typically in the form of a pa-
rameterized arg min operation. Convex, constrained, and
continuous optimization problems, e.g. as in Gould et al.
(2016); Johnson et al. (2016); Amos et al. (2017); Amos &
Kolter (2017); Agrawal et al. (2019a), capture many stan-
dard layers as special cases and can be differentiated through
by applying the implicit function theorem to a set of optimal-
ity conditions from convex optimization theory, such as the
KKT conditions. Non-convex and continuous optimization
problems, e.g. as in Domke (2012); Belanger & McCallum
(2016); Metz et al. (2016); Finn et al. (2017); Belanger et al.
(2017); Rusu et al. (2018); Srinivas et al. (2018); Foerster
et al. (2018); Amos et al. (2018); Pedregosa (2016); Jenni &
Favaro (2018); Rajeswaran et al. (2019); Zhang et al. (2019),
are more difficult to differentiate through. Differentiation is
typically done by unrolling gradient descent or applying the
implicit function theorem to some set of optimality condi-
tions, sometimes forming a locally convex approximation to
the larger non-convex problem. Unrolling gradient descent

is the most common way and approximates the arg min
operation with gradient descent for the forward pass and
interprets the operations as just another compute graph for
the backward pass that can all be differentiated through.
In contrast to these works, we show how continuous and
nonconvex arg min operations can also be approximated
with the cross entropy method (De Boer et al., 2005) as an
alternative to unrolling gradient descent.

2.2. Embedding domains for optimization problems

Oftentimes the solution space of high-dimensional opti-
mization problems may have structural properties that an
optimizer can exploit to find a better solution or to find the
solution quicker than an otherwise naïve optimizer. Meta-
learning approaches such as LEO (Rusu et al., 2018) and
CAVIA (Zintgraf et al., 2019) turn the optimization problem
for adaptation in a high-dimensional parameter space into
a lower-dimensional latent embedded optimization prob-
lem. In the context of Bayesian optimization this has been
explored with random feature embeddings, hand-coded em-
beddings, and auto-encoder-learned embeddings (Antonova
et al., 2019; Oh et al., 2018; Calandra et al., 2016; Wang
et al., 2016; Garnett et al., 2013; Ben Salem et al., 2019;
Kirschner et al., 2019). Luo et al. (2018) turns a discrete
architecture search problem into an embedded continuous
optimization problem. We show that DCEM is another rea-
sonable way of learning an embedded domain for exploiting
the structure in and efficiently solving larger optimization
problems, with the significant advantage of DCEM being
that the latent space is directly learned to be optimized over
as part of the end-to-end learning pipeline.

2.3. RL and Control

High-dimensional non-convex optimization problems that
have a lot of structure in the solution space naturally arise
in the control setting where the controller seeks to optimize
the same objective in the same controller dynamical system
from different starting states. This has been investigated in,
e.g., planning (Ichter et al., 2018; Ichter & Pavone, 2019;
Mukadam et al., 2018; Kurutach et al., 2018; Srinivas et al.,
2018; Yu et al., 2019; Lynch et al., 2019), and policy dis-
tillation (Wang & Ba, 2019). Chandak et al. (2019) shows
how to learn an action space for model-free learning and
Co-Reyes et al. (2018); Antonova et al. (2019) embed action
sequences with a VAE. There has also been a lot of work
on learning reasonable latent state space representations
(Tasfi & Capretz, 2018; Zhang et al., 2018; Gelada et al.,
2019; Miladinović et al., 2019) that may have structure im-
posed to make it more controllable (Watter et al., 2015;
Banijamali et al., 2017; Ghosh et al., 2018; Anand et al.,
2019; Levine et al., 2019; Singh et al., 2019). In contrast
to these works, we learn how to encode action sequences
directly with DCEM instead of auto-encoding the sequences.



The Differentiable Cross-Entropy Method

This has the advantages of 1) never requiring the expensive
expert’s solution to the control optimization problem, 2)
potentially being able to surpass the performance of an ex-
pert controller that uses the full action space, and 3) being
end-to-end learnable through the controller for the purpose
of finding a latent space of sequences that DCEM is good at
searching over.

Another direction the RL and control communities has been
pursuing is on the combination of model-based and model-
free methods by differentiating through model-based com-
ponents Bansal et al. (2017) does this with Bayesian opti-
mization and locally linear models. Okada et al. (2017);
Pereira et al. (2018) makes path integral control (Theodorou
et al., 2010) differentiable. Agrawal et al. (2019b) consid-
ers a class of convex controllers and differentiates through
them with Agrawal et al. (2019a). Amos et al. (2018) pro-
poses differentiable MPC and only do imitation learning
on the cartpole and pendulum tasks with known or lightly-
parameterized dynamics — in contrast, we are able to 1)
scale our differentiable controller up to the cheetah and
walker tasks, 2) use neural network dynamics inside of our
controller, and 3) backpropagate a policy loss through the
output of our controller and into the internal components.

3. The Differentiable Cross-Entropy Method
The Cross-Entropy Method (CEM) (De Boer et al., 2005)
is an algorithm to solve optimization problems in the form
of eq. (1). CEM is an iterative and zeroth-order solver that
uses a sequence of parametric sampling distributions gφ
defined over the domain Rn, such as Gaussians.

We refer the reader to De Boer et al. (2005) for more details
and motivations for using CEM and briefly describe how
it works here. Given a sampling distribution gφ, the hyper-
parameters of CEM are the number of candidate points
sampled in each iteration N , the number of elite candidates
k to use to fit the new sampling distribution to, and the num-
ber of iterations T . The iterates of CEM are the parameters
φ of the sampling distribution. CEM starts with an initial
sampling distribution gφ1

(X) ∈ Rn, and in each iteration t
generates N samples from the domain [Xt,i]

N
i=1 ∼ gφt(·),

evaluates the function at those points vt,i := fθ(Xt,i), and
re-fits the sampling distribution to the top-k samples by
solving the maximum-likelihood problem.1

φt+1 := arg max
φ

∑
i

1{vt,i ≤ π(vt)k} log gφ(Xt,i), (2)

where the indicator 1{P} is 1 if P is true and 0 otherwise,
gφ(X) is the likelihood of X under the distribution gθ, and

1The Cross-Entropy Method’s name comes from eq. (2) more
generally optimizing the cross-entropy measure between two dis-
tributions.
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Figure 1. The limited multi-label (LML) polytopeLn,k from Amos
et al. (2019) is the set of points in the unit n-hypercube with
coordinates that sum to k. Ln,1 is the (n− 1)-simplex. The L3,1

and L3,2 polytopes (triangles) are on the left in blue. The L4,2

polytope (an octahedron) is on the right. This polytope is also
referred to as the knapsack polytope or capped simplex.

π(x) sorts x ∈ Rn in ascending order so that

π(x)1 ≤ π(x)2 ≤ . . . ≤ π(x)n.

We can then map from the final distribution gφT
back to the

domain by taking the mean of it, i.e. x̂ := E[gφT+1
(·)].

Proposition 1. For multivariate isotropic Gaussian sam-
pling distributions we have that φ = {µ, σ2} and eq. (2)
has a closed-form solution given by the sample mean and
variance of the top-k samples as µt+1 := 1/k

∑
i∈It Xt,i

and σ2
t+1 := 1/k

∑
i∈It (Xt,i − µt+1)

2, where the top-k
indexing set is It := {i : vt,i ≤ π(vt)k}.

This is well-known and is discussed in, e.g., Friedman et al.
(2001). We present this here to make the connections be-
tween CEM and DCEM clearer.

Differentiating through CEM’s output with respect to the
objective function’s parameters with∇θx̂ is useful, e.g., to
bring CEM into the end-to-end learning process in cases
where there is otherwise a disconnection between the objec-
tive that is being learned and the objective that is induced
by deploying CEM on top of those models. Unfortunately
in the vanilla form presented above the top-k operation in
eq. (2) makes x̂ non-differentiable with respect to θ. The
function samples can usually be differentiated through with
some estimator (Mohamed et al., 2019) such as the repa-
rameterization trick (Kingma & Welling, 2013), which we
use in all of our experiments.

The top-k operation can be made differentiable by replacing
it with a soft version as done in Martins & Kreutzer (2017);
Malaviya et al. (2018); Amos et al. (2019), or by using a
stochastic oracle as in Brookes & Listgarten (2018). Here
we use the Limited Multi-Label Projection (LML) layer
(Amos et al., 2019), which projects points from Rn onto the
LML polytope shown in fig. 1 and defined by

Ln,k := {p ∈ Rn | 0 ≤ p ≤ 1 and 1>p = k}, (3)
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which is the set of points in the unit n-hypercube with
coordinates that sum to k. Notationally, if n is implied by
the context we will leave it out and write Lk. We propose a
temperature-scaled LML variant to project onto the interior
of the LML polytope with

ΠLk
(x/τ) := arg min

0<y<1
−x>y − τHb(y) s. t. 1>y = k

(4)
where τ > 0 is the temperature parameter and

Hb(y) := −
∑
i

yi log yi + (1− yi) log(1− yi)

is the binary entropy function. We introduce the hyper-
parameter τ to show how DCEM captures CEM as a special
case as τ → 0 and use τ = 1 in all of our experiments. Equa-
tion (4) is a convex optimization layer and can be solved in a
negligible amount of time with a GPU-amenable bracketing
method on the univariate dual and quickly backpropagated
through with implicit differentiation. We can use the LML
layer to make a soft and differentiable version of eq. (2) as

φt+1 := arg max
φ

∑
i

It,i log gφ(Xt,i)

subject to It = ΠLk
(vt/τ).

(5)

This is now a maximum weighted likelihood estimation prob-
lem (Markatou et al., 1997; 1998; Wang, 2001; Hu & Zidek,
2002), which still admits an analytic closed-form solution in
many cases, e.g. for the natural exponential family (De Boer
et al., 2005). Thus using the soft top-k operation with the
reparameterization trick, e.g., on the samples from g results
in a differentiable variant of CEM that we call DCEM and
summarize in alg. 1. We usually also normalize the values
in each iteration to help separate the scaling of the values
from the temperature parameter.

Proposition 2. The temperature-scaled LML layer
ΠLk

(x/τ) approaches the hard top-k operation as τ → 0+

when all components of x are unique.

We prove this in app. A with the KKT conditions of eq. (4).

Corollary 1. DCEM becomes CEM as τ → 0+.

Proposition 3. With an isotropic Gaussian sampling dis-
tribution, the maximum weighted likelihood update in
eq. (5) becomes µt+1 := 1/k

∑
i It,iXt,i and σ2

t+1 :=
1/k

∑
i It,i (Xt,i − µt+1)

2, where the soft top-k indexing
set is It := ΠLk

(vt/τ).

This is well-known and is discussed in, e.g., De Boer et al.
(2005), and can be proved by differentiating eq. (5).

Corollary 2. Prop. 3 captures prop. 1 as τ → 0+.

4. Applications
4.1. Energy-Based Learning

Energy-based learning for regression and classification
estimate the conditional probability P(y|x) of an output
y ∈ Y given an input x ∈ X with a parameterized en-
ergy function Eθ(y|x) ∈ Y × X → R such that P(y|x) ∝
exp{−Eθ(y|x)}. Predictions are made by solving the opti-
mization problem

ŷ := arg min
y

Eθ(y|x). (6)

Historically linear energy functions have been well-studied,
e.g. in Taskar et al. (2005); LeCun et al. (2006), as it makes
eq. (6) easier to solve and analyze. More recently non-
convex energy functions that are parameterized by neural
networks are being explored — a popular one being Struc-
tured Prediction Energy Networks (SPENs) (Belanger &
McCallum, 2016) which propose to model Eθ with neural
networks. Belanger et al. (2017) does supervised learning
of SPENs by approximating eq. (6) with gradient descent
that is then unrolled for T steps, i.e. by starting with some
y0, making gradient updates

yt+1 := yt + γ∇yEθ(yt|x)

resulting in an output ŷ := yT , defining a loss function L
on top of ŷ, and doing learning with gradient updates∇θL
that go through the inner gradient steps.

In this context we can alternatively use DCEM to approx-
imate eq. (6). One potential consideration when training
deep energy-based models with approximations to eq. (6) is
the impact and bias that the approximation is going to have
on the energy surface. We note that for gradient descent,
e.g., it may cause the energy surface to overfit to the number
of gradient steps so that the output of the approximate in-
ference procedure isn’t even a local minimum of the energy
surface. One potential advantage of DCEM is that the out-
put is more likely to be near a local minimum of the energy
surface so that, e.g., more test-time iterations can be used to
refine the solution. We empirically illustrate the impact of
the optimizer choice on a synthetic example in sect. 5.1.

4.2. Control and Reinforcement Learning

Our main application focus is in the continuous control
setting where we show how to use DCEM to learn a latent
control space that is easier to solve than the original problem
and induces a differentiable policy class that allows parts
of the controller to be fine-tuned with auxiliary policy or
imitation losses.

We are interested in controlling discrete-time dynamical
systems with continuous state-action spaces. Let H be the
horizon length of the controller and UH be the space of
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Algorithm 1 DCEM(fθ, gφ, φ1; τ,N, k, T )

DCEM minimizes a parameterized objective function fθ and is differentiable w.r.t. θ. Each DCEM iteration samples from
the distribution gφ, starting with φ1.

for t = 1 to T do
[Xt,i]

N
i=1 ∼ gφt

(·) . Sample N points from the domain
vt,i = fθ(Xt,i) . Evaluate the objective function at those points
It = ΠLk

(vt/τ) . Compute the soft top-k projection of the values with eq. (4)
Update φt+1 by solving the maximum weighted likelihood problem in eq. (5)

end for
return E[gφT+1

(·)]

Algorithm 2 Learning an embedded control space with DCEM

Fixed Inputs: Dynamics f trans, per-step state-action cost Ct(xt, ut) (inducing Cθ(z;xinit)) horizon H , full control
space UH , distribution over initial states D
Learned Inputs: Decoder fdecθ : Z → UH

while not converged do
Sample initial state xinit ∼ D
ẑ = arg minz∈Z Cθ(z;xinit) . Solve the embedded control problem eq. (8)
θ ← grad-update(∇θCθ(ẑ)) . Update the decoder to improve the controller’s cost

end while

control sequences over this horizon length, e.g. U could be
a multi-dimensional real space or box therein and UH could
be the Cartesian product of those spaces representing the
sequence of controls over H timesteps. We are interested in
repeatedly solving the control optimization problem2

û1:H := arg min
u1:H∈UH

H∑
t=1

Ct(xt, ut)

subject to x1 = xinit

xt+1 = f trans(xt, ut)

(7)

where we are in an initial system state xinit governed by
deterministic system transition dynamics f trans, and wish
to find the optimal sequence of actions û1:H such that we
find a valid trajectory {x1:H , u1:H} that optimizes the cost
Ct(xt, ut). Typically these controllers are used for receding
horizon control (Mayne & Michalska, 1990) where only
the first action u1 is deployed on the real system, a new
state is obtained from the system, and the eq. (7) is solved
again from the new initial state. In this case we can say
the controller induces a policy π(xinit) := û1

3 that solves
eq. (7) and depends on the cost and transition dynamics,
and potential parameters therein. In all of the cases we
consider f trans is deterministic, but may be approximated
by a stochastic model for learning. Some model-based

2For notational convenience we omit some explicit variables
from the argmin operator when they are can be inferred by the
context and not used elsewhere.

3For notational convenience we also omit the dependency of
u1 on xinit here.

reinforcement learning settings consider cases where f trans

and C are parameterized and potentially used in conjunction
with another policy class.

For sufficiently complex dynamical systems, eq. (7) is com-
putationally expensive and numerically instable to solve
and rife with sub-optimal local minima. The Cross-Entropy
Method is the state-of-the-art method for solving eq. (7)
with neural network transitions f trans (Chua et al., 2018;
Hafner et al., 2018). CEM in this context samples full action
sequences and refines the samples towards ones that solve
the control problem. Hafner et al. (2018) uses CEM with
1000 samples in each iteration for 10 iterations with a hori-
zon length of 12. This requires 1000× 10× 12 = 120, 000
evaluations (!) of the transition dynamics to predict the
control to be taken given a system state — and the transition
dynamics may use a deep recurrent architecture as in Hafner
et al. (2018) or an ensemble of models as in Chua et al.
(2018). One comparison point here is a model-free neural
network policy takes a single evaluation for this prediction,
albeit sometimes with a larger neural network.

The first application we show of DCEM in the continuous
control setting is to learn a latent action space Z with a
parameterized decoder fdecθ : Z → UH that maps back
up to the space of optimal action sequences, which we il-
lustrate in ??. For simplicity starting out, assume that the
dynamics and cost functions are known (and perhaps even
the ground-truth) and that the only problem is to estimate
the decoder in isolation, although we will show later that
these assumptions can be relaxed. The motivation for having
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such a latent space and decoder is that the millions of times
eq. (7) is being solved for the same dynamic system with the
same cost, the solution space of optimal action sequences
û1:H ∈ UH has an extremely large amount of spatial (over
U) and temporal (over time in UH ) structure that is being
ignored by CEM on the full space. The space of optimal
action sequences only contains the knowledge of the tra-
jectories that matter for solving the task at hand, such as
different parts of an optimal gait, and not irrelevant control
sequences. We argue that CEM over the full action space
wastes a lot of computation considering irrelevant action
sequences and show that these can be ignored by learning
a latent space of more reasonable candidate solutions here
that we search over instead. Given a decoder, the control
optimization problem in eq. (7) can then be transformed into
an optimization problem over Z as

ẑ := arg min
z∈Z

Cθ(z;xinit) :=
H∑
t=1

Ct(xt, ut)

subject to x1 = xinit

xt+1 = f trans(xt, ut)

u1:H = fdecθ (z)

(8)

which is still a challenging non-convex optimization prob-
lem that searches over a decoder’s input space to find the
optimal control sequence.

We propose in alg. 2 to use DCEM to approximately solve
eq. (8) and then learn the decoder directly to optimize the
performance of eq. (7). Every time we solve eq. (8) with
DCEM and obtain an optimal latent representation ẑ along
with the induced trajectory {xt, ut}, we can take a gradi-
ent step to push down the resulting cost of that trajectory
with∇θC(ẑ), which goes through the DCEM process that
uses the decoder to generate samples to obtain ẑ. We note
that the DCEM machinery behind this is not necessary if a
reasonable local minima is consistently found as this is an
instance of min-differentiation (Rockafellar & Wets, 2009,
Theorem 10.13) but in practice this breaks down in non-
convex cases when the minimum cannot be consistently
found. Antonova et al. (2019); Wang & Ba (2019) solve re-
lated problems in this space and we discuss them in sect. 2.3.
We also note that to learn an action embedding we still
need to differentiate through the transition dynamics and
cost functions to compute∇θC(ẑ), even if the ground-truth
ones are being used, since the latent space needs to have
the knowledge of how the control cost will change as the
decoder’s parameters change.

DCEM in this setting also induces a differentiable policy
class π(xinit) := u1 = fdec(ẑ)1. This enables a policy or
imitation loss J to be defined on the policy that can fine-
tune the parts of the controller (decoder, cost, and transition
dynamics) gradient information from ∇θJ . In theory the

same approach could be used with CEM on the full opti-
mization problem in eq. (7). For realistic problems without
modification this is intractable and memory-intensive as it
would require storing and backpropagating through every
sampled trajectory, although as a future direction we note
that it may be possible to delete some of the low-influence
trajectories to help overcome this.

5. Experiments
Our experiments demonstrate applications of the cross-
entropy method in structured prediction, control, and rein-
forcement learning. sect. 5.1 illustrate a synthetic regression
structured prediction task where gradient descent learns a
counter-intuitive energy surface while DCEM retains the
minimum. sect. 5.2 shows how DCEM can embed con-
trol optimization problems in a case when the ground-truth
model is known or unknown, and we show that PPO (Schul-
man et al., 2017) can help improve the embedded controller.

Our PyTorch (Paszke et al., 2019) source code is openly
available at github.com/facebookresearch/dcem.

5.1. Unrolling optimizers for regression and structured
prediction

In this section we briefly explore the impact of the inner
optimizer on the energy surface of a SPEN as discussed in
sect. 4.1. For illustrative purposes we consider a simple uni-
dimensional regression task where the ground-truth data is
generated from f(x) := x sin(x) for x ∈ [0, 2π]. We model
P(y|x) ∝ exp{−Eθ(y|x)} with a single neural network Eθ
and make predictions ŷ by solving the optimization problem
eq. (6). Given the ground-truth output y?, we use the loss
L(ŷ, y?) := ||ŷ − y?||22 and take gradient steps of this loss
to shape the energy landscape.

We consider approximating eq. (6) with unrolled gradient
descent and DCEM with Gaussian sampling distributions.
Both of these are trained to take 10 optimizer steps and
we use an inner learning rate of 0.1 for gradient descent
and with DCEM we use 10 iterations with 100 samples
per iteration and 10 elite candidates, with a temperature of
1. For both algorithms we start the initial iterate at y0 :=
0. We show in app. B that both of these models attain
the same loss on the training dataset but, since this is a
unidimensional regression task, we can visualize the entire
energy surfaces over the joint input-output space in fig. 2.
This shows that gradient descent has learned to adapt from
the initial y0 position to the final position by descending
along the function’s surface as we would expect, but there is
no reason why the energy surface should be a local minimum
around the last iterate ŷ := y10. The energy surface learned
by CEM captures local minima around the regression target
as the sequence of Gaussian iterates are able to capture

http://github.com/facebookresearch/dcem
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Figure 2. We trained an energy-based model with unrolled gradient descent and DCEM for 1D regression onto the black target function.
Each method unrolls through 10 optimizer steps. The contour surfaces show the (normalized/log-scaled) energy surfaces, highlighting that
unrolled gradient descent models can overfit to the number of gradient steps. The lighter colors show areas of lower energy.

a more global view of the function landscape and need
to focus in on a minimum of it for regression. We show
ablations in app. B from training for 10 inner iterations and
then evaluating with a different number of iterations and
show that gradient descent quickly steps away from making
reasonable predictions.

Discussion. Other tricks could be used to force the output
to be at a local minimum with gradient descent, such as
using multiple starting points or randomizing the number
of gradient descent steps taken — our intention here is to
highlight this behavior in the vanilla case. DCEM is also
susceptible to overfitting to the hyper-parameters behind it
in similar, albeit less obvious ways.

5.2. Control

5.2.1. STARTING SIMPLE: EMBEDDING THE
CARTPOLE’S ACTION SPACE

We first show that it is possible to learn an embedded control
space as discussed in sect. 4.2 in an isolated setting. We
use the standard cartpole dynamical system from Barto et al.
(1983) with a continuous state-action space. We assume that
the ground-truth dynamics and cost are known and use the
differentiable ground-truth dynamics and cost implemented
in PyTorch from Amos et al. (2018). This isolates the learn-
ing problem to only learning the embedding so that we can
study what this is doing without the additional complica-
tions that arise from exploration, estimating the dynamics,
learning a policy, and other non-stationarities. We show
experiments with these assumptions relaxed in sect. 5.2.2.

We use DCEM and alg. 2 to learn a 2-dimensional latent
space Z := [0, 1]2 that maps back up to the full control
space UH := [0, 1]H where we focus on horizons of length
H := 20. For DCEM over the embedded space we use 10
iterations with 100 samples in each iteration and 10 elite
candidates, again with a temperature of 1. We show the

details in app. C that we are able to recover the performance
of an expert CEM controller that uses an order-of-magnitude
more samples fig. 3 shows a visualization of what the CEM
and embedded DCEM iterates look like to solve the control
optimization problem from the same initial system state.
CEM spends a lot of evaluations on sequences in the control
space that are unlikely to be optimal, such as the ones the
bifurcate between the boundaries of the control space at
every timestep, while our embedded space is able to learn
more reasonable proposals.

5.2.2. SCALING UP TO CONTINUOUS LOCOMOTION

Next we show that we can relax the assumptions of hav-
ing known transition dynamics and reward and show that
we can learn a latent control space on top of a learned
model on the cheetah.run and walker.walk contin-
uous locomotion tasks from the DeepMind control suite
(Tassa et al., 2018) using the MuJoCo physics engine
(Todorov et al., 2012). We then fine-tune the policy in-
duced by the embedded controller with PPO (Schulman
et al., 2017), sending the policy loss directly back into
the reward and latent embedding modules underlying the
controller. Videos of our trained models are available at
https://sites.google.com/view/diff-cross-entropy-method.

We start with a state-of-the-art model-based RL approach
by noting that the PlaNet (Hafner et al., 2018) restricted
state space model (RSSM) is a reasonable architecture for
proprioceptive-based control in addition to just pixel-based
control. We show the graphical model we use in ??, which
maintains deterministic hidden states ht and stochastic (pro-
prioceptive) system observations xt and rewards rt. We
model transitions as ht+1 = f transθ (ht, xt), observations
with xt ∼ fodecθ (ht), rewards with rt = f rewθ (ht, xt), and
map from the latent action space to action sequences with
u1:T = fdec(z). We follow the online training procedure of
Hafner et al. (2018) to initialize all of the models except for

https://sites.google.com/view/diff-cross-entropy-method
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Figure 3. Visualization of the samples that CEM and DCEM generate to solve the cartpole task starting from the same initial system state.
The plots starting at the top-left show that CEM initially starts with no temporal knowledge over the control space whereas embedded
DCEM’s latent space generates a more feasible distribution over control sequences to consider in each iteration. Embedded DCEM uses
an order of magnitude less samples and is able to generate a better solution to the control problem. The contours on the bottom show the
controller’s cost surface C(z) from eq. (8) for the initial state — the lighter colors show regions with lower costs.

the action decoder fdec, using approximately 2M timesteps.
We then use a variant of alg. 2 to learn fdec to embed the ac-
tion space for control with DCEM, which we also do online
while updating the models. We describe the full training
process in ??.

Our DCEM controller induces a differentiable policy class
πθ(xinit) where θ are the parameters of the models that im-
pact the actions that the controller is selecting. We then use
PPO to define a loss on top of this policy class and fine-tune
the components (the decoder and reward module) so that
they improve the episode reward rather than the maximum-
likelihood solution of observed trajectories. We chose PPO
because we thought it would be able to fine-tune the policy
with just a few updates because the policy is starting at a
reasonable point, but this did not turn out to be the case
and in the future other policy optimizers can be explored.
We implement this by making our DCEM controller the
policy in the PPO implementation by Kostrikov (2018). We
provide more details behind our training procedure in ??.

We evaluate our controllers on 100 test episodes and the
rewards in fig. 4 show that DCEM is almost (but not exactly)
able to recover the performance of doing CEM over the
full action space while using an order-of-magnitude less
trajectory samples (1,000 vs 10,0000). PPO fine-tuning
helps bridge the gap between the performances.

Discussion. DCEM in the control setting has many poten-
tial future directions to explore and help bring efficiency
and policy-based fine-tuning to model-based reinforcement
learning. Much more analysis and experimentation is nec-
essary to achieve this as we faced many issues getting the
model-based cheetah and walker tasks to work that did not
arise in the ground-truth cartpole task. We discuss this more
in ??. We also did not focus on the sample complexity of
our algorithms getting these proof-of-concept experiments
working. Other reasonable baselines on this task could in-
volve distilling the controller into a model-free policy and
then doing search on top of that policy, as done in POPLIN
(Wang & Ba, 2019).
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Figure 4. We evaluated our final models by running 100 episodes each on the cheetah and walker tasks. CEM over the full action space
uses 10,000 trajectories for control at each time step while embedded DCEM samples only 1000 trajectories. DCEM almost recovers the
performance of CEM over the full action space and PPO fine-tuning of the model-based components helps bridge the gap.

6. Conclusions and Future Directions
We have shown how to differentiate through the cross-
entropy method and have brought CEM into the end-to-
end learning pipeline. Beyond further explorations in the
energy-based learning and control contexts we showed here,
DCEM can be used anywhere gradient descent is unrolled.
We find this especially promising for meta-learning and
can build on LEO (Rusu et al., 2018) or CAVIA (Zintgraf
et al., 2019). Inspired by DCEM, other more powerful
sampling-based optimizers could be made differentiable in
the same way, potentially optimizers that leverage gradient-
based information in the inner optimization steps (Sekhon
& Mebane, 1998; Theodorou et al., 2010; Stulp & Sigaud,
2012; Maheswaranathan et al., 2018) or by also learning
the hyper-parameters of structured optimizers (Li & Malik,
2016; Volpp et al., 2019; Chen et al., 2017).
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A. Proof of prop. 2
Proof. We first note that a solution exists to the projection
operation, and it is unique, which comes from the strict
convexity of the objective (Rao, 1984). The Lagrangian of
the temperature-scaled LML projection in eq. (4) is

L(y, ν) = −x>y − τHb(y) + ν(k − 1>y). (9)

Differentiating eq. (9) gives

∇yL(y, ν) = −x+ τ log
y

1− y
− ν (10)

and the first-order optimality condition ∇yL(y?, ν?) = 0
gives y?i = σ(τ−1(xi + ν∗)), where σ is the sigmoid func-
tion. Using lem. 1 as τ → 0+ gives

y?i =


1 if xi > −ν∗

0 if xi < −ν∗
1/2 otherwise.

(11)

Substituting this back into the constraint 1>y? = k gives
that π(x)k < −ν∗ < π(x)k+1, where π(x) sorts x ∈ Rn
in ascending order so that π(x)1 ≤ π(x)2 ≤ . . . ≤ π(x)n.
Thus we have that y?i = 1{xi ≥ π(x)k}, which is 1 when
xi is in the top-k components of x and 0 otherwise, and
therefore the temperature-scaled LML layer approaches the
hard top-k function as τ → 0+.

Lemma 1.

lim
τ→0+

σ(x/τ) =


1 if x > 0

0 if x < 0
1/2 otherwise,

(12)

where σ(x/τ) = (1 + exp{−x/τ})−1 is the temperature-
scaled sigmoid.

B. More details: Simple regression task
?? (left) shows the convergence of unrolled GD and DCEM
on the training data, showing that they are able to obtain the
same training loss despite inducing very different energy
surfaces. ?? (right) and ?? shows the impact of training
gradient descent and DCEM to take 10 inner optimization
steps and then ablating the number of inner steps at test-
time.

C. More details: Cartpole experiment
In this section we discuss some of the ablations we consid-
ered when learning the latent action space for the cartpole

2 8 16
Latent Space Dimension

0.0

0.5

1.0

Im
pr

ov
em

en
t F

ac
to

r

τ = ( 1.0 0.1 0.0)

Figure 5. Improvement factor on the ground-truth cartpole task
from embedding the action space with DCEM compared to run-
ning CEM on the full action space, showing that DCEM is able
to recover the full performance. We use the DCEM model that
achieves the best validation loss. The error lines show the 95%
confidence interval around three trials.

task. In all settings we use DCEM to unroll 10 inner iter-
ations that samples 100 candidate points in each iteration
and has an elite set of 10 candidates.

For training, we sample initial starting states of the cartpole
and for validation we use a fixed set of initial states. ??
shows the convergence of models as we vary the latent space
dimension and temperature parameter, and ?? shows that
DCEM is able to fully recover the expert performance on
the cartpole. Because we are operating in the ground-truth
dynamics setting we measure the performance by comparing
the controller costs. We use τ = 0 to indicate the case
where we optimize over the latent space with vanilla CEM
and then update the decoder with ∇zC(fdecθ (ẑ)), where
the gradient doesn’t go back into the optimization process
that produced ẑ. This is non-convex min differentiation
and is reasonable when ẑ is near-optimal, but otherwise is
susceptible to making the decoder difficult to search over.

These results show a few interesting points that come up in
this setting, which may be different in other settings. Firstly
that with a two-dimensional latent space, all of the temper-
ature values are able to find a reasonable latent space at
some point during training. However after more updates,
the lower-temperature experiments start updating the de-
coder in ways that make it more difficult to search over and
start achieving worse performance than the τ = 1 case. For
higher-dimensional latent spaces, the DCEM machinery is
necessary to keep the decoder searchable. We notice that
just a 16-dimensional latent space for this task can be diffi-
cult for learning, one reason this could be is from DCEM
having too many degrees of freedom in ways it can update
the decoder to improve the performance of the optimizer.

D. More details: Cheetah and walker
experiments

For the cheetah.run and walker.walk DeepMind
control suite experiments we start with a modified PlaNet
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Figure 6. Left: Convergence of DCEM and unrolled GD on the regression task. Right: Ablation showing what happens when DCEM
and unrolled GD are trained for 10 inner steps and then a different number of steps is used at test-time. We trained three seeds for each
model and the shaded regions show the 95% confidence interval.
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Figure 7. Visualization of the predictions made by ablating the number of inner loop iterations for unrolled GD and DCEM. The
ground-truth regression target is shown in black.

(Hafner et al., 2018) architecture without a pixel decoder.
We started with this over PETS (Chua et al., 2018) to show
that this RSSM is reasonable for proprioceptive-based con-
trol and not just pixel-based control. This model is graph-
ically shown in ?? and has 1) a deterministic state model
ht = f(ht−1, xt−1, ut−1), 2) a stochastic state model
xt ∼ p(xt, ht), and 3) a reward model: rt ∼ p(rt|ht, xt).
In the proprioceptive setting, we posit that the deterministic
state model is useful for multi-step training even in fully
observable environments as it allows the model to “push for-
ward” information about what is potentially going to happen
in the future.

For the modeling components, we follow the recommen-
dations in Hafner et al. (2018) and use a GRU (Cho et al.,
2014) with 200 units as the deterministic path in the dy-
namics model and implement all other functions as two
fully-connected layers, also with 200 units with ReLU ac-
tivations. Distributions over the state space are isotropic
Gaussians with predicted mean and standard deviation. We
train the model to optimize the variational bound on the

multi-step likelihood as presented in (Hafner et al., 2018)
on batches of size 50 with trajectory sequences of length 50.
We start with 5 seed episodes with random actions and in
contrast to Hafner et al. (2018), we have found that interleav-
ing the model updates with the environment steps instead of
separating the updates slightly improves the performance,
even in the pixel-based case, which we do not report results
on here.

For the optimizers we either use CEM over the full control
space or DCEM over the latent control space and use a
horizon length of 12 and 10 iterations here. For full CEM,
we sample 1000 candidates in each iteration with 100 elite
candidates. For DCEM we use 100 candidates in each
iteration with 10 elite candidates.

Our training procedure has the following three phases,
which we set up to isolate the DCEM additions. We evaluate
the models output from these training runs on 100 random
episodes in fig. 4 in the main paper. Now that these ideas
have been validated, promising directions of future work
include trying to combine them all into a single training run
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Figure 8. Our RSSM with action sequence embeddings

and trying to reduce the sample complexity and number of
timesteps needed to obtain the final model.

Phase 1: Model initialization. We start in both environ-
ments by launching a single training run of ?? to get initial
system dynamics. These models take slightly longer to con-
verge than in (Hafner et al., 2018), likely due to how often
we update our models. We note that at this point, it would be
ideal to use the policy loss to help fine-tune the components
so that policy induced by CEM on top of the models can
be guided, but this is not feasible to do by backpropagating
through all of the CEM samples due to memory, so we in-
stead next move on to initializing a differentiable controller
that is feasible to backprop through.

Phase 2: Embedded DCEM initialization. Our goal in
this phase is to obtain a differentiable controller that is
feasible to backprop through.

Our first failed attempt to achieve this was to use offline
training on the replay buffer, which would have been ideal
as it would require no additional transitions to be collected
from the environment. We tried using alg. 2, the same
procedure we used in the ground-truth cartpole setting, to
generate an embedded DCEM controller that achieves the
same control cost on the replay buffer as the full CEM
controller. However we found that when deploying this
controller on the system, it quickly stepped off of the data
manifold and failed to control it — this seemed to be from
the controller finding holes in the model that causes the
reward to be over-predicted.

We then used an online data collection process identical to
the one we used for phase 1 to jointly learn the embedded
control space while updating the models so that the embed-
ded controller doesn’t find bad regions in them. We show
where the DCEM updates fit into ??. One alternative that
we tried to updating the decoder to optimize the control cost

on the samples from the replay buffer is that the decoder
can also be immediately updated after planning at every
step. This seemed nice since it didn’t require any additional
DCEM solves, but we found that the decoder became too bi-
ased during the episode as samples at consecutive timesteps
have nearly identical information. For the hyper-parameters,
we kept most of the DCEM hyper-parameters fixed through-
out this phase to 100 samples, 10 elites, and a temperature
τ = 1. We ablated across 1) the number of DCEM iter-
ations taken to be {3, 5, 10}, 2) deleting the replay buffer
from phase 1 or not, and 3) re-initializing the model or not
from phase 1.

Phase 3: Policy optimization into the controller. Finally
now that we have a differentiable policy class induced by
this differentiable controller we can do policy learning to
fine-tune parts of it. We initially chose Proximal Policy
Optimization (PPO) (Schulman et al., 2017) for this phase
because we thought that it would be able to fine-tune the
policy in a few iterations without requiring a good estimate
of the value function, but this phase also ended up consum-
ing many timesteps from the environment. Crucially in this
phase, we do not do likelihood fitting at all, as our goal is to
show that PPO can be used as another useful signal to update
the parts of a controller — we did this to isolate the improve-
ment from PPO but in practice we envision more unified
algorithms that use both signals at the same time. Using the
standard PPO hyper-parameters, we collect 10 episodes for
each PPO training step and ablate across 1) the number of
passes to make through these episodes {1, 2, 4}, 2) every
combination of the reward, transition, and decoder being
fine-tuned or frozen, 3) using a fixed variance of 0.1 around
the output of the controller or learning this, 4) the learning
rate of the fine-tuned model-based portions {10−4, 10−5}.
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Algorithm 3 PlaNet (Hafner et al., 2018) variant that we use for proprioceptive control with optional DCEM embedding

. Models: a deterministic state model, a stochastic state model, a reward model, and (if using DCEM) an action sequence
decoder.
. Initialize dataset D with S random seed episodes.
. Initialize the transition model’s deterministic hidden state h0 and initialize the environment, obtaining the initial state
estimate x0.
. CEM-Solve can use DCEM or full CEM
for t = 1, . . . , T do

ut ← CEM-solve(ht−1, xt−1)
Add exploration noise ε ∼ p(ε) to the action ut.
{rt, xt+1, dt} ← env.step(ut) . Properly restarting if necessary
Add [rt, xt, ut, dt] to D
ht = update-hidden(ht−1, xt, ut, dt)
if t ≡ 0 (mod update-interval) then

Sample trajectories τ = [rτ , xτ , uτ , dτ ]Hτ=1 ∼ D from the dataset.
Obtain the hidden states of the {hτ , x̂τ} from the model.
Compute the multi-step likelihood bound L(τ, hτ , x̂τ ) . Eq. 6 of Hafner et al. (2018)
θ ← grad-update(∇θLθ(τ, hτ , x̂τ )) . Optimize the likelihood bound
if using DCEM then

ẑτ = arg minz∈Z Cθ(z;hτ , x̂τ ) . Solve the embedded control problem in eq. (8)
θ ← grad-update(∇θ

∑
τ Cθ(ẑτ )) . Update the decoder

end if
end if

end for
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Figure 9. Training and validation loss convergence for the cartpole task. The dashed horizontal line shows the loss induced by an expert
controller. Larger latent spaces seem harder to learn and as DCEM becomes less differentiable, the embedding is more difficult to learn.
The shaded regions show the 95% confidence interval around three trials.
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Figure 10. Learned DCEM reward surfaces for the cartpole task. Each row shows a different initial state of the system. We can see that as
the temperature decreases, the latent representation can still capture near-optimal values, but they are in much narrower regions of the
latent space than when τ = 1.


