
Published as a conference paper at ICLR 2021

WHAT THEY DO WHEN IN DOUBT: A STUDY OF
INDUCTIVE BIASES IN SEQ2SEQ LEARNERS

Eugene Kharitonov∗
Facebook AI

Rahma Chaabouni∗
Facebook AI / ENS Ulm

ABSTRACT

Sequence-to-sequence (seq2seq) learners are widely used, but we still have only
limited knowledge about what inductive biases shape the way they generalize. We
address that by investigating how popular seq2seq learners generalize in tasks
that have high ambiguity in the training data. We use four new tasks to study
learners’ preferences for memorization, arithmetic, hierarchical, and compositional
reasoning. Further, we connect to Solomonoff’s theory of induction and propose to
use description length as a principled and sensitive measure of inductive biases.
In our experimental study, we find that LSTM-based learners can learn to perform
counting, addition, and multiplication by a constant from a single training exam-
ple. Furthermore, Transformer and LSTM-based learners show a bias toward the
hierarchical induction over the linear one, while CNN-based learners prefer the
opposite. The latter also show a bias toward a compositional generalization over
memorization. Finally, across all our experiments, description length proved to be
a sensitive measure of inductive biases.

1 INTRODUCTION

Sequence-to-sequence (seq2seq) learners (Sutskever et al., 2014) demonstrated remarkable perfor-
mance in machine translation, story generation, and open-domain dialog (Sutskever et al., 2014;
Fan et al., 2018; Adiwardana et al., 2020). Yet, these models have been criticized for requiring a
tremendous amount of data and being unable to generalize systematically (Dupoux, 2018; Loula
et al., 2018; Lake & Baroni, 2017; Bastings et al., 2018). In contrast, humans rely on their inductive
biases to generalize from a limited amount of data (Chomsky, 1965; Lake et al., 2019). Due to the
centrality of humans’ biases in language learning, several works have studied inductive biases of
seq2seq models and connected their poor generalization to the lack of the “right” biases (Lake &
Baroni, 2017; Lake et al., 2019).

In this work, we focus on studying inductive biases of seq2seq models. We start from an observation
that, generally, multiple explanations can be consistent with a limited training set, each leading to
different predictions on unseen data. A learner might prefer one type of explanations over another in
a systematic way, as a result of its inductive biases (Ritter et al., 2017; Feinman & Lake, 2018).

To illustrate the setup we work in, consider a quiz-like question: if f(3) maps to 6, what does
f(4) map to? The “training” example is consistent with the following answers: 6 (f(x) ≡ 6); 7
(f(x) = x + 3); 8 (f(x) = 2 · x); any number z, since we always can construct a function such that
f(3) = 6 and f(4) = z. By analyzing the learner’s output on this new input, we can infer its biases.

This example demonstrates how biases of learners are studied through the lenses of the poverty of
the stimulus principle (Chomsky, 1965; 1980): if nothing in the training data indicates that a learner
should generalize in a certain way, but it does nonetheless, then this is due to the biases of the learner.
Inspired by the work of Zhang et al. (2019) in the image domain, we take this principle to the extreme
and study biases of seq2seq learners in the regime of very few training examples, often as little as
one. Under this setup, we propose four new synthetic tasks that probe seq2seq learners’ preferences
to memorization-, arithmetic-, hierarchical- and compositional-based “reasoning”.

∗Equal contribution.

1

Published as a conference paper at ICLR 2021

Next, we connect to the ideas of Solomonoff’s theory of induction (Solomonoff, 1964) and Minimal
Description Length (Rissanen, 1978; Grunwald, 2004) and propose to use description length, under a
learner, as a principled measure of its inductive biases.

Our experimental study1 shows that the standard seq2seq learners have strikingly different inductive
biases. We find that LSTM-based learners can learn non-trivial counting-, multiplication-, and
addition-based rules from as little as one example. CNN-based seq2seq learners would prefer linear
over hierarchical generalizations, while LSTM-based ones and Transformers would do just the
opposite. When investigating the compositional reasoning, description length proved to be a sensitive
measure. Equipped with it, we found that CNN-, and, to a lesser degree, LSTM-based learners prefer
compositional generalization over memorization when provided with enough composite examples. In
turn, Transformers show a strong bias toward memorization.

2 SEARCHING FOR INDUCTIVE BIASES

To formalize the way we look for inductive biases of a learnerM, we consider a training dataset
of input/output pairs, T = {xi, yi}ni=1, and a hold-out set of inputs, H = {xi}ki=n+1. W.l.o.g, we
assume that there are two candidate “rules” that explain the training data, but do not coincide on the
hold-out data: C1(xi) = C2(xi) = yi, 1 ≤ i ≤ n and ∃i : C1(xi) 6= C2(xi), n + 1 ≤ i ≤ k.

To compare preferences of a learnerM toward those two rules, we fit the learner on the training data
T and then compare its predictions on the hold-out data H to the outputs of the rules. We refer to this
approach as “intuitive”. Usually, the measures of similarity between the outputs are task-specific:
McCoy et al. (2020) used accuracy of the first term, Zhang et al. (2019) used correlation and MSE,
and Lake & Baroni (2017) used accuracy calculated on the entire output sequence.

We too start with an accuracy-based measure. We define the fraction of perfect agreement (FPA)
between a learnerM and a candidate generalization rule C as the fraction of seeds that generalize
perfectly in agreement with that rule on the hold-out set H . Larger FPA of M is w.r.t. C, more
biasedM is toward C. However, FPA does not account for imperfect generalization nor allows direct
comparison between two candidate rules when both are dominated by a third candidate rule. Hence,
below we propose a principled approach based on the description length.

Description Length and Inductive Biases At the core of the theory of induction (Solomonoff, 1964)
is the question of continuation of a finite string that is very similar to our setup. Indeed, we can easily
re-formulate our motivating example as a string continuation problem: “3→ 6; 4→”. The solution
proposed by Solomonoff (1964) is to select the continuation that admits “the simplest explanation” of
the entire string, i.e. that is produced by programs of the shortest length (description length).

Our intuition is that when a continuation is “simple” for a learner, then this learner is biased toward
it. We consider a learner M to be biased toward C1 over C2 if the training set and its extension
according to C1 has a shorter description length (forM) compared to that of C2. Denoting description
length of a dataset D under the learnerM as LM(D), we hypothesise that if LM({C1(xi)}ki=1) <
LM({C2(xi)}ki=1), thenM is biased toward C1.

Calculating Description Length To find the description length of data under a fixed learner, we use
the online (prequential) code (Rissanen, 1978; Grunwald, 2004; Blier & Ollivier, 2018).

The problem of calculating LM(D), D = {xi, yi}ki=1 is considered as a problem of transferring
outputs yi one-by-one, in a compressed form, between two parties, Alice (sender) and Bob (receiver).
Alice has the entire dataset {xi, yi}, while Bob only has inputs {xi}. Before the transmission starts,
both parties agreed on the initialization of the modelM, order of the inputs {x}, random seeds, and
the details of the learning procedure. Outputs {yi} are sequences of tokens from a vocabulary V .
W.l.o.g. we fix some order over {x}. We assume that, given x, the learnerM produces a probability
distribution over the space of the outputs y, pM(y|x).

1Code used in the experiments can be found at https://github.com/facebookresearch/FIND.

2

https://github.com/facebookresearch/FIND

Published as a conference paper at ICLR 2021

The very first output y1 can be sent by using not more than c = |y1| · log |V | nats, using a naïve
encoding.2 After that, both Alice and Bob update their learners using the example (x1, y1), available
to both of them, and get identical instances ofM1.

Further transfer is done iteratively under the invariant that both Alice and Bob start every step t with
exactly the same learnersMt−1 and finish with identicalMt. At step t Alice would useMt−1 to
encode the next output yt. This can be done using

(
− log pMt−1(yt|xt)

)
nats (MacKay, 2003). Since

Bob has exactly the same model, he can decode the message to obtain yt and use the new pair (xt, yt)
to update his model and get Mt. Alice also updates her model, and proceeds to sending the next yt+1

(if any), encoding it with the help ofMt. The cumulative number of nats transmitted is:

LM(D) = −
k∑

t=2

log pMt−1
(yt|xt) + c. (1)

The obtained code length of Eq. 1 depends on the order in which y are transmitted and the procedure
we use to updateM. To account for that, we average out the data order by training with multiple
random seeds. Further, for larger datasets, full re-training after adding a new example is impractical
and, in such cases, examples can be transmitted in blocks.

If we measure the description length of the training data T shuffled with the hold-out data H , both
datasets would have symmetric roles. However, there is a certain asymmetry in the extrapolation
problem: we are looking for an extrapolation from T , not vice-versa. To break this symmetry, we
always transmit outputs for the entire training data as the first block.

While LM(D) is seemingly different from the “intuitive” measures introduced before, we can
illustrate their connection as follows. Consider a case where we first transmit the training outputs
as the first block and all of the hold-out data outputs under C, C(H), as the second block. Then the
description length is equal to cross-entropy of the trained learner on the hold-out data, recovering a
process akin to the “intuitive” measuring of inductive biases. With smaller blocks, the description
length also catches whether a learner is capable of finding regularity in the data fast, with few data
points; hence it also encodes the speed-of-learning ideas for measuring inductive biases (Chaabouni
et al., 2019).

Finally, the description length has three more attractive properties when measuring inductive biases:
(a) it is domain-independent, i.e. can be applied for instance in the image domain, (b) it allows
comparisons across models that account for model complexity, and (c) it enables direct comparison
between two candidate rules (as we will show in the Section 5).

3 TASKS

We describe four tasks that we use to study inductive biases of seq2seq learners. We select those
tasks to cover different aspects of learners’ behavior. Each task has a highly ambiguous training
set which is consistent with infinite number of generalizations. We pre-select several candidate
rules highlighting biases that are useful for language processing and known to exist in humans, or
are otherwise reasonable. Our experiments show that these rules cover many cases of the learners’
behavior.

The first two tasks study biases in arithmetic reasoning: Count-or-Memorization quantifies learners’
preference for counting vs. a simple memorization and Add-or-Multiply further probes the learners’
preferences in arithmetic operations. We believe these tasks are interesting, as counting is needed
in some NLP problems like processing linearized parse trees (Weiss et al., 2018). The third task,
Hierarchical-or-Linear, contrasts hierarchical and linear inductive reasoning. The hierarchical
reasoning bias is believed to be fundamental in learning some syntactical rules in human acquisition
of syntax (Chomsky, 1965; 1980). Finally, with the Composition-or-Memorization task, we investigate
biases for systematic compositionality, which are central for human capabilities in language. Figure 1
illustrates these four tasks.

2As we are interested in comparing candidate generalization rules, the value of the additive constant c is not
important, as it is learner- and candidate-independent. In experiments, we subtract it from all measurements.

3

Published as a conference paper at ICLR 2021

aaa ! bbb

<latexit sha1_base64="2aP1qHe7cCIfZJZf006ToyPFAlM=">AAAB/HicbVBNSwMxEM3Wr1q/Vnv0EiyCp7IrBfVW9OKxgv2AdimTNNuGZrNLklWWUv+KFw+KePWHePPfmLZ70NYHA4/3ZpiZRxLBtfG8b6ewtr6xuVXcLu3s7u0fuIdHLR2nirImjUWsOgQ0E1yypuFGsE6iGEREsDYZ38z89gNTmsfy3mQJCyIYSh5yCsZKfbcMALin+HBkQKn4ERNC+m7Fq3pz4FXi56SCcjT67ldvENM0YtJQAVp3fS8xwQSU4VSwaamXapYAHcOQdS2VEDEdTObHT/GpVQY4jJUtafBc/T0xgUjrLCK2MwIz0sveTPzP66YmvAwmXCapYZIuFoWpwCbGsyTwgCtGjcgsAaq4vRXTESigxuZVsiH4yy+vktZ51a9Vr+5qlfp1HkcRHaMTdIZ8dIHq6BY1UBNRlKFn9IrenCfnxXl3PhatBSefKaM/cD5/AGgPlKM=</latexit>

test example aa ! ?

<latexit sha1_base64="zC7LQM7YZYuoBe5SPPwHFlyMIso=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBFchUQq6sqiG5cV7AOaUG6mk2bo5MHMRCmhOzf+ihsXirj1F9z5N07bLLT1wIXDOfdy7z1+yplUtv1tLCwuLa+sltbK6xubW9vmzm5TJpkgtEESnoi2D5JyFtOGYorTdiooRD6nLX9wPfZb91RIlsR3aphSL4J+zAJGQGmpax4AYFewfqhAiOQBu6FMgdDcsk9JNLrsmhXbsifA88QpSAUVqHfNL7eXkCyisSIcpOw4dqq8HIRihNNR2c0k1QsG0KcdTWOIqPTyyR8jfKSVHg4SoStWeKL+nsghknIY+bozAhXKWW8s/ud1MhWcezmL00zRmEwXBRnHKsHjUHCPCUoUH2oCRDB9KyYhCCBKR1fWITizL8+T5onlVK2L22qldlXEUUL76BAdIwedoRq6QXXUQAQ9omf0it6MJ+PFeDc+pq0LRjGzh/7A+PwBSTCY9A==</latexit>

bbb

<latexit sha1_base64="OTSroX6SlAdC/21642o1h79Iv24=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgnorevFY0X5Au5Qkzbah2WRJskJZ+hO8eFDEq7/Im//GtN2Dtj4YeLw3w8w8kghurO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkp3CDZMcMmallvBOolmOCaCtcn4dua3n5g2XMlHO0lYGOOh5BGn2DrpgRDSL1f8qj8HWiVBTiqQo9Evf/UGiqYxk5YKbEw38BMbZlhbTgWblnqpYQmmYzxkXUcljpkJs/mpU3TmlAGKlHYlLZqrvycyHBsziYnrjLEdmWVvJv7ndVMbXYUZl0lqmaSLRVEqkFVo9jcacM2oFRNHMNXc3YroCGtMrUun5EIIll9eJa2LalCrXt/XKvWbPI4inMApnEMAl1CHO2hAEygM4Rle4c0T3ov37n0sWgtePnMMf+B9/gA8343K</latexit>

bb

<latexit sha1_base64="fz5x21CLleIxoxCf0rdZAKFE5ls=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQxD0yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhlZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVr1+r5Wqd/kcRThBE7hHDy4hDrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD4KejV4=</latexit>

(count)

(mem)

(linear)

(hierar)

aabaa ! b

<latexit sha1_base64="/YFAJknAn2U8M0GNie5D5uxl4Tw=">AAAB/HicbVBNSwMxEM3Wr1q/Vnv0EiyCp7IrBfVW9OKxgv2AdimzabYNzSZLklWWUv+KFw+KePWHePPfmLZ70NYHA4/3ZpiZFyacaeN5305hbX1jc6u4XdrZ3ds/cA+PWlqmitAmkVyqTgiaciZo0zDDaSdRFOKQ03Y4vpn57QeqNJPi3mQJDWIYChYxAsZKfbcMEALgnmLDkQGl5CMO+27Fq3pz4FXi56SCcjT67ldvIEkaU2EIB627vpeYYALKMMLptNRLNU2AjGFIu5YKiKkOJvPjp/jUKgMcSWVLGDxXf09MINY6i0PbGYMZ6WVvJv7ndVMTXQYTJpLUUEEWi6KUYyPxLAk8YIoSwzNLgChmb8VkBAqIsXmVbAj+8surpHVe9WvVq7tapX6dx1FEx+gEnSEfXaA6ukUN1EQEZegZvaI358l5cd6dj0VrwclnyugPnM8fZqiUog==</latexit>

aba ! ?

<latexit sha1_base64="4YyIpL4gWY0aiFz+Nr1J+DsIshc=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g0GwWnYlolYGbSwjmAckS7g7mSRDZmaXmVklLGlt/BUbC0Vs/QM7/8bJo9DEAxcO59zLvfdECWfa+P63k1taXlldy68XNja3tnfc3b2ajlNFaJXEPFaNCDTlTNKqYYbTRqIoiIjTejS4Hvv1e6o0i+WdGSY0FNCTrMsIGCu1XQwR4JZivb4BpeIH3OrrBAjNfO9UiBG+bLtF3/MnwIskmJEimqHSdr9anZikgkpDOGjdDPzEhBkowwino0Ir1dRuGECPNi2VIKgOs8knI3xklQ7uxsqWNHii/p7IQGg9FJHtFGD6et4bi/95zdR0z8OMySQ1VJLpom7KsYnxOBbcYYoSw4eWAFHM3opJHxQQY8Mr2BCC+ZcXSe3EC0rexW2pWL6axZFHB+gQHaMAnaEyukEVVEUEPaJn9IrenCfnxXl3PqatOWc2s4/+wPn8AX7kmZQ=</latexit>

a

<latexit sha1_base64="bihfQSgohUCaiZLH8E/K/puHk0I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmrRfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6Lq1arXzVqlfpPHUYQTOIVz8OAS6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8fxz2M8Q==</latexit>

b

<latexit sha1_base64="9Y1xYV9hakFu8xV0cEnjrRUGU9E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmkG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+RmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Wvm7VK/SaPowgncArn4MEl1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yMGM8g==</latexit>

(comp)

(mem)

b

<latexit sha1_base64="9Y1xYV9hakFu8xV0cEnjrRUGU9E=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmkG/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxNe+RmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+S9kXVq1Wvm7VK/SaPowgncArn4MEl1OEOGtACBgjP8ApvzqPz4rw7H4vWgpPPHMMfOJ8/yMGM8g==</latexit>

a ! a

<latexit sha1_base64="jnXbe6btQmwXgibKAN2VhSH1B5w=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquFNRb0YvHCvYD2qXMptk2NJssSVapS3+JFw+KePWnePPfmLZ70NYHA4/3ZpiZFyacaeN5305hbX1jc6u4XdrZ3dsvuweHLS1TRWiTSC5VJwRNORO0aZjhtJMoCnHIaTsc38z89gNVmklxbyYJDWIYChYxAsZKfbcMuKfYcGRAKfmIoe9WvKo3B14lfk4qKEej7371BpKkMRWGcNC663uJCTJQhhFOp6VeqmkCZAxD2rVUQEx1kM0Pn+JTqwxwJJUtYfBc/T2RQaz1JA5tZwxmpJe9mfif101NdBlkTCSpoYIsFkUpx0biWQp4wBQlhk8sAaKYvRWTESggxmZVsiH4yy+vktZ51a9Vr+5qlfp1HkcRHaMTdIZ8dIHq6BY1UBMRlKJn9IrenCfnxXl3PhatBSefOUJ/4Hz+AGnJkvQ=</latexit>

b ! b

<latexit sha1_base64="y/odGoA3GMubqSuaA2hvPYvW6gw=">AAAB+HicbVBNSwMxEM3Wr1o/uurRS7AInsquFNRb0YvHCvYD2qVk02wbmk2WZFapS3+JFw+KePWnePPfmLZ70NYHA4/3ZpiZFyaCG/C8b6ewtr6xuVXcLu3s7u2X3YPDllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2Ob2Z++4Fpw5W8h0nCgpgMJY84JWClvlsOcU/z4QiI1uoRh3234lW9OfAq8XNSQTkafferN1A0jZkEKogxXd9LIMiIBk4Fm5Z6qWEJoWMyZF1LJYmZCbL54VN8apUBjpS2JQHP1d8TGYmNmcSh7YwJjMyyNxP/87opRJdBxmWSApN0sShKBQaFZyngAdeMgphYQqjm9lZMR0QTCjarkg3BX355lbTOq36tenVXq9Sv8ziK6BidoDPkowtUR7eogZqIohQ9o1f05jw5L86787FoLTj5zBH6A+fzB2zfkvY=</latexit>

bbb

<latexit sha1_base64="OTSroX6SlAdC/21642o1h79Iv24=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgnorevFY0X5Au5Qkzbah2WRJskJZ+hO8eFDEq7/Im//GtN2Dtj4YeLw3w8w8kghurO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkp3CDZMcMmallvBOolmOCaCtcn4dua3n5g2XMlHO0lYGOOh5BGn2DrpgRDSL1f8qj8HWiVBTiqQo9Evf/UGiqYxk5YKbEw38BMbZlhbTgWblnqpYQmmYzxkXUcljpkJs/mpU3TmlAGKlHYlLZqrvycyHBsziYnrjLEdmWVvJv7ndVMbXYUZl0lqmaSLRVEqkFVo9jcacM2oFRNHMNXc3YroCGtMrUun5EIIll9eJa2LalCrXt/XKvWbPI4inMApnEMAl1CHO2hAEygM4Rle4c0T3ov37n0sWgtePnMMf+B9/gA8343K</latexit>

Count-or-Memorization

<latexit sha1_base64="dl6D95tdDzd51TNAft5O5SVEngo=">AAACEXicbVC7SgNBFJ31GeMrammzGAQbw64E1C6YxkaIYB6QhDA7uUkG57HM3BXjkl+w8VdsLBSxtbPzb9xsUmjigWEO55zLzD1BKLhFz/t2FhaXlldWM2vZ9Y3Nre3czm7N6sgwqDIttGkE1ILgCqrIUUAjNEBlIKAe3JbHfv0OjOVa3eAwhLakfcV7nFFMpE7uqIVwj0bG6c0xLutI4bE2x1cgteEPaW40ynZyea/gpXDniT8leTJFpZP7anU1iyQoZIJa2/S9ENsxNciZgFG2FVkIKbulfWgmVFEJth2nG43cw0Tpuj1tkqPQTdXfEzGV1g5lkCQlxYGd9cbif14zwt5ZO+YqjBAUmzzUi4SL2h3X43a5AYZimBDKDE/+6rIBNZRhUuK4BH925XlSOyn4xcL5dTFfupjWkSH75IAcEZ+ckhK5JBVSJYw8kmfySt6cJ+fFeXc+JtEFZzqzR/7A+fwBMTKegQ==</latexit>

Composition-or-Memorization

<latexit sha1_base64="AU3h0Xycm3+2dblNcl19kE3syhg=">AAACF3icbVC7SgNBFJ31GeMrammzGASbhF0JqF0wjY0QwTwgCWF2cpMMmdlZZu6Kcclf2PgrNhaK2Grn37i7SaGJB4Y5nHMul3u8QHCDjvNtLS2vrK6tZzaym1vbO7u5vf26UaFmUGNKKN30qAHBfaghRwHNQAOVnoCGN6okfuMOtOHKv8VxAB1JBz7vc0Yxlrq5YhvhHrWM0p9jVFEyUIYnbkHpwjVIpflDmp5Mst1c3ik6KexF4s5InsxQ7ea+2j3FQgk+MkGNablOgJ2IauRMwCTbDg0ElI3oAFox9akE04nSuyb2caz07L7S8fPRTtXfExGVxoylFyclxaGZ9xLxP68VYv+8E3E/CBF8Nl3UD4WNyk5KsntcA0MxjgllOi6D2WxINWUYV5mU4M6fvEjqp0W3VLy4KeXLl7M6MuSQHJET4pIzUiZXpEpqhJFH8kxeyZv1ZL1Y79bHNLpkzWYOyB9Ynz9YnKFI</latexit>

Hierarchical-or-Linear

<latexit sha1_base64="z+j/XVE4K8yKa/1sdHAWANdl7aI=">AAACEnicbVC7TgJBFJ31ifhatbTZSEy0gOwaErUj2lBYYCKPBAiZHS4wYWZ3M3PXSDZ8g42/YmOhMbZWdv6Ns0Ch4Ekmc3LOvXfmHj8SXKPrfltLyyura+uZjezm1vbOrr23X9NhrBhUWShC1fCpBsEDqCJHAY1IAZW+gLo/vE79+j0ozcPgDkcRtCXtB7zHGUUjdezTFsIDKplMbo5JmYOiig1MhciHKn9jBlM1Hmc7ds4tuBM4i8SbkRyZodKxv1rdkMUSAmSCat303AjbCVXImYBxthVriCgb0j40DQ2oBN1OJiuNnWOjdJ1eqMwJ0JmovzsSKrUeSd9USooDPe+l4n9eM8beRTvhQRQjBGz6UC8WDoZOmo/T5QoYipEhlClu/uqwAVWUoUkxDcGbX3mR1M4KXrFweVvMla5mcWTIITkiJ8Qj56REyqRCqoSRR/JMXsmb9WS9WO/Wx7R0yZr1HJA/sD5/AILSnp4=</latexit>

Add-or-Multiply

<latexit sha1_base64="Qjee5BVEq+vKsWYHnWbnBQlIpYA=">AAACC3icbVDLSsNAFJ34rPUVdekmtAhuWhIpqLuqGzdCBfuANpTJZNIOnUnCzI0YQvdu/BU3LhRx6w+4829M0iy09cDlHs65l5l7nJAzBab5rS0tr6yurZc2yptb2zu7+t5+RwWRJLRNAh7InoMV5cynbWDAaS+UFAuH064zucr87j2VigX+HcQhtQUe+cxjBEMqDfXKAOgDSJHknUFy4bq1QNZuIg4s5PF0Wh7qVbNu5jAWiVWQKirQGupfAzcgkaA+EI6V6ltmCHaCJTDC6bQ8iBQNMZngEe2n1MeCKjvJb5kaR6niGl4g0/LByNXfGwkWSsXCSScFhrGa9zLxP68fgXdmJ8wPI6A+mT3kRdyAwMiCMVwmKQEepwQTydK/GmSMJSaQxpeFYM2fvEg6J3WrUT+/bVSbl0UcJXSIKugYWegUNdE1aqE2IugRPaNX9KY9aS/au/YxG13Sip0D9Afa5w/83pun</latexit>

(add)

(mem)

train exampletrain example

test example

train example

test example

train example

test example

aa ! bbbb

<latexit sha1_base64="a4iN37u8WAC9fwuLOaFSCqDHf/w=">AAAB/HicbVBNSwMxEM3Wr1q/Vnv0EiyCp7IrBfVW9OKxgv2AdimzabYNzSZLklWWUv+KFw+KePWHePPfmLZ70NYHA4/3ZpiZFyacaeN5305hbX1jc6u4XdrZ3ds/cA+PWlqmitAmkVyqTgiaciZo0zDDaSdRFOKQ03Y4vpn57QeqNJPi3mQJDWIYChYxAsZKfbcMgHuKDUcGlJKPOLTouxWv6s2BV4mfkwrK0ei7X72BJGlMhSEctO76XmKCCSjDCKfTUi/VNAEyhiHtWiogpjqYzI+f4lOrDHAklS1h8Fz9PTGBWOssDm1nDGakl72Z+J/XTU10GUyYSFJDBVksilKOjcSzJPCAKUoMzywBopi9FZMRKCDG5lWyIfjLL6+S1nnVr1Wv7mqV+nUeRxEdoxN0hnx0geroFjVQExGUoWf0it6cJ+fFeXc+Fq0FJ58poz9wPn8AaY6UpA==</latexit>

a ! ?

<latexit sha1_base64="MdWGCyoEtQk4iPFMQu2DAITPSsU=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBFchUQq6sqiG5cV7AOaUCbTSTN0ZhJmJkoJXbnxV9y4UMSt3+DOv3HaZqGtBy4czrmXe+8JU0aVdt1va2FxaXlltbRWXt/Y3Nq2d3abKskkJg2csES2Q6QIo4I0NNWMtFNJEA8ZaYWD67HfuidS0UTc6WFKAo76gkYUI22krn2AoC9pP9ZIyuQB+rFKESa5455iPrrs2hXXcSeA88QrSAUUqHftL7+X4IwToTFDSnU8N9VBjqSmmJFR2c8UMQsGqE86hgrEiQryyRsjeGSUHowSaUpoOFF/T+SIKzXkoenkSMdq1huL/3mdTEfnQU5Fmmki8HRRlDGoEzjOBPaoJFizoSEIS2puhThGEmFtkiubELzZl+dJ88Txqs7FbbVSuyriKIF9cAiOgQfOQA3cgDpoAAwewTN4BW/Wk/VivVsf09YFq5jZA39gff4AheWYiQ==</latexit>

(mul)

bbbb

<latexit sha1_base64="Skuwggtv7n9iurfu6b6dnycPw7E=">AAAB63icbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoN6KXjxWsB/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8MBHcWM/7RqW19Y3NrfJ2ZWd3b/+genjUNnGqKWvRWMS6GxLDBFesZbkVrJtoRmQoWCec3OV+54lpw2P1aKcJCyQZKR5xSmwuhQ6Das2re3PgVeIXpAYFmoPqV38Y01QyZakgxvR8L7FBRrTlVLBZpZ8alhA6ISPWc1QRyUyQzW+d4TOnDHEUa1fK4rn6eyIj0pipDF2nJHZslr1c/M/rpTa6DjKuktQyRReLolRgG+P8cTzkmlErpo4Qqrm7FdMx0YRaF0/FheAvv7xK2hd1/7J+83BZa9wWcZThBE7hHHy4ggbcQxNaQGEMz/AKb0iiF/SOPhatJVTMHMMfoM8f93WONg==</latexit>

bb

<latexit sha1_base64="fz5x21CLleIxoxCf0rdZAKFE5ls=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSQxD0yxW36s5BVomXkwrkaPTLX71BzNIIpWGCat313MT4GVWGM4HTUi/VmFA2pkPsWipphNrP5pdOyZlVBiSMlS1pyFz9PZHRSOtJFNjOiJqRXvZm4n9eNzXhlZ9xmaQGJVssClNBTExmb5MBV8iMmFhCmeL2VsJGVFFmbDglG4K3/PIqaV1UvVr1+r5Wqd/kcRThBE7hHDy4hDrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD4KejV4=</latexit>

bbb

<latexit sha1_base64="OTSroX6SlAdC/21642o1h79Iv24=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVgnorevFY0X5Au5Qkzbah2WRJskJZ+hO8eFDEq7/Im//GtN2Dtj4YeLw3w8w8kghurO9/e4W19Y3NreJ2aWd3b/+gfHjUMirVlDWpEkp3CDZMcMmallvBOolmOCaCtcn4dua3n5g2XMlHO0lYGOOh5BGn2DrpgRDSL1f8qj8HWiVBTiqQo9Evf/UGiqYxk5YKbEw38BMbZlhbTgWblnqpYQmmYzxkXUcljpkJs/mpU3TmlAGKlHYlLZqrvycyHBsziYnrjLEdmWVvJv7ndVMbXYUZl0lqmaSLRVEqkFVo9jcacM2oFRNHMNXc3YroCGtMrUun5EIIll9eJa2LalCrXt/XKvWbPI4inMApnEMAl1CHO2hAEygM4Rle4c0T3ov37n0sWgtePnMMf+B9/gA8343K</latexit>

thricea! aaa

<latexit sha1_base64="qnFGHcCsleGiOXNIMFDZUtpqE2A=">AAACHnicbVDJSgNBEO1xN25Rj14ag+DFYcYF9SZ68ahgVEhCqOlUMo3dM0N3jRKGfIkXf8WLB0UET/o3dmIEt9c0vHpVRVW9KFPSUhC8eyOjY+MTk1PTpZnZufmF8uLSuU1zI7AqUpWaywgsKplglSQpvMwMgo4UXkRXR/38xTUaK9PkjLoZNjR0EtmWAshJzfIOxUYKrMc2A4FF4O9o3YOvcCPwt1xcN7ITExiT3nDov2a5EvjBAPwvCYekwoY4aZZf661U5BoTEgqsrYVBRo0CDEmhsFeq5xbdxCvoYM3RBDTaRjE4r8fXnNLi7dS4nxAfqN87CtDWdnXkKjVQbH/n+uJ/uVpO7b1GIZMsJ0zE56B2rjilvO8Vb0mDglTXERBGul25iMGAIOdoyZkQ/j75Lznf9MNtf/90u3JwOLRjiq2wVbbOQrbLDtgxO2FVJtgtu2eP7Mm78x68Z+/ls3TEG/Yssx/w3j4AA+KiZg==</latexit>

thrice b! ?

<latexit sha1_base64="gbmyyfTl9bxXUBY/8c/CKSNznlI=">AAACKXicbVBNS8NAEN34WetX1KOXxSJ4sSRSUU8WvXhUsCq0pWy202ZxNwm7E6WE/h0v/hUvCop69Y+4TSP49WDhzXszzM4LEikMet6bMzE5NT0zW5orzy8sLi27K6sXJk41hwaPZayvAmZAiggaKFDCVaKBqUDCZXB9PPIvb0AbEUfnOEigrVg/Ej3BGVqp49Yx1IJDKzQJ45B51V2lhsFXuT2uW1r0Q2Rax7f0y/Jzhx523IpX9XLQv8QvSIUUOO24T61uzFMFEXLJjGn6XoLtjGkUXMKw3EoN2A3XrA9NSyOmwLSz/NIh3bRKl/ZibV+ENFe/T2RMGTNQge1UDEPz2xuJ/3nNFHv77UxESYoQ8fGiXiopxnQUG+0KDRzlwBLGtbB/pTxkmnG04ZZtCP7vk/+Si52qX6senNUq9aMijhJZJxtki/hkj9TJCTklDcLJHXkgz+TFuXcenVfnfdw64RQza+QHnI9P8/inCQ==</latexit>

Figure 1: Illustration of the tasks. After training on the train examples (green blocks), learners
are tested on held-out examples (red blocks). In pink blocks are generalizations according to the
candidate rules.

By ak we denote a sequence that contains token a repeated k times. For training, we represent
sequences in a standard way: the tokens are one-hot-encoded separately, and we append a special
end-of-sequence token to each sequence. Input and output vocabularies are disjoint.

Count-or-Memorization: In this task, we contrast learners’ preferences for counting vs. memoriza-
tion. We train models to fit a single training example with input al and output bl (i.e., to perform the
mapping al → bl) and test it on am with m ∈ [l−10, l+10]. If a learner learns the constant function,
outputting bl independently of its inputs, then it follows the mem strategy. On the other hand, if it
generalizes to the am → bm mapping, then the learner is biased toward the count strategy.

Add-or-Multiply: This task is akin to the motivating example in Section 1. The single training
example represents a mapping of an input string al to an output string b2l. As test inputs, we generate
am for m in the interval [l − 3, l + 3]. We consider the learned rule to be consistent with mul if for
all m, the input/output pairs are consistent with am → b2m. Similarly, if they are consistent with
am → bm+l, we say that the learner follows the addition rule, add. Finally, the learner can learn a
constant mapping am → b2l for any m. Again, we call this rule mem.

Hierarchical-or-Linear: For a fixed depth d, we train learners on four training examples xdyxd → y
where x, y ∈ {a, b}.3 Each training example has a nested structure, where d defines its depth. A
learner with a hierarchical bias (hierar), would output the middle symbol. We also consider the
linear rule (linear) in which the learner outputs the (d+1)th symbol of its input.
To probe learners’ biases, we test them on inputs with different depths m ∈ [d− 2, d + 2]. Note that
to examine the linear rule (i.e. if the learner outputs the (d+1)th symbol of any test input of depth
m), we need m ≥ d

2 . Similar to the previous tasks, there is no vocabulary sharing between a model’s
inputs and outputs (input and output tokens a and b are different).

Composition-or-Memorization: We take inspiration from SCAN (Lake & Baroni, 2017), a bench-
mark used for studying systematic generalization of seq2seq learners.4 The input vocabulary has N
symbols ai that are one-to-one mapped into N output symbols bi (i.e., ai → bi). In addition, there
is a modifier token thrice: when thrice precedes an input symbol ai, the corresponding output is
repeated three times: thrice ai → bibibi.

We train a learner on all non-compositional examples (ai → bi) and M (M < N) compositional
examples (thrice ai → bibibi). At test time, we feed the learner with the remaining compositional
examples (thrice ai, i > M). If the learner generalizes to the mapping thrice ai → bibibi for i > M ,
we consider it to be biased toward a compositional reasoning (comp). As an alternative generalization,

3This mapping consist then on four combinations adbad → b; adaad → a; bdabd → a and bdbbd → b.
4In Appendix, we report a study of inductive biases on the SCAN data.

4

Published as a conference paper at ICLR 2021

we consider a mapping where all inputs containing ai are mapped into bi: thrice ai → bi (i > M).
We call this generalization memorization (mem).

4 METHODOLOGY

4.1 SEQUENCE-TO-SEQUENCE LEARNERS

We experiment with three standard seq2seq models: LSTM-based seq2seq (LSTM-s2s) (Sutskever
et al., 2014), CNN-based seq2seq (CNN-s2s) (Gehring et al., 2017), and Transformer (Vaswani et al.,
2017). All share a similar Encoder/Decoder architecture (Sutskever et al., 2014).

LSTM-s2s Both Encoder and Decoder are implemented as LSTM cells (Hochreiter & Schmidhuber,
1997). Encoder encodes its inputs incrementally from left to right. We experiment with architectures
without (LSTM-s2s no att.) and with (LSTM-s2s att.) an attention mechanism (Bahdanau et al.,
2014). For the first three tasks, both Encoder and Decoder are single-layer LSTM cells with hidden
size of 512 and embedding of dimension 16.

CNN-s2s Encoder and Decoder are convolutional networks (LeCun et al., 1990), followed by GLU
non-linearities (Dauphin et al., 2017) and an attention layer. To represent positions of input tokens,
CNN-s2s uses learned positional embeddings. Encoder and Decoder networks have one layer with
512 filters and a kernel width of 3. We set the embedding size to 16.

Transformer Encoder and Decoder are implemented as a sequence of (self-)attention and feed-
forward layers. We use sinusoidal position embeddings. Both Encoder and Decoder contain one
transformer layer. The attention modules have 8 heads, feed-forward layers have dimension of 512
and the embedding is of dimension 16.

In Appendix we report experiments where we vary hyperparameters of the learners.

4.2 TRAINING AND EVALUATION

For all tasks, we follow the same training procedure. We train with Adam optimizer (Kingma & Ba,
2014) for 3000 epochs. The learning rate starts at 10−5 and increases for the first 1000 warm-up
updates till reaching 10−3. We include all available examples in a single batch. We use teacher
forcing (Goodfellow et al., 2016) and set the dropout probability to 0.5. For each learner, we perform
training and evaluation 100 times, changing random seeds. At generation, to calculate FPA, we select
the next token greedily. We use the model implementations from fairseq (Ott et al., 2019).

As discussed in Section 2, when calculating L, we use the training examples as the first transmitted
block at t = 1. In Count-or-Memorization and Add-or-Multiply this block contains one example,
in Hierarchical-or-Linear it has 4 examples, and in Composition-or-Memorization it has N + M
examples. Next, we transmit examples obtained from the candidate rules in a randomized order,
by blocks of size 1, 1, 1, and 4 for Count-or-Memorization, Add-or-Multiply, Composition-or-
Memorization, and Hierarchical-or-Linear respectively. At each step, the learner is re-trained from
the same initialization, using the procedure and hyper-parameters as discussed above.

Our training setup is typical for seq2seq training. It does not include any additional pressure towards
description length minimization. Description length is solely used as a measure of inductive biases.

5 EXPERIMENTS

Count-or-Memorization We investigate here learners’ biases toward count and mem rules. We
provide a single example al → bl as the training set, varying l ∈ {10, 20, 30, 40}. We report the
learners’ performances in Table 1a. We observe that, independently of the length of the training
example l, CNN-s2s and Transformer learners inferred perfectly the mem rule with FPA-mem > 0.90
(i.e. more than 90% of the random seeds output bl for any given input am).

However, LSTM-based learners demonstrate a more complex behavior. With l = 10, both learners
(with and without attention) exhibit a preference for mem. Indeed, while these learners rarely
generalize perfectly to any of the hypothesis (0.0 FPA (no att.), 0.2/0.0 FPA for mem/count (att.)),
they have significantly lower L-mem. As l increases, LSTM-based learners become more biased

5

Published as a conference paper at ICLR 2021

FPA ↑ L, nats ↓
length l count mem count mem

LSTM-s2s no att. 40 1.00 0.00 0.01∗ 97.51
30 0.97 0.00 0.01∗ 72.67
20 0.07 0.00 2.49∗ 55.67
10 0.00 0.00 88.27 48.67∗

LSTM-s2s att. 40 0.99 0.00 7.84∗ 121.48
30 0.96 0.02 1.14∗ 83.48
20 0.70 0.16 5.73∗ 49.33
10 0.00 0.20 98.12 8.46∗

CNN-s2s {10, 20, 30, 40} 0.00 > 0.90 > 592.92 <1.31∗

Transformer {10, 20, 30, 40} 0.00 > 0.97 > 113.30 <11.14∗

(a) Count-or-Memorization

FPA ↑ L, nats ↓
length l add mul mem add mul mem

LSTM-s2s no att. 20 0.00 0.94 0.00 25.42 0.31∗ 57.32
15 0.07 0.65 0.00 19.24 4.67∗ 43.65
10 0.95 0.01 0.00 0.68∗ 26.58 25.15
5 0.04 0.00 0.00 17.12 50.83 18.60

LSTM-s2s att. 20 0.00 0.98 0.00 30.26 1.40∗ 58.84
15 0.15 0.83 0.00 20.18 4.07∗ 46.36
10 0.40 0.28 0.18 13.69 18.16 26.44
5 0.00 0.00 0.97 45.88 77.86 0.01∗

CNN-s2s {5, 10, 15, 20} 0.00 0.00 1.0 > 318.12 > 346.19 0.00∗

Transformer {5, 10, 15, 20} 0.00 0.00 1.0 > 38.77 > 50.64 <3.50∗

(b) Add-or-Multiply

FPA ↑ L, nats ↓
hierar linear hierar linear

LSTM-s2s no att. 0.05 0.00 31.04∗ 61.84
LSTM-s2s att. 0.30 0.00 26.32∗ 57.2
CNN-s2s 0.00 1.00 202.64 0.00∗
Transformer 0.69 0.00 4.84∗ 35.04

(c) Hierarchical-or-Linear with depth d = 4

FPA ↑ L, nats ↓
M , examples comp mem comp mem

LSTM-s2s no att. 36 0.00 0.00 42.65 38.55
24 0.00 0.00 238.54 89.36∗
6 0.00 0.00 656.93 157.55∗

LSTM-s2s att. 36 0.00 0.00 62.34∗ 70.92
24 0.00 0.00 263.33 157.82∗
6 0.00 0.00 659.85 164.43∗

CNN-s2s 36 0.75 0.00 1.44∗ 49.92
24 0.13 0.00 13.75∗ 84.55
6 0.00 0.00 131.63 29.66∗

Transformer 36 0.00 0.82 147.83 6.36∗
24 0.00 0.35 586.22 26.46∗
6 0.00 0.00 1235.01 53.91∗

(d) Composition-or-Memorization

Table 1: FPA measures the fraction of seeds that generalize according to a particular rule. Description
length L is averaged across examples and seeds. The lowest L are in bold and ∗ denotes stat. sig.
difference in L (p < 10−3, paired t-test).

6

Published as a conference paper at ICLR 2021

toward count. Surprisingly, for l ≥ 30, most learner instances show sufficiently strong inductive
biases to infer perfectly the non-trivial count hypothesis. With l = 40, 99% of random seeds of
LSTM-s2s att. and all (100%) of LSTM-s2s no att. seeds generalized perfectly to count.

Further, we see that if L shows similar trends, it has a higher sensitivity. For example, while both
LSTM-based learners have a similar FPA with l = 40, L demonstrates that LSTM-s2s no att. has a
stronger count bias.

Add-or-Multiply In this task, we examine learners’ generalization after training on the single
example al → b2l. We vary l ∈ {5, 10, 15, 20}. In Table 1b, we report FPA and L for the three
generalization hypotheses, add, mul, and mem. We observe, similarly to the previous task, that
CNN-s2s and Transformer learners always converge perfectly to memorization.

In contrast, LSTM-based learners show non-trivial generalizations. Examining first LSTM-s2s att.,
when l=5, we note that mem has a high FPA and an L considerably lower than others. This is
consistent with the learner’s behavior in the Count-or-Memorization task. As we increase l, more
interesting behavior emerges. First, L-mem decreases as l increases. Second, mul-type preference
increases with l. Finally, L-add presents a U-shaped function of l. That is, for the medium example
length l, the majority of learners switch to approximating the add rule (for l = 10). However, when
l grows further, a considerable fraction of these learners start to follow a mul-type rule. Strikingly,
98% of LSTM-s2s att. seeds generalized perfectly to the non-trivial mul rule. As for LSTM-s2s no
att., we do not observe a strong bias to infer any of the rules when l=5. However, when increasing
l, the LSTM-s2s no att. behaves similarly to LSTM-s2s att.: at first it has a preference for add
(FPA-add=0.95, for l=10) then for mul (e.g. FPA-mul=0.94, for l=20).

Hierarchical-or-Linear We look now at learners’ preference for either hierar or linear gener-
alizations. The architectures we use were only able to consistently learn the training examples with
the depth d not higher than 4. Hence, in this experiment, we set d to 4.

We report in Table 1c the learners’ FPA and L. We observe that CNN-s2s exhibits a strikingly
different bias compared to all other learners with a perfect agreement with the linear rule. In
contrast, Transformer learners show a clear preference for hierar with a high FPA (0.69) and a
low L (1.21). Surprisingly, this preference increases with the embedding size and Transformers with
embedding size ≥ 64 admit an FPA-hierar of 1.00 (see Appendix for more details). LSTM-s2s att.
learners demonstrate also a similar preference for hierar with an FPA of 0.30 and a considerably
lower L than L-hierar. Finally, while only 5% of LSTM-s2s no att. instances generalized to
perfect hierar (and none to linear), L confirms their preference for the hierar hypothesis.

Composition-or-Memorization In this task, we set the number of primitives N = 40 and vary the
number of compositional examples M ∈ {6, 24, 36} seen during training. Results are reported in
Table 1d. First, we observe that FPA is only informative for CNN-s2s when trained with a large
M . Indeed, for M = 6, CNN-s2s does not infer any of the candidate rules. However, according
to description length L, we note a significant preference for mem over comp. More compositional
examples CNN-based learners see at training, more biased they become toward comp. The remaining
learners have zero FPA for both candidate rules. However, according to description length, LSTM-
based learners have preferences similar to CNN-s2s, although weaker. That is, they show a preference
for mem for low M , that declines in favor of comp as M increases. In contrast, Transformers show a
strong bias for mem with all tested M .

Overall, across all the above experiments, we see that seq2seq learners demonstrate strikingly
different biases. In many cases, these biases lead to non-trivial generalizations when facing ambiguity
in the training data. This spans tasks that probe for memorization, arithmetic, hierarchical, and
compositional reasoning. We found that a single example is sufficient for LSTM-based learners to
learn counting, addition, and multiplication. Moreover, within the same task, they can switch from
one explanation to another, depending on the training example length, with Addition-or-Multiplication
being the task where this switch happens twice. In contrast, CNN-s2s and Transformers show a strong
bias toward memorization. Furthermore, all learners except for CNN-s2s demonstrate a strong bias
toward the hierarchical behavior. In the task of compositional generalization, CNN-s2s shows a strong
bias toward compositional reasoning that appears after a few compositional training examples. On
the other hand, Transformers show a preference for memorization over compositional generalization.

7

Published as a conference paper at ICLR 2021

We see that the conclusions derived from comparing the description length of the candidate rules are
in agreement with the results under accuracy-based metrics, but provide a more nuanced picture.

Robustness to hyper-parameters We observe that learners’ biases depend, in many cases, on the
length/number of the input examples. In Appendix, we examine impact of other hyper-parameters. In
particular, we study impact of (1) learners’ architecture size, by varying the number of layers, hidden
and embedding sizes, and (2) dropout probability. Our results show that in some cases a learner’s
architecture size can influence the strength of inductive biases, but rarely modify them: among the
136 tested settings, we observe only 3 cases of switching the preferences. We also found, in line
with (Arpit et al., 2017), that large dropout probabilities can prevent mem-type generalization.
Finally, in Appendix we show that a variant of Transformer learners, namely the joint source-target
self-attention learner (He et al., 2018; Fonollosa et al., 2019), displays the same preferences as
the standard Transformer learners. This variant resembles the “decoder-only” architecture used in
language modeling (Radford et al., 2019; Brown et al., 2020). This result demonstrates that our tasks
and bias measures could be applied for studying inductive biases of language model architectures.

6 RELATED WORK

Dessì & Baroni (2019) found that, unlike LSTM-s2s learners, CNN-s2s can perform compositional
generalization on SCAN. Our experiments indicate that this only happens when enough compositional
examples are provided in the training. Moreover, in such a case, attention-enabled LSTM-s2s also
start to prefer compositional generalization over memorization.

McCoy et al. (2020) studied inductive biases of recurrent neural architectures in two synthetic tasks,
English question formation and tense inflection. They found that only tree-based architectures
show robust preference for hierarchical reasoning, in contrast to LSTM-s2s learners that generalized
linearly. Our experiments on the hyperparameter robustness, reported in Appendix, indicate that the
preferences over linear/hierarchical reasoning are strongly affected by the dropout probability, with
learners shifting to linear behavior with low probabilities. As McCoy et al. (2020) experimented with
a low dropout probability of 0.1, we believe this explains the misalignment of the conclusions.

Overall, our study shows that inductive biases are more complicated than it seemed in these prior
works and a more careful analysis is crucial. We believe that our extremely controlled setup with
very little confounds is a good addition to those studies.

Another line of research investigates theoretically learners’ capabilities, that is, the classes of the
hypothesis that a learner can discover (Siegelmann & Sontag, 1992; Suzgun et al., 2019; Merrill
et al., 2020). For example, Weiss et al. (2018) demonstrated that LSTM cells can count. In turn, we
demonstrate that LSTM-s2s learners are not only capable but also biased toward arithmetic behavior.

7 DISCUSSION AND CONCLUSION

In this work, we studied inductive biases of standard seq2seq learners, Transformer-, LSTM-, and
CNN-based. To do so, we introduced four new tasks, which allowed us to cover an interesting spec-
trum of behaviors useful for language learning. In particular, we considered arithmetic, hierarchical,
and compositional “reasoning”. Next, we connected the problem of finding and measuring inductive
biases to Solomonoff’s theory of induction and proposed to use a dataset’s description length under a
learner as a tool for sensitive measurement of inductive biases.

In our experiments, we found that the seq2seq learners have strikingly different inductive biases
and some of them generalize non-trivially when facing ambiguity. For instance, a single training
example is sufficient for LSTM-based learners to learn perfectly how to count, to add and to multiply
by a constant. Transformers and, to a lesser degree, LSTM-s2s demonstrated preferences for the
hierarchical bias, a bias that has been argued to govern children’s acquisition of syntax. Interestingly,
such biases arose with no explicit wiring for them. Our results support then Elman et al. (1998)’s
theory which states that human’s inductive biases can arise from low-level architectural constraints in
the brain with no need for an explicit encoding of a linguistic structure. However, how the brain, or,
more generally, a learner is wired to admit a specific inductive bias is still an important open question.

8

Published as a conference paper at ICLR 2021

Across our experiments, we also observed that description length is consistent with “intuitive”
measurements of inductive biases, and, at the same time, it turned out to be more sensitive. This also
indicates that, in the presence of ambiguity in the training data, a learner is more likely to follow the
alternative with the shorter description length (i.e. the simplest one) when applied on unseen data,
showing consistency with the prescriptions of the theory of induction (Solomonoff, 1964). A similar
simplicity preference is argued to play a role in human language acquisition (Perfors et al., 2011).

Our work provides simple tools to investigate learners’ biases. We first show that FPA is an intuitive
measure to study biases when provided with simple tasks. Second, we present description length as
a robust measure to fairly compare learners’ biases. This metric considers learners’ size and their
ease of learning as opposed to accuracy-based metrics. Besides, it is a model- and task-agnostic
measure that succeeds in unveiling learners’ biases even when presented with more complex tasks
with spurious correlations.

Our findings can guide for architecture selection in the low-data regimes where inductive biases
might have a higher influence on model’s generalization performance. Large sparse datasets can also
benefit from predictable behavior in few-shot scenarios akin to what we consider.

Finally, our results demonstrate that relatively large deep learning models can generalize non-trivially
from as little as one example – as long as the task is aligned with the their inductive biases. We
believe this should reinforce interest in future work on injecting useful inductive biases in our learners
and, we hope, our findings and setup can provide a fertile ground for such work.

ACKNOWLEDGEMENTS

The authors are grateful to Marco Baroni, Emmanuel Dupoux, Emmanuel Chemla and participants of
the EViL seminar for their feedback on our work.

REFERENCES

Daniel Adiwardana, Minh-Thang Luong, David R So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, et al. Towards a human-like open-domain chatbot. arXiv
preprint arXiv:2001.09977, 2020.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kanwal,
Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization in deep
networks. In International Conference on Machine Learning, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

Joost Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe Kiela. Jump to better conclusions:
SCAN both left and right. In EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, 2018.

Léonard Blier and Yann Ollivier. The description length of deep learning models. In NeurIPS. 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. Siam
Review, 60(2):223–311, 2018.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Rahma Chaabouni, Eugene Kharitonov, Alessandro Lazaric, Emmanuel Dupoux, and Marco Baroni. Word-order
biases in deep-agent emergent communication. arXiv preprint arXiv:1905.12330, 2019.

Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 1965.

Noam Chomsky. Rules and representations: behavioral and brain sciences, 1980.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated convolutional
networks. In ICML. JMLR. org, 2017.

9

Published as a conference paper at ICLR 2021

Roberto Dessì and Marco Baroni. Cnns found to jump around more skillfully than rnns: Compositional
generalization in seq2seq convolutional networks. In ACL, 2019.

Emmanuel Dupoux. Cognitive science in the era of artificial intelligence: A roadmap for reverse-engineering
the infant language-learner. Cognition, 173:43–59, 2018.

Jeffrey L Elman, Elizabeth A Bates, Mark H Johnson, Annette Karmiloff-Smith, Kim Plunkett, and Domenico
Parisi. Rethinking innateness: A connectionist perspective on development, volume 10. MIT press, 1998.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In ACL, 2018.

Reuben Feinman and Brenden M Lake. Learning inductive biases with simple neural networks. arXiv preprint
arXiv:1802.02745, 2018.

José AR Fonollosa, Noe Casas, and Marta R Costa-jussà. Joint source-target self attention with locality
constraints. arXiv preprint arXiv:1905.06596, 2019.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional sequence to
sequence learning. In ICML, 2017.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Peter Grunwald. A tutorial introduction to the minimum description length principle. arXiv preprint
math/0406077, 2004.

Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Layer-wise coordination
between encoder and decoder for neural machine translation. In Advances in Neural Information Processing
Systems, pp. 7944–7954, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How do neural
networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Brenden M Lake and Marco Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. arXiv preprint arXiv:1711.00350, 2017.

Brenden M Lake, Tal Linzen, and Marco Baroni. Human few-shot learning of compositional instructions. arXiv
preprint arXiv:1901.04587, 2019.

Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne E Hubbard, and
Lawrence D Jackel. Handwritten digit recognition with a back-propagation network. In NeurIPS, 1990.

Joao Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar: Testing compositional generalization
in recurrent networks. arXiv preprint arXiv:1807.07545, 2018.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university press, 2003.

R Thomas McCoy, Robert Frank, and Tal Linzen. Does syntax need to grow on trees? sources of hierarchical
inductive bias in sequence-to-sequence networks. arXiv preprint arXiv:2001.03632, 2020.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran Yahav. A formal hierarchy
of rnn architectures, 2020.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. fairseq: A fast, extensible toolkit for sequence modeling. In NAACL-HLT 2019: Demonstrations, 2019.

Amy Perfors, Joshua B Tenenbaum, and Terry Regier. The learnability of abstract syntactic principles. Cognition,
118(3):306–338, 2011.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

Samuel Ritter, David GT Barrett, Adam Santoro, and Matt M Botvinick. Cognitive psychology for deep neural
networks: A shape bias case study. In ICML, 2017.

10

Published as a conference paper at ICLR 2021

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of neural nets. In COLT, 1992.

Ray J Solomonoff. A formal theory of inductive inference. part i. Information and control, 7(1):1–22, 1964.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In NeurIPS,
2014.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M Shieber. Lstm networks can perform
dynamic counting. arXiv preprint arXiv:1906.03648, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational power of finite precision rnns for
language recognition. arXiv preprint arXiv:1805.04908, 2018.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. In Advances in neural information processing systems, pp.
4148–4158, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C Mozer, and Yoram Singer. Identity crisis: Memorization
and generalization under extreme overparameterization. arXiv preprint arXiv:1902.04698, 2019.

11

Published as a conference paper at ICLR 2021

FPA L, nats
length l mul1 mul2 mul3 mem mul1 mul2 mul3 mem

LSTM-s2s no att. 20 0.00 0.01 0.78 0.00 52.27 22.20 1.17∗ 77.75
15 0.00 0.13 0.45 0.00 40.46 13.22 6.14∗ 66.10
10 0.00 0.92 0.00 0.00 26.48 0.65∗ 22.26 53.81
5 0.49 0.00 0.00 0.00 1.97∗ 26.50 54.97 36.13

LSTM-s2s att. 205 0.00 0.19 0.62 0.00 36.76 20.35 9.35∗ 49.34
156 0.00 0.14 0.76 0.00 37.84 18.42 5.53∗ 56.43
10 0.02 0.45 0.49 0.00 29.83 11.67 8.96 45.47
5 0.01 0.03 0.00 0.64 32.97 48.26 60.38 2.44∗

CNN-s2s 20 0.00 0.00 0.00 0.99 263.82 262.01 261.71 0.02∗
15 0.00 0.00 0.00 1.00 250.97 253.32 253.08 0.00∗
10 0.00 0.00 0.00 1.00 243.17 245.16 248.28 0.00∗
5 0.00 0.00 0.00 1.00 258.10 257.79 264.06 0.00∗

Transformer 20 0.00 0.00 0.00 0.97 37.90 51.47 57.57 5.31∗
15 0.00 0.00 0.00 1.00 40.36 51.62 57.42 2.50∗
10 0.00 0.00 0.00 1.00 38.05 49.88 55.61 2.47∗
5 0.00 0.00 0.00 1.00 37.96 51.83 60.19 0.74∗

Table 2: Multiplication by 3. FPA measures the fraction of seeds that generalize according to a
particular rule. Description length L is averaged across examples and seeds. The lowest L are in bold
and ∗ denotes stat. sig. difference in L (p < 10−3, paired t-test).

A CAN SEQ2SEQ LEARNERS MULTIPLY BY 3?

In our experiments on the Multiply-or-Add task we saw that LSTM-s2s learners are able to learn to multiply by
2 from a single example. A natural further question is whether these learners can learn to multiply by larger
numbers? Here we only provide a preliminary study in a hope to inspire more focused studies.

We build a task that is similar to Multiply-or-Add, but centered around multiplication by 3 instead of 2. The
single training example represents a mapping of an input string al to an output string b3l. As test inputs, we use
am with m coming from an interval [l − 3, l + 3].

Since 3x can be represented as a combination of addition and multiplication in several ways (3x = x + 2x =
2x + x), we consider 4 different candidate rules. As before, by mem we denote the constant mapping from
am → b3l. mul1 represents the mapping am → b2l+m. mul2 corresponds to am → bl+2m and mul3 denotes
am → b3m. The “explanation” mul1 is akin to the add rule in the Multiply-or-Add task. We use the same
hyperparameters and training procedure described in Section 4.

We report the results in Table 2. Like the results observed in the Multiply-or-Add task, both CNN-s2s and
Transformer learners show a strong preference for the mem rule while LSTM-based learners switch their
generalization according to the length of the training example l. Indeed, for CNN-s2s and Transformer, we note
an FPA-mem>0.97 independently of l (with L-mem significantly lower than others). LSTM-s2s att. learners
start inferring the mem rule for l = 5 (FPA=0.64, L=2.44), then switch to comparable preference for mul2
and mul3 when l = 10, and finally show a significant bias toward the mul3 hypothesis for l ∈ {15, 20} (e.g.
FPA-mul3=0.76 for l = 15). LSTM-s2s no att. learners are also subject to a similar switch of preference. That
is, for l = 5, these learners have a significant bias toward mul1 (FPA=0.49). Strikingly, when l = 10, 92%
LSTM-s2s no att. learners inferred perfectly the mul2 rule after one training example. Finally, we observe again
another switch to approximate mul3 for l ∈ {15, 20}.

Overall, while CNN-s2s and Transformer learners show a significant and robust bias toward mem, LSTM-based
learners generalize differently depending on the training input length. In particular, our results suggest that
these learners avoid adding very large integers by switching to the multiplicative explanation in those cases.
Answering our initial question, we see that LSTM-based learners can learn to multiply by 3 from a single
example.

5Only 21% of learners succeeded in learning the training example in this setting.
6Only 51% of learners succeeded in learning the training example in this setting.

12

Published as a conference paper at ICLR 2021

B ROBUSTNESS TO CHANGES IN ARCHITECTURE

In this section, we examine how changing different hyper-parameters affects learners’ preferences for mem-
orization, arithmetic, hierarchical and compositional reasoning. In particular, we vary the number of layers,
hidden and embedding sizes of the different learners and test their generalization on Count-or-Memorization,
Add-or-Multiply, Hierarchical-or-Linear, and Composition-or-Memorization tasks.

In all the experiments, we fix l = 40 and l = 20 for Count-or-Memorization and Add-or-Multiply respectively,
d = 4 for Hierarchical-or-Linear and M = 36 for Composition-or-Memorization. Finally, we keep the same
training and evaluation procedure as detailed in Section 4.2 of the main text. However, we use 20 different
random seeds instead of 100.

B.1 NUMBER OF HIDDEN LAYERS (NLayer)

We experiment with the standard seq2seq learners described in the main paper and vary the number of layers
NLayer ∈ {1, 3, 10}. Results are reported in Table 3.

First, when looking at the interplay between mem and count (Table 3a), we observe that, independently of
NLayer , more than 97% of CNN-s2s and Transformer learners inferred perfectly the mem rule (i.e. output b40 for
any given input am). Further, if the preference for count decreases with the increase of NLayer , LSTM-s2s att.
learners display in all cases a significant bias toward count with a large FPA and an L significantly lower than
L-mem . However, we note a decline of the bias toward count when considering LSTM-s2s no att. learners.
For NLayer = 1, 100% of the seeds generalize to perfect count, versus 6% for NLayer = 10. Note that this
lower preference for count is followed by an increase of preference for mem. However, there is no significant
switch of preferences according to L.

Second, we consider the Add-or-Multiply task where we examine the three generalization hypothesis add, mul
and mem. Results are reported in Table 3b. Similarly to the previous task, Transformer and CNN-s2s learners
are robust to the number of layers change. They perfectly follow the mem rule with FPA-mem=1.00. However,
LSTM-based learners show a more complex behavior: If single-layer LSTM-s2s att. and no att. demonstrate a
considerable bias for mul (FPA-mul>0.94), this bias fades in favor of add and memo for larger architectures.

Third, in Table 3c, we observe that larger learners are slightly less biased toward hierar and linear.
However, we do not observe any switch of preferences. That is, across different Nlayers, CNN-s2s learners
prefer the linear rule, whereas Transformers and, to a lesser degree, LSTM-based learners show a significant
preference for the hierar rule.

Finally, we do not observe an impact of NLayer on the Composition-or-Memorization task (see Table 3d),
demonstrating the robustness of biases w.r.t. learners’ size.

In sum, we note little impact of NLayer on learners’ generalizations. Indeed, LSTM-based learners can learn
to perform counting from a single training example, even when experimenting with 10-layer architectures.
For most tested NLayer , they favor mul and add over mem. In contrast, Transformer and CNN-s2s perform
systematic memorization of the single training example. Furthermore, independently of NLayer , Transformer
and LSTM-based learners show a bias toward the hierar hypothesis over the linear one, while CNN-based
learners do the opposite. Finally, the compositional experiments further support how inductive biases are barely
influenced by the change of the number of layers.

B.2 HIDDEN SIZE (SHidden)

We experimented in the main text with standard seq2seq learners when hidden size SHidden = 512. In this
section, we look at the effect of SHidden varying it in {128, 512, 1024}. We report learners performances in
Table 4.

First, Table 4a demonstrates how minor effect hidden size has on learners counting/memorization performances.
Indeed, for any given SHidden, between 84% and 100% of LSTM-based learners learn perfect counting after
only one training example. Similarly, and with even a lower variation, more than 91% of Transformer and
CNN-s2s learners memorize the single training example outputting b40 for any given am.

The same observation can be made when studying the interplay between the hierar and linear biases (Table
4c) and comp and mem biases (Table 4d). Concretely, Tables 4c and 4d show that learners’ generalizations are
stable across SHidden values with the exception of LSTM-based learners that loose significance for some tested
SHidden values. Yet, there is no switch of preference.

Finally, as demonstrated in Table 4b, all Transformer and CNN-s2s learners perform perfect memorization
when tested on the Add-or-Multiply task independently of their hidden sizes. Both LSTM-based learners are
significantly biased toward mul for SHidden ∈ {512, 1024}. However, when experimenting with smaller

13

Published as a conference paper at ICLR 2021

FPA L, nats
NLayer count mem count mem

LSTM-s2s no att. 1 1.00 0.00 0.01∗ 97.51
3 0.80 0.00 0.00∗ 60.80

10 0.06 0.47 16.89 22.02

LSTM-s2s att. 1 0.99 0.00 7.84∗ 121.48
3 0.50 0.00 11.30∗ 57.57

10 0.39 0.22 22.86∗ 45.13

CNN-s2s 1 0.00 0.98 660.73 0.02∗
3 0.00 1.00 1685.18 0.00∗

10 - - - -

Transformer 1 0.00 0.97 116.34 11.10∗
3 0.00 1.00 139.58 0.31∗

10 - - - -

(a) Count-or-Memorization

FPA L, nats
NLayer add mul mem add mul mem

LSTM-s2s no att. 1 0.00 0.94 0.00 25.42 0.31∗ 57.32
3 0.15 0.20 0.00 9.82 10.11 33.16
10 0.28 0.00 0.33 5.83 23.16 10.01

LSTM-s2s att. 1 0.00 0.98 0.00 30.26 1.40∗ 58.84
3 0.65 0.20 0.00 5.88∗ 15.67 27.82
10 0.11 0.11 0.28 9.66 27.72 8.26

CNN-s2s 1 0.00 0.00 1.00 318.12 346.19 0.00∗
3 0.00 0.00 1.00 1058.27 824.93 2.31∗
10 - - - - - -

Transformer 1 0.00 0.00 1.00 38.77 50.64 3.50∗
3 0.00 0.00 1.00 40.03 57.73 0.18∗
10 - - - - - -

(b) Add-or-Multiply

FPA L, nats
NLayer hierar linear hierar linear

LSTM-s2s no att. 1 0.05 0.00 31.04∗ 61.84
3 0.00 0.00 29.08∗ 50.92

10 - - - -

LSTM-s2s att. 1 0.30 0.00 26.32∗ 57.20
3 0.00 0.00 32.32∗ 50.12

10 - - - -

CNN-s2s 1 0.00 1.00 202.64 0.00∗
3 0.00 0.70 222.32 1.84∗

10 - - - -

Transformer 1 0.69 0.00 4.84∗ 35.04
3 0.56 0.00 5.48∗ 29.16

10 - - - -

(c) Hierarchical-or-Linear

FPA L, nats
NLayer comp mem comp mem

LSTM-s2s no att. 1 0.00 0.00 42.65 38.55
3 0.00 0.00 37.01 34.16
10 - - - -

LSTM-s2s att. 1 0.00 0.00 62.34∗ 70.92
3 0.00 0.00 46.10∗ 58.79
10 - - - -

CNN-s2s 1 0.75 0.00 1.44∗ 49.92
3 0.95 0.00 1.79∗ 66.44

10 - - - -

Transformer 1 0.00 0.00 147.83 6.36∗
3 - - - -

10 - - - -

(d) Composition-or-Memorization

Table 3: Effect of the number of layers (NLayer): FPA measures the fraction of seeds that generalize
according to a particular rule. Description length L is averaged across examples and seeds. The
lowest L are in bold and ∗ denotes stat. sig. difference in L (p < 10−2, paired t-test.). ‘-’ denotes
settings where learners have lower than 70% success rate on the train set.

14

Published as a conference paper at ICLR 2021

SHidden (=128), we detect a switch of preference for LSTM-s2s no att. learners. The latter start approximating
add-type rule (with significantly lower L). Lastly, we do not distinguish any significant difference between
add and mul for LSTM-s2s att. when SHidden = 128.

Taken together, learners’ biases are quite robust to SHidden variations. We however note a switch of preference
from mul to add for LSTM-s2s no att. learners when decreasing SHidden. Furthermore, we see a loss of
significant preference in five distinct settings.

B.3 EMBEDDING SIZE (SEmb)

We look here at the effect of the embedding size, SEmb, on learners’ generalizations. In particular, we vary
SEmb ∈ {16, 64, 256}. Results are reported in Table 5.

Across sub-tables 5a, 5b and 5c, we see small influence of SEmb on learners’ biases. For example, if we consider
the Count-or-Memorization task when varying SEmb (see Table 5a), between 95% and 100% of LSTM-s2s no
att. learners inferred perfectly the count hypothesis. More striking, between 99% and 100% of LSTM-s2s
att. learners learned the count rule after one training example. The same trend is observed for the remaining
learners and across the other tasks; Add-or-Multiply (Table 5b) and Hierarchical-or-Linear (Table 5c). Yet, we
still discern in some cases, systematic, but low, effects of SEmb. First, the larger SEmb is, the lower FPA-mul
of LSTM-s2s no att. learners is (from 0.94 for SEmb = 16 to 0.84 for SEmb = 256). However, LSTM-s2s
no att. learners still have considerable preference for mul for any tested SEmb. Second, we see an increase
of Transformer’s preference for hierar with the increase of SEmb. Surprisingly, for SEmb ≥ 64, 100% of
Transformer learners generalize to perfect hierar hypothesis.

Finally, when considering the Composition-or-Memorization task, we observe in Table 5d, for all learners, a
tendency to prefer comp generalization when SEmb is large. For example, if, for LSTM-based learners, we note
0.00 comp-FPA when SEmb = 16, comp-FPA≥ 0.85 with SEmb = 256. Interestingly, Transformers switch
their preference, showing a significant bias toward compositional reasoning with SEmb = 256.

In this section, we studied the impact of the number of layers, hidden and embedding sizes on learners’
generalizations. We found that, if these hyper-parameters can influence, in some cases, the degree of one
learner’s preference w.r.t. a given rule, inductive biases are quite robust to their changes. In particular, among all
tested combinations, we observe only 3 cases of preference switch (out of 136).

C ROBUSTNESS TO CHANGES IN TRAINING PARAMETERS

We examine here the effect of the training parameters on learners’ biases. As previously, we only consider the
Count-or-Memorization task with l = 40, the Add-or-Multiply task with l = 20, the Hierarchical-or-Linear task
with d = 4 and the Composition-or-Memorization task with M = 36. We experiment with the architectures
detailed in the main text; however, we use 20 different random seeds instead of 100.

We consider in this section two different hyperparameters: (1) the choice of the optimizer, and (2) the dropout
probability.

Optimizer We experiment with replacing the Adam optimizer (Kingma & Ba, 2014) with SGD (Bottou et al.,
2018). We found experimentally that learners failed to learn the training examples consistently in most of the
settings. Yet, when successful, they showed the same preferences. In particular, Transformer and CNN-s2s were
the only learners that had good performances on Count-or-Memorization and Add-or-Multiply train sets (success
rate higher than 70%). These learners showed a prefect generalization to the mem rule in both tasks. Prior works
had shown that SGD leads to better generalization compared to other adaptive variants (Wilson et al., 2017).
However, based on our few successful instances with SGD, we do not observe a difference between SGD and
Adam results. One main difference compared to the prior work is the definition of generalization. For instance,
in the Count-or-Memorization task, memorizing the training example could be seen as a perfect generalization
as it explains the training set fully. Hence, preferring memorization when trained with SGD, as opposed to
counting, does not contradict the advantage of SGD when testing generalization performances.

Dropout We then examine how the dropout probability affects learners’ preferences. We use, as mentioned
in the main paper, Adam optimizer and vary the dropout probability dropout ∈ {0.0, 0.2, 0.5}. Results are
reported in Table 6.

Both Count-or-Memorization (Table 6a) and Add-or-Multiply (Table 6b) tasks show the same trend. First,
Transformer and CNN-s2s learners prefer consistently the mem rule. Second, when looking at LSTM-based
learners, we distinguish a more complex behavior. For dropout ≥ 0.2, LSTM-based learners show a significant
preference for arithmetic reasoning (count for the Count-or-Memorization task and mul for the Add-or-
Multiply task). However, when dropout = 0.0, we see different preferences. In particular, both LSTM-based
learners show a preference for mem (not significant for LSTM-s2s att.), LSTM-s2s no att. learners are significantly

15

Published as a conference paper at ICLR 2021

FPA L, nats
SHidden count mem count mem

LSTM-s2s no att. 128 0.84 0.00 8.25∗ 109.84
512 1.00 0.00 0.01∗ 97.51

1024 1.00 0.00 0.00∗ 149.86

LSTM-s2s att. 128 0.90 0.00 0.01∗ 89.31
512 0.99 0.00 7.84∗ 121.48

1024 1.00 0.00 0.00∗ 300.93

CNN-s2s 128 0.00 1.00 805.01 0.00∗
512 0.00 0.98 660.73 0.02∗

1024 0.00 1.00 993.85 0.00∗

Transformer 128 0.00 0.91 110.68 9.57∗
512 0.00 0.97 116.34 11.10∗

1024 0.00 0.94 122.38 1.42∗

(a) Count-or-Memorization

FPA L, nats
SHidden add mul mem add mul mem

LSTM-s2s no att. 128 0.00 0.00 0.00 7.56∗ 19.66 43.72
512 0.00 0.94 0.00 25.42 0.31∗ 57.32
1024 0.25 0.75 0.00 30.29 5.26∗ 77.99

LSTM-s2s att. 128 0.00 0.00 0.00 15.32 17.37 45.09
512 0.00 0.98 0.00 30.26 1.40∗ 58.84
1024 0.00 1.00 0.00 51.70 3.09∗ 86.82

CNN-s2s 128 0.00 0.00 1.00 281.34 301.75 0.02∗
512 0.00 0.00 1.00 318.12 346.19 0.00∗
1024 0.00 0.00 1.00 520.75 508.75 0.00∗

Transformer 128 0.00 0.00 1.00 35.21 46.07 2.94∗
512 0.00 0.00 1.00 38.77 50.64 3.50∗
1024 0.00 0.00 1.00 38.74 51.71 0.88∗

(b) Add-or-Multiply

FPA L, nats
SHidden hierar linear hierar linear

LSTM-s2s no att. 128 0.00 0.00 30.40∗ 79.00
512 0.05 0.00 31.04∗ 61.84

1024 0.00 0.00 60.24 47.24
LSTM-s2s att. 128 0.00 0.00 32.72∗ 72.28

512 0.30 0.00 26.32∗ 57.2
1024 0.05 0.00 65.80 73.80

CNN-s2s 128 0.00 0.95 178.88 0.00∗
512 0.00 1.00 202.64 0.00∗

1024 0.00 0.95 225.36 0.12∗

Transformer 128 0.75 0.00 2.96∗ 36.92
512 0.69 0.00 4.84∗ 35.04

1024 0.75 0.00 31.04∗ 61.84

(c) Hierarchical-or-Linear

FPA L, nats
SHidden comp mem comp mem

LSTM-s2s no att. 128 0.00 0.00 37.67∗ 58.52
512 0.00 0.00 42.65 38.55

1024 0.00 0.00 37.66∗ 79.71

LSTM-s2s att. 128 0.00 0.00 66.65 63.84
512 0.00 0.00 62.34∗ 70.92

1024 0.00 0.00 42.38∗ 73.28

CNN-s2s 128 0.85 0.00 0.99∗ 53.38
512 0.75 0.00 1.44∗ 49.92

1024 0.80 0.00 1.24∗ 54.86

Transformer 128 0.00 0.66 155.50 6.23∗
512 0.00 0.00 147.83 6.36∗

1024 0.00 0.60 151.70 6.02∗

(d) Composition-or-Memorization

Table 4: Effect of the hidden size (SHidden): FPA measures the fraction of seeds that generalize
according to a particular rule. Description length L is averaged across examples and seeds. The
lowest L are in bold and ∗ denotes stat. sig. difference in L (p < 10−2, paired t-test).

16

Published as a conference paper at ICLR 2021

FPA L, nats
SEmb count mem count mem

LSTM-s2s no att. 16 1.00 0.00 0.01∗ 97.51
64 0.95 0.00 0.00∗ 91.54

256 1.00 0.00 0.00∗ 90.32

LSTM-s2s att. 16 0.99 0.00 7.84∗ 121.48
64 1.00 0.00 11.12∗ 117.39

256 1.00 0.00 9.79∗ 127.31

CNN-s2s 16 0.00 0.98 660.73 0.02∗
64 0.00 1.00 670.53 0.00∗

256 0.00 0.95 826.23 0.01∗

Transformer 16 0.00 0.97 116.34 11.10∗
64 0.00 1.00 232.53 0.00∗

256 0.00 1.00 338.88 0.00∗

(a) Count-or-Memorization

FPA L, nats
SEmb add mul mem add mul mem

LSTM-s2s no att. 16 0.00 0.94 0.00 25.42 0.31∗ 57.32
64 0.05 0.90 0.00 23.70 1.41∗ 51.33

256 0.05 0.84 0.00 20.42 1.33∗ 51.34

LSTM-s2s att. 16 0.00 0.98 0.00 30.26 1.40∗ 58.84
64 0.07 0.93 0.00 26.71 2.54∗ 50.65

256 0.00 1.00 0.00 26.83 1.94∗ 51.20

CNN-s2s 16 0.00 0.00 1.00 318.12 346.19 0.00∗
64 0.00 0.00 1.00 293.86 294.50 0.00∗

256 0.00 0.00 1.00 486.81 447.20 0.00∗

Transformer 16 0.00 0.00 1.00 38.77 50.64 3.50∗
64 0.00 0.00 1.00 87.11 142.83 0.00∗

256 0.00 0.00 1.00 118.34 172.65 0.00∗

(b) Add-or-Multiply

FPA L, nats
SEmb hierar linear hierar linear

LSTM-s2s no att. 16 0.05 0.00 31.04∗ 61.84
64 0.10 0.00 34.44∗ 72.2
256 0.00 0.00 36.32 76.56

LSTM-s2s att. 16 0.30 0.00 26.32∗ 57.2
64 0.30 0.00 23.4 72.68
256 0.05 0.00 55.56∗ 90.76

CNN-s2s 16 0.00 1.00 202.64 0.00∗
64 0.00 1.00 227.12 0.08∗
256 0.00 0.94 419.28 8.84∗

Transformer 16 0.69 0.00 4.84∗ 35.04
64 1.00 0.00 0.00∗ 81.16
256 1.00 0.00 0.56∗ 121.68

(c) Hierarchical-or-Linear

FPA L, nats
SEmb comp mem comp mem

LSTM-s2s no att. 16 0.00 0.00 42.65 38.55
64 0.95 0.00 0.11∗ 31.44

256 0.95 0.00 2.12∗ 23.63

LSTM-s2s att. 16 0.00 0.00 62.34∗ 70.92
64 0.95 0.00 0.36∗ 47.57

254 0.85 0.00 0.86∗ 49.39

CNN-s2s 16 0.75 0.00 1.44∗ 49.92
64 1.00 0.00 0.01∗ 112.09

256 0.95 0.00 0.18∗ 139.51

Transformer 16 0.00 0.00 147.83 6.36∗
64 0.00 0.00 103.25 69.07∗

256 0.10 0.00 70.76∗ 107.54

(d) Composition-or-Memorization

Table 5: Effect of the embedding size (SEmb): FPA measures the fraction of seeds that generalize
according to a particular rule. Description length L is averaged across examples and seeds. The
lowest L are in bold and ∗ denotes stat. sig. difference in L (p < 10−2, paired t-test).

17

Published as a conference paper at ICLR 2021

jump ⇒ JUMP
jump around right ⇒ RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
turn left twice ⇒ LTURN LTURN
jump opposite left after walk around left ⇒ LTURN WALK LTURN WALK LTURN WALK LTURN WALK LTURN LTURN JUMP

Figure 2: Examples of SCAN trajectories and instructions, adopted from (Lake & Baroni, 2017).

biased toward add whereas LSTM-s2s att. do not show any significant bias with a slight preference for mem. In
sum, the lower dropout is, the more likely learners will overfit the mem rule.

The same observation holds for the Composition-or-Memorization task in Table 6d. That is, dropout has no
impact on CNN-s2s and Transformer biases (the former show a significant preference for comp while the
latter prefers mem for any tested dropout value), but does impact LSTM-based learners’ biases, such as a
dropout = 0.0 favors memorization.

Finally, we consider the Hierarchical-or-Linear task (see Table 6c). We observe that, for any dropout value,
CNN-s2s and Transformer inductive biases remain the same. Indeed, CNN-s2s learners show a consistent
preference for linear with FPA≥ 0.75 while Transformers prefer hierar (note that this preference is not
very large for dropout = 0.0 with an FPA-hierar of 0.05, compared to an FPA-hierar of 1.00 and 0.69
for dropout = 0.2 and 0.5 respectively). On the other hand, dropout has a larger impact on LSTM-based
learners. When dropout = 0.5, both LSTM-s2s prefer the hierar hypothesis. However, for dropout = 0.0,
both learners do not show any significant preference for any of the rules (with 0 FPA for both rules and close L
values).

D SCAN

In the main text, we studied preferences of the learners towards compositional generalization in the Composition-
or-Memorization task. Here, we resort to a larger-scale SCAN task (Lake & Baroni, 2017), which can be thought
of as a generalization of Composition-or-Memorization with multiple modifiers. In SCAN, inputs are sequences
that represent trajectories and outputs are step-wise instructions for following these instructions (see Figure 2).
We experiment with the SCAN-jump split of the dataset, where the test set (7706 examples) is obtained by
filtering all compositional uses of one of the primitives, jump. The train set (14670 examples) contains all
uses of all other primitives (including compositional), and lines where jump occurs in isolation (only as a
primitive). This makes the training data ambiguous only for the jump instruction. However, learners can transfer
compositional rules across the primitives. We refer to this split simply as SCAN.

We consider two generalizations: (1) all input sequences with jump are mapped to a single instruction JUMP as
memorized from the training examples, or (2) underlying compositional grammar. We call them mem and comp,
respectively. We used the original test as a representative of the comp candidate explanation and generated one
for mem ourselves.

Recently, Hupkes et al. (2020) compared how different seq2seq learners perform on a context-free grammar,
similar to SCAN, that requires compositional reasoning. Their work aims to study if and how learners pick up
the underlying rules in the data. In contrast, our setup allows investigating learners’ preferences. In particular, we
apply the description length metric to investigate learners’ biases toward the mem and comp rules that explain
the training examples in our setup.

Sequence-to-sequence learners We use the following models when experimenting with SCAN:
LSTM-s2s: We chose the architecture used in Lake & Baroni (2017). In particular, Encoder and Decoder are
two hidden layers with 200 units and embedding of dimension 32. This architecture gets 0.98 test accuracy on
the i.i.d. (simple) split of SCAN, averaged over 10 seeds.
CNN-s2s: We use one of the successful CNN-s2s models of Dessì & Baroni (2019) that has 5 layers and
embedding size of 128. We also vary kernel size in {3, 5, 8} as it was found to impact the performance on
SCAN (Dessì & Baroni, 2019). These architectures reach test accuracy above 0.98 on the i.i.d. split of SCAN,
averaged over 10 seeds.
Transformer: We believe our work is the first study of Transformer’s performance on SCAN. For both Encoder
and Decoder, we use 8 attention heads, 4 layers, embedding size of 64, FFN layer dimension of 256. This
architecture gets 0.94 test accuracy on the i.i.d. split of SCAN, averaged over 10 seeds.

Training and evaluation We follow the same scenario described in the main paper with two differences:
(a) when calculating L, we use blocks of size 1024, (b) during training, we sample 104 batches with replacement,
similar to (Lake & Baroni, 2017). We use batches of size 16 for LSTM-s2s & CNN-s2s, and 256 for Transformer.
We repeat the training/evaluation of each learner 10 times, varying the random seed. Again, we use Adam
optimizer and a learning rate of 10−3. Due to the large number of test examples and low performance of the

18

Published as a conference paper at ICLR 2021

FPA L, nats
dropout count mem count mem

LSTM-s2s no att. 0.0 0.00 0.20 56.23 16.52∗
0.2 0.95 0.00 0.17∗ 60.15
0.5 1.00 0.00 0.01∗ 97.51

LSTM-s2s att. 0.0 0.32 0.68 63.30 47.68
0.2 0.95 0.05 33.66∗ 87.36
0.0 0.99 0.00 7.84∗ 121.48

CNN-s2s 0.0 0.00 0.55 1034.67 0.43∗
0.2 0.00 0.98 999.62 0.01∗
0.5 0.00 0.98 660.73 0.02∗

Transformer 0.0 0.00 0.65 261.02 1.17∗
0.2 0.00 1.00 171.31 0.05∗
0.5 0.00 0.97 116.34 11.10∗

(a) Count-or-Memorization

FPA L, nats
dropout add mul mem add mul mem

LSTM-s2s no att. 0.0 0.25 0.00 0.00 5.00∗ 35.55 19.07
0.2 0.30 0.45 0.00 12.07 11.04 37.39
0.5 0.00 0.94 0.00 25.42 0.31∗ 57.32

LSTM-s2s att. 0.0 0.00 0.11 0.58 25.09 36.33 12.09
0.2 0.18 0.53 0.18 22.22 9.92∗ 34.48
0.5 0.00 0.98 0.00 30.26 1.40∗ 58.84

CNN-s2s 0.0 0.00 0.00 0.65 236.41 247.52 0.42∗
0.2 0.00 0.00 1.00 438.06 464.26 0.00∗
0.5 0.00 0.00 1.00 318.12 346.19 0.00∗

Transformer 0.0 0.00 0.00 0.65 84.58 130.88 0.96∗
0.2 0.00 0.00 1.00 65.62 99.05 0.02∗
0.5 0.00 0.00 1.00 38.77 50.64 3.50∗

(b) Add-or-Multiply

FPA L, nats
dropout hierar linear hierar linear

LSTM-s2s no att. 0.0 0.00 0.00 16.38 17.72
0.2 0.00 0.00 11.09∗ 19.87
0.5 0.05 0.00 7.76∗ 15.46

LSTM-s2s att. 0.0 0.00 0.00 31.12 28.61
0.2 0.00 0.00 10.63 17.55
0.5 0.30 0.00 6.58∗ 14.30

CNN-s2s 0.0 0.00 0.75 68.48 0.44∗
0.2 0.00 1.00 99.42 1.16∗
0.5 0.00 1.00 50.66 0.00∗

Transformer 0.0 0.05 0.00 3.99∗ 8.56
0.2 1.00 0.00 0.09∗ 13.09
0.5 0.69 0.00 1.21∗ 8.76

(c) Hierarchical-or-Linear

FPA L, nats
dropout comp mem comp mem

LSTM-s2s no att. 0.0 0.00 0.00 32.66 11.15∗
0.2 0.30 0.00 6.42 11.01
0.5 0.00 0.00 42.65 38.55

LSTM-s2s att. 0.0 0.00 0.00 22.24 10.93∗
0.2 0.45 0.00 4.38∗ 35.14
0.5 0.00 0.00 62.34∗ 70.92

CNN-s2s 0.0 0.30 0.00 53.00∗ 92.06
0.2 0.75 0.00 0.37∗ 110.50
0.5 0.75 0.00 1.44∗ 49.92

Transformer 0.0 0.00 0.05 129.65 27.12∗
0.2 0.00 0.00 102.90 27.56∗
0.5 0.00 0.00 147.83 6.36∗

(d) Composition-or-Memorization

Table 6: Effect of dropout probability: FPA measures the fraction of seeds that generalize according
to a particular rule. Description length L is averaged across examples and seeds. The lowest L are in
bold and ∗ denotes stat. sig. difference in L (p < 10−2, paired t-test).

19

Published as a conference paper at ICLR 2021

Accuracy L, ×1000 nats
comp mem comp mem

LSTM-s2s no att. 0.00 0.00 8.3∗ 45.0
LSTM-s2s att. 0.00 0.00 9.1∗ 34.8
CNN-s2s, kernel width 3 0.14 0.03 3.5∗ 19.0
CNN-s2s, kernel width 5 0.26 0.02 2.0∗ 21.8
CNN-s2s, kernel width 8 0.36 0.01 1.8∗ 24.3
Transformer 0.00 0.00 7.3∗ 23.7

Table 7: SCAN: Accuracy is averaged across seeds and examples. Description length L is averaged
across examples and seeds. The lowest L are in bold and ∗ denotes stat. sig. difference in L (p < 10−3,
paired t-test).

learners, all FPA scores would be equal to zero. Hence, we follow Lake & Baroni (2017) and use per-sequence
accuracy, i.e. the ratio of the sequences with all output tokens predicted correctly.

Results We report our results in Table 7. First, we see that CNN-s2s learners have a strong preference to
comp, both in accuracy and description length. Furthermore, we observe that with an increase in the kernel size,
description length of mem increases, while description length of comp decreases, indicating that the preference
for comp over mem grows with the kernel width. We believe this echoes findings of (Dessì & Baroni, 2019).

While accuracy is well below 0.01 for all other learners/candidate combinations (and rounded to 0.00), according
to the description length, Transformer and LSTM-based learners also have preference for comp over mem. This
can be due to the transfer from compositional training examples, that can make comp explanation most “simple”
given the dataset. Hence, the failure for systematic generalization in SCAN comes not from learners’ preferences
for mem. We believe this resonates with the initial qualitative analysis in (Lake & Baroni, 2017).

E STUDYING INDUCTIVE BIASES OF LM-LIKE ARCHITECTURES

While in this paper we focused on studying inductive biases of seq2seq architectures, we believe our entire
framework can be used for investigating biases of architectures used in language modeling (LM). As language
modeling emerges as a general few-shot learning mechanism where textual prompting is used as an inter-
face (Brown et al., 2020), it becomes important to understand how models generalize in such a setup. In this
Section, we demonstrate the applicability of our tasks and measures to such learners and scenarios.

We propose to study inductive biases of LM-like architectures by using prompt-based versions of our tasks
akin to GPT2 (Radford et al., 2019) & GPT3 (Brown et al., 2020). As an example, we can train an LM-like
architecture to continue the sequence “<sos>aaa<sep>” as "<sos>aaa<sep>bbb<eos>" and then prompt it with
"<sos>aaaa<sep>" and check the output: is it "<sos>aaaa<sep>bbb<eos>" (mem) or "<sos>aaaa<sep>bbbb<eos>
(count)? Such formulation makes it trivial to adapt our tasks (Section 3) for the architectures used in language
modeling. However, training differs from that of a language model due to the presence of the prompt.

In the following, we experiment with a variant of Transformer, namely joint source-target self-attention learner
introduced by He et al. (2018). We use the code provided in (Fonollosa et al., 2019).7 The joint source-target
self-attention learner differs from the structure of Transformer in three ways. First, instead of attending to the
last layer of the encoder in standard Transformers, here, each layer in the decoder attends to the corresponding
layer in the encoder. Second, the separate encoder-decoder attention module and the decoder self-attention are
merged into one attention, called mixed attention. The mixed attention is hence used to extract information both
from the source sentence and the previous target tokens. Finally, joint source-target self-attention shares the
parameters of attention and feed-forward layer between the encoder and decoder. The use of mixed attention and
the sharing of parameters make the encoder/decoder distinction artificial. Indeed, we can see this learner as a
"decoder-only" LM-like architecture that is adapted to performing seq2seq tasks in a way we described in the
previous paragraph.

We use the same hyper-parameters of Transformer presented in the main text. Preliminary experiments showed
that joint source-target self-attention learners do not succeed in the Hierarchical-or-Linear and Composition-or-
Memorization tasks (i.e., less than 70% of the seeds learned the training set) when embedding size Semb = 16
(the one used in the main experiments). We hence set Semb = 64. The remaining hyper-parameters remain
unchanged. Note that, according to Table 5, there is no switch of biases for any setting when considering

7Code link: https://github.com/jarfo/joint. However, unlike Fonollosa et al. (2019), we do
not consider the locality constraint, and set the kernel_size_list parameter to None. This makes the
architecture equivalent to the one introduced in (He et al., 2018).

20

https://github.com/jarfo/joint

Published as a conference paper at ICLR 2021

Count-or-Memorization Add-or-Multiplication Hierarchical-or-Linear Composition-or-Memorization

count mem add mul mem hierar linear comp mem

FPA 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.10 0.00
L, nats 160.31 0.00∗ 71.55 121.09 0.00∗ 2.59∗ 74.90 96.52 57.94∗

Table 8: Measuring biases of joint source-target self-attention learners: FPA measures the fraction of
seeds that generalize according to a particular rule. Description length L is averaged across examples
and seeds. The lowest L are in bold and ∗ denotes stat. sig. difference in L (p < 10−2, paired t-test).

Semb = 64 compared to Semb = 16. Specifically for Transformer, the only difference is that with Semb = 64,
the latter shows even a stronger bias towards the hierarchical rule in the Hierarchical-or-Linear task.

Finally, similar to Sections B and C, we only consider the Count-or-Memorization task with l = 40, the Add-or-
Multiply task with l = 20, the Hierarchical-or-Linear task with d = 4 and the Composition-or-Memorization
task with M = 36 and run 20 seeds per setting. Results are reported in Table 8.

First, when considering the arithmetic tasks (i.e., Count-or-Memorization and Add-or-Multiplication), we note a
clear preference for the memorization rule (with a zero L and 1.00 FPA) similar to Transformer behavior (see
Table 5). Second, joint source-target self-attention learners are, similarly to Transformers, biased towards the
hierar rule with 100% of the seeds generalized perfectly to the hierar rule and a significantly lower L.
Finally, for the Compositional-or-Memorization, while only 1 seed generalized perfectly to the comp rule, L
shows a significant preference for the mem rule, in agreement with Transformers’ biases.

Overall, our experiments in this Section indicate that the inductive biases of the "decoder-only" Transformer
learner are very close to that of a standard Transformer seq2seq learner. On a higher level, we have demonstrated
that our tasks and the description length measure can be applied for studying inductive biases of architectures
that are often used in language modeling, indicating a high universality of the approach.

F EVOLUTION OF INDUCTIVE BIASES AT TRAINING

The description length measure that we defined by Eq. 1 represents both (a) how close the learner’s generalization
is to a fixed “explanation” of the data, and (b) if it can learn this explanation quickly, with few examples. In
this Section, we aim to peak into the latter process, by looking how quick a learner can pick up a candidate
explanation. To do that, we use the Compositional-or-Memorization task with 1000 different primitives.

We organize the experiment in the following way. We start by training learners on the training data, composed
of all primitives and M = 10 (i.e., 10 compositional examples). We measure description length of the comp
candidate generalization on the remaining (1000-10 compositional examples). Next, we train learners from
scratch, but this time we add 10 additional compositional example (M + 10), and measure the description length
on the remaining 1000-20 compositional examples. We repeat this procedure until all compositional examples
are exhausted. As in this process description length will decrease do to simply having less examples left for the
evaluation, we normalize it by dividing by the number of remaining examples. We denote the result as L̄.

Since this is a new task with a larger number of primitives, the hyperparameters used in main experiments
wouldn’t allow the models to reliably learn the training set. We hence use an embedding size of 64 for all
architectures to have more robust convergence. For Transformer only, we also use a larger architecture with 2
layers. All the other hyperparameters remain unchanged compared to the experiments in the main text and we
run 20 seeds for each setting. We report results in Figure 3.

Figure 3 shows that CNN-s2s are the fastest to prefer the compositional rule, starting already with low L̄. Indeed,
when provided by only 20 compositional examples, L̄ is almost zero. On the other extreme, Transformers’
behavior persists irrespective of M with a large variance. If we note a decrease of L̄ when increasing M , this
tendency is very slow. Interestingly, while LSTM-s2s no att. learners start as less biased towards compositionality
compared to Transformers, they display a lower L̄ after seeing 120 compositional examples, and converge to an
almost zero L̄ with M > 600.

21

Published as a conference paper at ICLR 2021

10 110 210 310 410 510 610 710 810 910
Number of compositional examples M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L

LSTM-s2s att.
LSTM-s2s noatt.
CNN-s2s
Transformer

Figure 3: Per-example average description length L̄ (nats), across 20 seeds for each learner as a
function of number of compositional training examples. Shaded area represents 90% confidence
interval.

22

	Introduction
	Searching for inductive biases
	Tasks
	Methodology
	Sequence-to-sequence learners
	Training and evaluation

	Experiments
	Related Work
	Discussion and Conclusion
	Can seq2seq learners multiply by 3?
	Robustness to changes in architecture
	Number of hidden layers (NLayer)
	Hidden size (SHidden)
	Embedding size (SEmb)

	Robustness to changes in training parameters
	SCAN
	Studying inductive biases of LM-like architectures
	Evolution of inductive biases at training

