
Hierarchical Neural Story Generation

Angela Fan
Facebook AI Research
angelafan@fb.com

Michael Lewis
Facebook AI Research
mikelewis@fb.com

Yann Dauphin
Facebook AI Research

ynd@fb.com

Abstract

We explore story generation: creative sys-
tems that can build coherent and fluent
passages of text about a topic. We collect
a large dataset of 300K human-written sto-
ries paired with writing prompts from an
online forum. Our dataset enables hierar-
chical story generation, where the model
first generates a premise, and then trans-
forms it into a passage of text. We gain
further improvements with a novel form of
model fusion that improves the relevance
of the story to the prompt, and adding a
new gated multi-scale self-attention mech-
anism to model long-range context. Ex-
periments show large improvements over
strong baselines on both automated and
human evaluations. Human judges prefer
stories generated by our approach to those
from a strong non-hierarchical model by a
factor of two to one.

1 Introduction

Story-telling is on the frontier of current text gen-
eration technology: stories must remain themati-
cally consistent across the complete document, re-
quiring modeling very long range dependencies;
stories require creativity; and stories need a high
level plot, necessitating planning ahead rather than
word-by-word generation (Wiseman et al., 2017).

We tackle the challenges of story-telling with
a hierarchical model, which first generates a sen-
tence called the prompt describing the topic for
the story, and then conditions on this prompt when
generating the story. Conditioning on the prompt
or premise makes it easier to generate consistent
stories because they provide grounding for the
overall plot. It also reduces the tendency of stan-
dard sequence models to drift off topic.

Prompt: The Mage, the Warrior, and the Priest

Story: A light breeze swept the ground, and carried with
it still the distant scents of dust and time-worn stone. The
Warrior led the way, heaving her mass of armour and mus-
cle over the uneven terrain. She soon crested the last of the
low embankments, which still bore the unmistakable fin-
gerprints of haste and fear. She lifted herself up onto the
top the rise, and looked out at the scene before her. [...]

Figure 1: Example prompt and beginning of a
story from our dataset. We train a hierarchical
model that first generates a prompt, and then con-
ditions on the prompt when generating a story.

We find that standard sequence-to-sequence
(seq2seq) models (Sutskever et al., 2014) applied
to hierarchical story generation are prone to de-
generating into language models that pay little at-
tention to the writing prompt (a problem that has
been noted in other domains, such as dialogue re-
sponse generation (Li et al., 2015a)). This failure
is due to the complex and underspecified depen-
dencies between the prompt and the story, which
are much harder to model than the closer depen-
dencies required for language modeling (for exam-
ple, consider the subtle relationship between the
first sentence and prompt in Figure 1).

To improve the relevance of the generated story
to its prompt, we introduce a fusion mechanism
(Sriram et al., 2017) where our model is trained on
top of an pre-trained seq2seq model. To improve
over the pre-trained model, the second model must
focus on the link between the prompt and the story.
For the first time, we show that fusion mechanisms
can help seq2seq models build dependencies be-
tween their input and output.

Another major challenge in story generation is
the inefficiency of modeling long documents with
standard recurrent architectures—stories contain
734 words on average in our dataset. We improve
efficiency using a convolutional architecture, al-

Train Stories 272,600
Test Stories 15,138
Validation Stories 15,620
Prompt Words 7.7M
Story Words 200M
Average Length of Prompts 28.4
Average Length of Stories 734.5

Table 1: Statistics of WRITINGPROMPTS dataset

lowing whole stories to be encoded in parallel.
Existing convolutional architectures only encode a
bounded amount of context (Dauphin et al., 2017),
so we introduce a novel gated self-attention mech-
anism that allows the model to condition on its
previous outputs at different time-scales.

To train our models, we gathered a large dataset
of 303,358 human generated stories paired with
writing prompts from an online forum. Evaluating
free form text is challenging, so we also introduce
new evaluation metrics which isolate different as-
pects of story generation.

Experiments show that our fusion and self-
attention mechanisms improve over existing tech-
niques on both automated and human evaluation
measures. Our new dataset and neural architec-
tures allow for models which can creatively gen-
erate longer, more consistent and more fluent pas-
sages of text. Human judges prefer our hierarchi-
cal model’s stories twice as often as those of a non-
hierarchical baseline.

2 Writing Prompts Dataset

We collect a hierarchical story generation dataset1

from Reddit’s WRITINGPROMPTS forum.2

WRITINGPROMPTS is a community where online
users inspire each other to write by submitting
story premises, or prompts, and other users freely
respond. Each prompt can have multiple story
responses. The prompts have a large diversity
of topic, length, and detail. The stories must be
at least 30 words, avoid general profanity and
inappropriate content, and should be inspired by
the prompt (but do not necessarily have to fulfill
every requirement). Table 1 shows an example.

We scraped three years of prompts and their
associated stories using the official Reddit API.
We clean the dataset by removing automated bot
posts, deleted posts, special announcements, com-

1Download link here
2www.reddit.com/r/WritingPrompts/

ments from moderators, and stories shorter than
30 words. We use NLTK for tokenization. The
dataset models full text to generate immediately
human-readable stories. We reserve 5% of the
prompts for a validation set and 5% for a test set,
and present additional statistics about the dataset
in Table 1.

For our experiments, we limit the length of the
stories to 1000 words maximum and limit the vo-
cabulary size for the prompts and the stories to
words appearing more than 10 times each. We
model an unknown word token and an end of doc-
ument token. This leads to a vocabulary size of
19,025 for the prompts and 104,960 for the sto-
ries. As the dataset is scraped from an online fo-
rum, the number of rare words and misspellings
is quite large, so modeling the full vocabulary is
challenging and computationally intensive.

3 Approach

The challenges of WRITINGPROMPTS are primar-
ily in modeling long-range dependencies and con-
ditioning on an abstract, high-level prompt. Re-
current and convolutional networks have success-
fully modeled sentences (Jozefowicz et al., 2016;
Dauphin et al., 2017), but accurately modeling
several paragraphs is an open problem. While
seq2seq networks have strong performance on a
variety of problems, we find that they are unable
to build stories that accurately reflect the prompts.
We will evaluate strategies to address these chal-
lenges in the following sections.

3.1 Hierarchical Story Generation

High-level structure is integral to good stories, but
language models generate on a strictly-word-by-
word basis and so cannot explicitly make high-
level plans. We introduce the ability to plan by
decomposing the generation process into two lev-
els. First, we generate the premise or prompt of
the story using the convolutional language model
from Dauphin et al. (2017). The prompt gives a
sketch of the structure of the story. Second, we use
a seq2seq model to generate a story that follows
the premise. Conditioning on the prompt makes it
easier for the story to remain consistent and also
have structure at a level beyond single phrases.

www.reddit.com/r/WritingPrompts/

Figure 2: Self-Attention Mechanism of a single
head, with GLU gating and downsampling. Mul-
tiple heads are concatenated, with each head using
a separate downsampling function.

3.2 Efficient Learning with Convolutional
Sequence-to-Sequence Model

The length of stories in our dataset is a challenge
for RNNs, which process tokens sequentially. To
transform prompts into stories, we instead build
on the convolutional seq2seq model of Gehring
et al. (2017), which uses deep convolutional net-
works as the encoder and decoder. Convolutional
models are ideally suited to modeling long se-
quences, because they allow parallelism of com-
putation within the sequence. In the Conv seq2seq
model, the encoder and decoder are connected
with attention modules (Bahdanau et al., 2015)
that perform a weighted sum of encoder outputs,
using attention at each layer of the decoder.

3.3 Modeling Unbounded Context with
Gated Multi-Scale Self-attention

CNNs can only model a bounded context win-
dow, preventing the modeling of long-range de-
pendencies within the output story. To en-
able modeling of unbounded context, we supple-
ment the decoder with a self-attention mechanism
(Sukhbaatar et al., 2015; Vaswani et al., 2017),

Figure 3: Multihead self-attention mechanism.
The decoder layer depicted attends with itself to
gate the input of the subsequent decoder layer.

which allows the model to refer to any previously
generated words. The self-attention mechanism
improves the model’s ability to extract long-range
context with limited computational impact due to
parallelism.

Gated Attention: Similar to Vaswani et al.
(2017), we use multi-head attention to allow each
head to attend to information at different posi-
tions. However, the queries, keys and values are
not given by linear projections but by more expres-
sive gated deep neural nets with Gated Linear Unit
(Dauphin et al., 2017) activations. We show that
gating lends the self-attention mechanism crucial
capacity to make fine-grained selections.

Multi-Scale Attention: Further, we propose to
have each head operating at a different time scale,
depicted in Figure 2. Thus the input to each head
is downsampled a different amount—the first head
sees the full input, the second every other input
timestep, the third every third input timestep, etc.
The different scales encourage the heads to attend
to different information. The downsampling oper-
ation limits the number of tokens in the attention
maps, making them sharper.

The output of a single attention head is given by

hL+1
0:t = Linear

(
v(hL0:t−1) (1)

� softmax(q(hL0:t)k(h
L
0:t)
>)

)
where hL0:t contains the hidden states up to time t

at layer L, and q, k, v are gated downsampling net-
works as shown in Figure 2. Unlike Vaswani et al.
(2017), we allow the model to optionally attend to
a 0 vector at each timestep, if it chooses to ignore
the information of past timesteps (see Figure 3).
This mechanism allows the model to recover the
non-self-attention architecture and avoid attending
to the past if it provides only noise. Additionally,
we do not allow the self-attention mechanism to
attend to the current timestep, only the past.

3.4 Improving Relevance to Input Prompt
with Model Fusion

Unlike tasks such as translation, where the seman-
tics of the target are fully specified by the source,
the generation of stories from prompts is far more
open-ended. We find that seq2seq models ignore
the prompt and focus solely on modeling the sto-
ries, because the local dependencies required for
language modeling are easier to model than the
subtle dependencies between prompt and story.

We propose a fusion-based approach to en-
courage conditioning on the prompt. We train a
seq2seq model that has access to the hidden states
of a pretrained seq2seq model. Doing so can be
seen as a type of boosting or residual learning that
allows the second model to focus on what the first
model failed to learn—such as conditioning on the
prompt. To our knowledge, this paper is the first
to show that fusion reduces the problem of seq2seq
models degenerating into language models.

The cold fusion mechanism of Sriram et al.
(2017) pretrains a language model and subse-
quently trains a seq2seq model with a gating
mechanism that learns to leverage the final hidden
layer of the language model during seq2seq train-
ing. We modify this approach by combining two
seq2seq models as follows (see Figure 4):

gt = σ(W [h
Training
t ;hPretrained

t] + b)

ht = gt ◦ [hTraining
t ;hPretrained

t]

where the hidden state of the pretrained seq2seq
model and training seq2seq model (represented by
ht) are concatenated to learn gates gt. The gates
are computed using a linear projection with the
weight matrix W . The gated hidden layers are
combined by concatenation and followed by more
fully connected layers with GLU activations (see
Appendix). We use layer normalization (Ba et al.,
2016) after each fully connected layer.

Figure 4: Diagram of our fusion model, which
learns a second seq2seq model to improve a pre-
trained model. The separate hidden states are com-
bined after gating through concatenation.

4 Related Work

4.1 Story Generation

Sequence-to-sequence neural networks (Sutskever
et al., 2014) have achieved state of the art perfor-
mance on a variety of text generation tasks, such
as machine translation (Sutskever et al., 2014) and
summarization (Rush et al., 2015). Recent work
has applied these models to more open-ended gen-
eration tasks, including writing Wikipedia articles
(Liu et al., 2018) and poetry (Zhang and Lapata,
2014).

Previous work on story generation has explored
seq2seq RNN architectures (Roemmele, 2016),
but has focused largely on using various content to
inspire the stories. For instance, Kiros et al. (2015)
uses photos to inspire short paragraphs trained on
romance novels, and Jain et al. (2017) chain a se-
ries of independent descriptions together into a
short story. Martin et al. (2017) decompose story
generation into two steps, first converting text into
event representations, then modeling stories as se-
quences of events before translating back to natu-
ral language. Similarly, Harrison et al. (2017) gen-
erate summaries of movies as sequences of events
using an RNN, then sample event representations
using MCMC. They find this technique can gener-
ate text of the desired genre, but the movie plots
are not interpretable (as the model outputs events,
not raw text). However, we are not aware of pre-

vious work that has used hierarchical generation
from a textual premise to improve the coherence
and structure of stories.

4.2 Hierarchical Text Generation

Previous work has proposed decomposing the
challenge of generating long sequences of text
into a hierarchical generation task. For instance,
Li et al. (2015b) use an LSTM to hierarchically
learn word, then sentence, then paragraph embed-
dings, then transform the paragraph embeddings
into text. Yarats and Lewis (2017) generate a dis-
crete latent variable based on the context, then
generates text conditioned upon it.

4.3 Fusion Models

Previous work has investigated the integration
of language models with seq2seq models. The
two models can be leveraged together without ar-
chitectural modifications: Ramachandran et al.
(2016) use language models to initialize the en-
coder and decoder side of the seq2seq model inde-
pendently, and Chorowski and Jaitly (2016) com-
bine the predictions of the language model and
seq2seq model solely at inference time. Recent
work has also proposed deeper integration. Gul-
cehre et al. (2015) combined a trained language
model with a trained seq2seq model to learn a gat-
ing function that joins them. Sriram et al. (2017)
propose training the seq2seq model given the fixed
language model then learning a gate to filter the in-
formation from the language model.

5 Experimental Setup

5.1 Baselines

We evaluate a number of baselines:
(1) Language Models: Non-hierarchical models

for story generation, which do not condition on the
prompt. We use both the gated convolutional lan-
guage (GCNN) model of Dauphin et al. (2017) and
our additional self-attention mechanism.

(2) seq2seq: using LSTMs and convolutional
seq2seq architectures, and Conv seq2seq with de-
coder self-attention.

(3) Ensemble: an ensemble of two Conv
seq2seq with self-attention models.

(4) KNN: we also compare with a KNN model
to find the closest prompt in the training set for
each prompt in the test set. A TF-IDF vector for
each prompt was created using FASTTEXT (Bo-
janowski et al., 2016) and FAISS (Johnson et al.,

2017) was used for KNN search. The retrieved
story from the training set is limited to 150 words
to match the length of generated stories.

5.2 Fusion Training

To train the fusion model, we first pretrain a Conv
seq2seq with self-attention model on the WRIT-
INGPROMPTS dataset. This pretrained model is
fixed and provided to the second Conv seq2seq
with self-attention model during training time.
The two models are integrated with the fusion
mechanism described in Section 3.4.

5.3 Training

We implement models with the fairseq-py library3

in PyTorch. Similar to Gehring et al. (2017),
we train using the Nesterov accelerated gradient
method (Sutskever et al., 2013) using gradient
clipping (Pascanu et al., 2013). We perform hy-
perparameter optimization on each of our mod-
els independently by cross-validating with random
search on a validation set. We provide detailed
model architectures in the appendix.

5.4 Generation

We generate stories from our models by ran-
domly sampling from the 10 most likely candi-
dates for the next word at each timestep. Subse-
quent timesteps generate the next word based on
the previously selected words. We find this sam-
pling strategy substantially more effective than
beam search, which tends to produce common
phrases and generic text from the training set (Vi-
jayakumar et al., 2016; Shao et al., 2017). The re-
striction of sampling from the 10 most likely can-
didates reduces the risk of low-probability samples
that damage generation. For each model, we tune
a temperature parameter for the softmax at gener-
ation time. To ease human evaluation, we generate
stories of 150 words and do not generate unknown
word tokens.

To generate prompts, we use a self-attentive
GCNN language model trained with the same
prompt-side vocabulary as the sequence-to-
sequence story generation models. The language
model to generate prompts has a validation per-
plexity of 63.06. Prompt generation is conducted
by the same random sampling from the 10 most
likely candidates, and the prompt is completed

3github.com/facebookresearch/
fairseq-py

github.com/facebookresearch/fairseq-py
github.com/facebookresearch/fairseq-py

Model Valid
Perplexity

Test
Perplexity

Conv seq2seq 50.87 51.14
+ self-attention 47.01 47.39
+ multihead 45.51 45.89
+ multiscale 44.56 44.71
+ gating 42.07 42.67

Table 2: Effect of new attention mechanism.
Gated multi-scale attention significantly improves
the perplexity on the WRITINGPROMPTS dataset.

Figure 5: Human accuracy at pairing stories with
the prompts used to generate them. People find
that our fusion model significantly improves the
link between the prompt and generated stories.

when the language model generates the end of
document token.

5.5 Evaluation

We propose a number of evaluation metrics to
quantify the performance of our models. Many
commonly used metrics, such as BLEU for ma-
chine translation or ROUGE for summarization,
compute an n-gram overlap between the generated
text and the human text—however, in our open-
ended generation setting, these are not useful. We
do not aim to generate a specific story; we want
to generate viable and novel stories. We focus on
measuring both the fluency of our models and their
ability to adhere to the prompt.

For automatic evaluation, we measure model
perplexity on the test set and prompt ranking accu-
racy. Perplexity is commonly used to evaluate the
quality of language models, and it reflects how flu-
ently the model can produce the correct next word
given the preceding words. We use prompt rank-
ing to assess how strongly a model’s output de-
pends on its input. Stories are decoded under 10
different prompts—9 randomly sampled prompts
and 1 true corresponding prompt—and the like-

Figure 6: Accuracy of prompt ranking. The fusion
model most accurately pairs prompt and stories.

Figure 7: Accuracy on the prompt/story pairing
task vs. number of generated stories. Our genera-
tive fusion model can produce many stories with-
out degraded performance, while the KNN can
only produce a limited number relevant stories.

lihood of the story given the various prompts is
recorded. We measure the percentage of cases
where the true prompt is the most likely to gen-
erate the story. In our evaluation, we examined
1000 stories from the test set for each model.

For human evaluation, we use Amazon Me-
chanical Turk to conduct a triple pairing task. We
use each model to generate stories based on held-
out prompts from the test set. Then, groups of
three stories are presented to the human judges.
The stories and their corresponding prompts are
shuffled, and human evaluators are asked to se-
lect the correct pairing for all three prompts. 105
stories per model are grouped into questions, and
each question is evaluated by 15 judges.

Lastly, we conduct human evaluation to evalu-
ate the importance of hierarchical generation for
story writing. We use Amazon Mechanical Turk to
compare the stories from hierarchical generation
from a prompt with generation without a prompt.
400 pairs of stories were evaluated by 5 judges
each in a blind test.

Model # Parameters (mil) Valid Perplexity Test Perplexity
GCNN LM 123.4 56.50 56.79
GCNN + self-attention LM 126.4 52.84 53.18
LSTM seq2seq 109.3 52.43 52.79
Conv seq2seq 110.5 50.87 51.14
Conv seq2seq + self-attention 113.2 42.07 42.67
Ensemble: Conv seq2seq + self-attention 210.4 41.03 41.29
Fusion: Conv seq2seq + self-attention 195.5 40.49 40.56

Table 3: Perplexity on WRITINGPROMPTS. We dramatically improve over standard seq2seq models.

Model Human
Preference

Language model 32.68%
Hierarchical Model 67.32%

Table 4: Effect of Hierarchical Generation. Hu-
man judges prefer stories that were generated hier-
archically by first creating a premise and creating
a full story based on it with a seq2seq model.

6 Results

We analyze the effect of our modeling improve-
ments on the WRITINGPROMPTS dataset.

Effect of Hierarchical Generation: We ex-
plore leveraging our dataset to perform hierarchi-
cal story generation by first using a self-attentive
GCNN language model to generate a prompt, and
then using a fusion model to write a story given
the generated prompt. We evaluate the effect of
hierarchical generation using a human study in Ta-
ble 4. 400 stories were generated from a self-
attentive GCNN language model, and another 400
were generated from our hierarchical fusion model
given generated prompts from a language model.
In a blind comparison where raters were asked to
choose the story they preferred reading, human
raters preferred the hierarchical model 67% of the
time.

Effect of new attention mechanism: Table 2
shows the effect of the proposed additions to the
self-attention mechanism proposed by Vaswani
et al. (2017). Table 3 shows that deep multi-scale
self-attention and fusion each significantly im-
prove the perplexity compared to the baselines. In
combination these additions to the Conv seq2seq
baseline reduce the perplexity by close to 9 points.

Effect of model fusion: Results in Table 3 show
that adding our fusion mechanism substantially

improves the likelihood of human-generated sto-
ries, and even outperforms an ensemble despite
having fewer parameters. We observe in Figure
5 that fusion has a much more significant impact
on the topicality of the stories. In comparison, en-
sembling has no effect on people’s ability to as-
sociate stories with a prompt, but adding model
fusion leads improves the pairing accuracy of the
human judges by 7%. These results suggest that
by training a second model on top of the first, we
have encouraged that model to learn the challeng-
ing additional dependencies to relate to the source
sequence. To our knowledge, these are the first
results to show that fusion has such capabilities.

Comparison with Nearest Neighbours: Near-
est Neighbour Search (KNN) provides a strong
baseline for text generation. Figure 5 shows that
the fusion model can match the performance of
nearest neighbour search in terms of the connec-
tion between the story and prompt. The real value
in our generative approach is that it can produce
an unlimited number of stories, whereas KNN can
never generalize from its training data. To quan-
tify this improvement, Figure 7 plots the relevance
of the kth best story to a given prompt; the perfor-
mance of KNN degrades much more rapidly.

7 Discussion

7.1 Generation Quality

Our proposed fusion model is capable of gener-
ating unique text without copying directly from
the training set. When analyzing 500 150-word
generated stories from test-set prompts, the aver-
age longest common subsequence is 8.9. In con-
trast, the baseline Conv seq2seq model copies 10.2
words on average and the KNN baseline copies all
150 words from a story in the training set.

Figure 8 shows the values of the fusion gates for
an example story, averaged at each timestep. The

Generation with Fusion
Example Prompt 1: Aliens start abducting humans

It has been two weeks, and the last of my kind has gone. It is only a matter of time until there will be nothing left. I’m not
sure what the hell is going on... I can’t think. I can hear a distant scream. I think of a strange, alien sound. I try to speak, but
am interrupted by something, something that feels like a drum, I ca not tell. I mean I’m just a little bit older than an average
human. But I can, and I can feel the vibrations . I hear the sound of a ship approaching. The ground quakes at the force of
the impact, and a loud explosion shatters the silence.

Example Prompt 2: Write a letter to your ex

I’m so proud of you! I miss you so much. I just want to hold on. I miss all the times we’ve spent together. And every time
we don’t get along anymore, I think about her sometimes and think she’s still there and she’s never really seen me at all. I
wish I could tell you more than you would have wanted. I am sorry you didn’t know that but you left a lot of questions in
my mind. We both have a good relationship, both of us are in a relationship. I love you. You’ve always been so happy to
share. The only thing that I know for sure is that if you were to ask me, I would be the one to tell you.

Generation with Language Model + Self-Attention
Example 1:
I’ve always been the curious type. Growing up in the ghetto, I’ve been around for more than a year now. I still haven’t
heard it on my own. I’m not sure if I’m a good person. But I’m not the only one. I’ve been to the hospital, but it’s not my
first time. I’ve been to my psychiatrist’s journals before. “Hey, are you ... are you okay?” I asked. “Yes” I said. “What’s
wrong?” she replied, “I was just ... Doing something.” She said, “I’ve never been a bad person.”

Example 2:
The man was an accountant. He had to be. He had to be the next president. I looked back over the top and saw that his wife
was crying in the kitchen. I looked at the clock. It seemed to be coming slower, but I knew if I did it would not be long
before I was in my own home. I wasn’t sure. I had a hard time finding the right words to say. I was about to leave when he
suddenly became angry and began talking to me. “Hello, sir, I’m John. What is your name?” “My name is Manuel and I’m
a journalist.” I said

Table 5: Example stories generated by the proposed hierarchical fusion approach. Generated stories
relate to the prompt and show increased coherence and ability to stay on topic compared to the baseline.

Figure 8: Average weighting of each model in our Fusion model for the beginning of the generated story
for the prompt Gates of Hell. The fused model (orange) is primarily used for words which are closely
related to the prompt, whereas generic words are generated by the pre-trained model (green).

pretrained seq2seq model acts similarly to a lan-
guage model producing common words and punc-
tuation. The second seq2seq model learns to focus
on rare words, such as horned and robe.

However, the fusion model has limitations. Us-
ing random sampling to generate can produce er-
rors. For example, can’t is tokenized to ca n’t, and
the model occasionally produces the first token but
misses the second. A further obstacle is repetition.
The model focuses frequently on what it has re-
cently produced, which leads to the generation of
similar text multiple times.

In the generation of prompts using the GCNN
language model, we find that prompts are fairly
generic compared to human prompts. Language

models often struggle to model rare words accu-
rately, as the probability distribution over the next
word is dominated by more common words. This
tends to produce similar prompts, particularly at
the start — we see many prompts that start with
the man. In contrast, many of the human prompts
are very unique (e.g. prompting stories in fantasy
worlds such as Harry Potter and Game of Thrones)
and the language model rarely produces the spe-
cific vocabulary required by these settings.

7.2 Use of Attention

We analyze the encoder-decoder attention in the
fusion model and find that unlike attention maps in
machine translation, where each decoder timestep

tends to attend to a different word on the encoder-
side, the attention map for each decoder timestep
looks similar and focuses mainly on salient words
in the prompt. We further look at the usage of
the self-attention layers within the decoder. While
they could be leveraged to look at words generated
very far in the past, at many timesteps the self-
attention focuses on the recent past.

8 Conclusion

We have collected the first dataset for creative text
generation based on short writing prompts. This
new dataset pushes the boundaries of text gen-
eration by requiring longer range dependencies
and conditioning on an abstract premise. Build-
ing on this dataset, we show through automatic
and human evaluation that novel hierarchical mod-
els, self-attention mechanisms and model fusion
significantly improves the fluency, topicality, and
overall quality of the generated stories.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. International Con-
ference on Learning Representation (ICLR).

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Jan Chorowski and Navdeep Jaitly. 2016. Towards
better decoding and language model integration
in sequence to sequence models. arXiv preprint
arXiv:1612.02695.

Yann N. Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2017. Language modeling with
gated convolutional networks.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann Dauphin. 2017. Convolutional se-
quence to sequence learning.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Brent Harrison, Christopher Purdy, and Mark O Riedl.
2017. Toward automated story generation with
markov chain monte carlo methods and deep neural
networks.

Parag Jain, Priyanka Agrawal, Abhijit Mishra, Mo-
hak Sukhwani, Anirban Laha, and Karthik Sankara-
narayanan. 2017. Story generation from sequence
of independent short descriptions. arXiv preprint
arXiv:1707.05501.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng
Gao, and Bill Dolan. 2015a. A diversity-promoting
objective function for neural conversation models.
arXiv preprint arXiv:1510.03055.

Jiwei Li, Minh-Thang Luong, and Dan Juraf-
sky. 2015b. A hierarchical neural autoencoder
for paragraphs and documents. arXiv preprint
arXiv:1506.01057.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and
Noam Shazeer. 2018. Generating wikipedia by
summarizing long sequences. arXiv preprint
arXiv:1801.10198.

Lara J Martin, Prithviraj Ammanabrolu, William Han-
cock, Shruti Singh, Brent Harrison, and Mark O
Riedl. 2017. Event representations for automated
story generation with deep neural nets. arXiv
preprint arXiv:1706.01331.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In ICML.

Prajit Ramachandran, Peter J Liu, and Quoc V Le.
2016. Unsupervised pretraining for sequence to se-
quence learning. arXiv preprint arXiv:1611.02683.

Melissa Roemmele. 2016. Writing stories with help
from recurrent neural networks. In AAAI.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Louis Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017.
Generating long and diverse responses with
neural conversation models. arXiv preprint
arXiv:1701.03185.

Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and
Adam Coates. 2017. Cold fusion: Training seq2seq
models together with language models. arXiv
preprint arXiv:1708.06426.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Ilya Sutskever, James Martens, George E. Dahl, and
Geoffrey E. Hinton. 2013. On the importance of
initialization and momentum in deep learning. In
ICML.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Neural Information Processing Systems
(NIPS).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. arXiv preprint arXiv:1707.08052.

Denis Yarats and Mike Lewis. 2017. Hierarchical
text generation and planning for strategic dialogue.
arXiv preprint arXiv:1712.05846.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks.
In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 670–680.

