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ABSTRACT

Existing research on fairness-aware recommendation has mainly
focused on the quantification of fairness and the development of fair
recommendation models, neither of which studies a more substan-
tial problem-the identification of the source of model disparities in
recommendation. This information is critical for the recommender
system designers to understand the intrinsic recommendation mech-
anism and provides insights on how to improve model fairness to
the decision makers. Fortunately, with the rapid development of
explainable A, we are able to use model explainability to gain in-
sights into model (un)fairness. In this paper, We study the problem
of explainable fairness in recommendation as we believe this type
of study would motivate and guide the reasoning of fair recom-
mender systems with a more promising and unified methodology.
Particularly, we focus on a common setting with feature-aware
recommendation and popularity bias. We propose a counterfactual
explainable fairness framework, called CEF, which generates ex-
planations that are able to improve fairness without significantly
hurting the performance. The CEF framework formulates an op-
timization problem to learn the “minimal” change to a given fea-
ture that changes the recommendation results to a certain level
of fairness. Based on the counterfactual recommendation result of
each feature, we calculate an explainability score in term of the
fairness-utility trade-off to rank all the feature-based explanations,
and select the top ones as fairness explanations. Experimental re-
sults on several real-world datasets validate that our method is
able to effectively provide explanations to the model disparities
and these explanations can achieve better fairness-utility trade-off
when using them for recommendation than all the baselines.
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1 INTRODUCTION

Nowadays, with the extensive deployment in e-commerce plat-
forms, recommender systems (RS) have been widely acknowledged
for their strong capabilities of delivering high-quality services to
consumers [9, 20, 37, 41]. Despite these huge benefits, the issue
of fairness in recommendation has also attracted considerable in-
terests from both academia and industry [21, 29, 40]. Fortunately,
these concerns about algorithmic fairness have resulted in a resur-
gence of interest to develop fairness-aware recommendation models
to ensure that such models would not become a source of unfair
discrimination in recommendation [14, 19, 28, 29]. In the area of
fairness-aware recommendation, existing research mainly focuses
on the quantification of fairness and the development of fair rec-
ommendation models. Fairness quantification aims to develop and
investigate quantitative metrics that measure algorithmic dispari-
ties in ranking or recommendation [14, 16, 27]. For example, [14, 27]
proposed and studied the recommendation quality unfairness be-
tween active users and inactive users. Meanwhile, fair recommenda-
tion aims to find feasible algorithmic approaches that can adjust the
recommendation results to reduce recommendation disparities. For
example, [2, 19] proposed approaches to mitigating the popularity
bias between different item groups.

Despite the great efforts on fairness-aware recommendation and
possibly countless future emergence of discoveries, one fundamen-
tal question that has not been studied extensively yet is fairness
diagnostics, i.e.,

o RQ What are the sources that result in model disparities in recom-
mendation?

Considering the huge commercial and social values that RS brought
the e-commerce platforms and the society, we believe that the an-
swer to this RQ is critical for recommendation system designers
to understand the intrinsic recommendation mechanism and to
provide insights for decision makers on how to improve model fair-
ness. Yet, the answer to this question turns out to be unsurprisingly
challenging especially when the predictive model is a large-scale
deep black-box model with large number of input features. For
example, it is hard to tell how input features (like screen size, bat-
tery, camera) would influence the popularity bias. Note that some
pioneer works in other areas have leveraged explainable Al to seek
for feature-based explanations for certain fairness outcome. For
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instance, Begley et al. used Shapley value to attribute the model
disparity in classification [4, 36]. Though their methods success-
fully provide explanations to the model disparities in simple tasks,
they are not suitable for recommender systems where the model
inputs could be extremely large and sparse. Furthermore, existing
methods only partially answers the above question, since they only
explain either utility or fairness alone, ignoring the fact that there is
an inherent trade-off between fairness and utility, which has been
demonstrated by several recent work both empirically and theo-
retically [24, 25, 30, 51]. And this incomplete view may potentially
downgrade the stringency of the method because explanations that
have the same effect on model fairness may not have the same
effect on model utility.

In this paper, we propose a novel framework to explain the
recommendation (un)fairness based on a counterfactual reason-
ing paradigm. Particularly, we focus on a common setting with
feature-aware recommendation and item popularity bias [1, 2, 19].
Specifically, we propose a counterfactual explainable fairness frame-
work (CEF) to generate feature-based explanations in terms of item
exposure disparity for various black-box feature-aware recommen-
dation models. We first follow prior works [11, 45, 54] to build
a user-feature attention matrix as well as an item-feature quality
matrix, and use both matrices to train a feature-aware recommenda-
tion model. Then, we aim to find the “minimum” changes to a given
feature in the feature space that switch the recommendation results
to a certain level of fairness. In order to avoid overwhelmed sacri-
ficing of the recommendation quality, we also constrain the feature
perturbation within a certain degree in the objective function. With
the counterfactual learning objective and the perturbation con-
straint, our proposed framework is able to generate feature-level
explanations that consider the fairness-utility trade-off. Finally,
we calculate an explainability score in term of the fairness-utility
trade-off based on the counterfactual recommendation result of
each feature. These scores help ranking the feature-based explana-
tions and we select the top ones as fairness explanations for the
pre-trained recommendation model.

In general, the contributions of this work can be summarized as
follows:

o We study the problem of explainable fairness in recommendation
and propose a framework based on counterfactual reasoning. To
the best of our knowledge, this is the first work that introduces
explainable fairness into modern recommender systems.

o We design a learning-based intervention method to discover crit-
ical features that will significantly influence the fairness-utility
trade-off and use them as fairness explanations for black-box
feature-aware recommendation systems;

e We conduct extensive experiments to evaluate our frameworks’s
effectiveness and validate that explanations generated by CEF
can achieve better fairness-utility trade-off when using them for
recommendation than all the baselines.

2 RELATED WORK

There are several main research lines related to our work: explain-
able recommendation, fairness in recommendation and fairness
explanation. We will briefly introduce each of them in this section.

2.1 Explainable Recommendation

Explainable recommendation has been an important topic in both
academics and industry [53]. Recently, there are several promising
methods proposed, as they help to improve the transparency, user
satisfaction and trust over the recommender systems [53]. Early
approaches mainly attempt to make latent factor models explain-
able by aligning each latent dimension with an explicit meaning,
such as item features [12, 23, 55] or word topics [31]. Recently,
with the ever prospering of deep learning technology, many neural
algorithms are developed to explain recommendations based on
neural models such as attention mechanism. For example, [38] pro-
posed to attentively highlight particular words in user reviews as
explanations, [8] proposed to retrieve informative sentences from
reviews as explanations, and [13] proposed visually explainable
recommendation to highlight image regions as explanations. In
addition to text-based or image-based explainable recommendation,
knowledge-aware explainable recommendation has also attracted
research attention recently, such as [3, 44, 46].

Works using counterfactual reasoning to improve recommenda-
tion explainability [22, 41, 42, 47] have been proposed very recently.
Ghazimatin et al. [22] tried to generate provider-side counterfac-
tual explanations by looking for a minimal set of user’s historical
actions (e.g. reviewing, purchasing, rating) such that the recom-
mendation can be changed by removing the selected actions. Xu
et al.[47] proposed to improve this by using perturbation model to
obtain counterfactuals. Tran et al. [42] adopted influence functions
for identifying training points most relevant to a recommendation
while deducing a counterfactual set for explanations. Tan et al.[41]
proposed to generate explanations that considers the causal rela-
tions to the outcome.

Yet, our work is different from prior works on two key points:
1) In terms of problem definition, prior works generate counter-
factual explanations to explain user behaviors or recommendation
results, while our method generates such explanations to explain
the fairness-utility trade-off in recommendation. 2) In terms of tech-
nique, our method adopts a counterfactual reasoning framework
from a global perspective, which explains the entire model behavior,
while prior works focus on generating individual explanations for
an individual recommendation result.

2.2 Fairness in Recommendation

The issue of fairness in recommendation has received growing
concerns as the recommender systems touch and influence more
and more people in their daily lives. Several recent works focus-
ing on fairness quantification have found various types of bias
in recommendations, such as gender and race [2, 10], item popu-
larity [1, 19], user feedback [14, 27, 28] and opinion polarity [49].
Meanwhile, the relevant methods for fair recommendation can be
roughly divided into three categories: pre-processing, in-processing
and post-processing algorithms [18, 29]. First of all, pre-processing
methods usually aim to minimize the bias in the data sources. It
includes fairness-aware sampling methodologies in the data collec-
tion process to cover items of all groups, balancing methodologies
to increase coverage of minority groups, and repairing method-
ologies to ensure label correctness [18]. Secondly, in-processing
methods aim at encoding fairness as part of the objective function,



typically as a regularizer [1, 5]. Finally, post-processing methods
tend to modify the presentations of the results, e.g., re-ranking
through linear programming [27, 40, 48] or multi-armed bandit
[7]. Based on the characteristics of the recommender system itself,
there also have been a few works related to multi-sided fairness in
multi-stakeholder systems [6, 17, 33].

Moreover, there are two primary paradigms adopted in recent
studies on algorithmic discrimination: individual fairness and group
fairness [17, 29]: individual fairness requires that each similar in-
dividual should be treated similarly; and group fairness requires
that the protected groups should be treated similarly to the advan-
taged group or the populations as a whole. In this paper, we mainly
focus on the item popularity fairness, which is a kind of group
fairness and aims to achieve fair chance of exposure for different
item groups [1, 2, 19].

2.3 Fairness Explanation

Explainability and fairness are two important perspectives for re-
sponsible recommender systems, however, the joint effort of these
two is still less explored. There have been several pioneering studies
trying to derive explanations for model fairness [4, 36] in other
tasks. For example, Begley et al. [4] leveraged Shapley value para-
digm [39] to attribute the feature contributions to model disparity
to generate explanations. It estimates the sum of individual con-
tributions from input features, so as to understand which feature
contributes more to the model disparity [4]. Though this type of
methods successfully provide explanations to the model disparities,
they are not suitable for recommender systems. First of all, the
definition of Shapley value is the average marginal contribution
of a feature value across all possible coalitions, meaning that the
computation time increases super-exponentially with the number
of features. In recommendation systems, this becomes impractical
since it is very common to have a large number of user/item fea-
tures in the feature space. Secondly, the Shapley value can only
explain either utility or fairness alone [4, 36], but not the fairness-
utility trade-off. However, our proposed counterfactual explainable
fairness framework (CEF) is able to mitigate the above problems.

3 EXPLAINABLE FAIRNESS

In this section, we first introduce how to use review information
to generate user-feature matrix and item-feature matrix, then in-
troduce the details of feature-aware recommendation systems. We
introduce how to generate counterfactual explanations for fairness
in section 3.4 and 3.5.

3.1 Feature Generation

Suppose we have a user set with m users denoted as U, an item
set V with n items and their interaction set 7 = {(u,0)|u € U,v €
V,u has interacted with v}. Based on an open source toolkit for
phrase-level sentiment analysis, called “Sentires”!, we can eas-
ily convert the raw review information into a set of quadruples
W = {(y, Ul,flasl)}f\il- Specially, each element (uy, vy, f1,51) € W
means user 4; € U mentioned feature f; € F of item v; € V with
sentiment s; € S, where ¥ denotes the set of all features with
size r and the sentiment set S = {positive(+1), negative(—1)}. For

Ihttps://github.com/evison/Sentires

example, in the review of “I like the color of this sweater, but the
sleeve is not satisfied, since it is too tight for me”, the features are
“collar” and “sleeve”, and the user expresses positive and negative
sentiments on them. The final extracted tuples are “(user, item,
color, positive)” and “(user, item, sleeve, negative)”, respectively.
Following the same method described in [11, 41, 55], we construct a
user-feature attention matrix A € R™*" and a item-feature quality
matrix B € R™" using all the quadruples in ‘W, where A,, r indi-
cates to what extent the user u cares about the feature f, and B, f
indicates how well the item v performs on the feature f. Specifically,
A and B are calculated as:

0, if user u did not mention feature f
Ay, f=

2
1+(M - 1)(m - 1), else "

M-1

1+exp(—t,,yf . f,,’f)  else

0, if item o has no review on feature f
Boy = 1+

where M is the rating scale in the system, which equals to 5 (stars)
in most cases, &, s is the frequency that user u mentioned aspect
[ ty r is the frequency that item v is mentioned on feature f, and
to,f is the average sentiment of these mentions. For both A and
B matrices, their elements are re-scaled into the range of (1, M)
using the sigmoid function (see Eq.(1)) to match with the original
system’s rating scale. Readers may refer to [55, 56] for more details
and the same user-feature and item-feature matrix construction
technique can also be found in [15, 26, 41, 45].

3.2 Feature-aware Recommender Systems

Once given the user-feature attention matrix A and item-feature
quality matrix B, we define a ranking model g that predicts the
user-item ranking score 7; j for user u; and item v; by:

gu,v = g(Au,Bv | Z, 9) (2)

where A, and B, are the vector of user u and the vector of item
0, © is the model parameter, and Z represents all other auxiliary
information. Depending on the application, Z could be rating scores,
clicks, text, images, etc., and is optional in the recommendation
model g.

In this work, we explore different implementations of g to demon-
strate the effectiveness of our proposed framework. The general
architecture of g is a multi-layer neural network, that is:

guv =Wror (... (W0, (merge (Ay,By)) +by) +...) + bt (3)
where, for the ¢ th layer (¢t € [1,T]), o is a non-linear activa-
tion function, W; and b; represent weights and bias, respectively.

merge(-) is an operator merging the user-feature and item-feature
vectors, and we explore it within the following functions:

o Element-wise Product Merge:
merge (Ay, By) = WUAE o} WVBZ. 4)

where Wy and Wy are trainable parameters, and © represents
the element-wise product (a.k.a. Hadamard product).
o Concatenation Merge:

merge (Ay, By) = [Wy Al Wy BI']. (5)

where Wiy and Wy, are trainable parameters.



Then, we train the model with a cross-entropy loss:

Loss = — Z log fu,0 — Z log(1 = Ju,0)

U,0,Yy,p=1 U,0,Yy,0=0
R R (6)
== Z Yu,0 log Yu,o + (1- yu,v) log(1 - yu,v)
u,0

where y,, , = 1if user u previously interacted with item v, otherwise
Yuo = 0.

Generally, the recommendation model g can be any ranking
model as long as it takes the user-feature and the item-feature
vectors as the input. The implementation and training of g will be
detailed in the experiment section.

Finally, given {U,V, T, A, B, g}, our task is to generate feature-
based explanations in terms of recommendation disparity for the
black-box recommendation model g. Besides, most of the important
symbols used in the paper can be referred in Tab. 1.

Symbol Description

u The set of users in a recommender system
vV The set of items in a recommender system
T The set of user-item interaction in a recommender system
F The set of features in a recommender system
S The set of sentiments in a recommender system
m The number of users
n The number of items
r The number of features
u A user id in a recommender system
[ An item id in a recommender system
f A feature index in a recommender system
s A sentiment index in a recommender system
A A user-feature attention matrix
B A item-feature quality matrix
Acf The user-feature attention matrix after intervention with A,
BS The item-feature quality matrix after intervention with A,
Go The set of popular items
Gi The set of long-tailed items
Yuo Ground-truth value of the pair (u, v)
Yuo Predicted value of the pair (u, v)
K The length of the recommendation list
Rk The set of recommendation lists with length K for all users
€] Parameters of black-box recommendation model

Table 1: Summary of the notations in this work.

3.3 Fairness and Disparity

In this work, we consider explaining the popularity bias in recom-
mendation. Given a recommendation model g, we will have a certain
recommendation result Rg = {R(u1,K), R(u2,K), - , R(um,K)}
containing all users’ top-K recommendation lists. These recommen-
dations determine the exposures of items, which is used to measure
the fairness and disparity of the model. We then split items into two
groups based on their number of exposures in the recommendation
list and denote Gy as popular item group and G; as long-tailed
item group. Based on the above notations, we list some popular
algorithmic fairness definitions related to popularity bias as follows:

3.3.1 Demographic Parity (DP). Demographic parity in recom-
mendation scenarios requires that the average exposure of the items

from each group is equal [19, 40]. First, given Ry, we denote the
number of exposure in group G as
Exposure (G1|Rk) = ) >, IT(we@G)le{o1) (1)
uelU veR(u,K)
where 7 is the indicator function.
Then, we can express demographic parity fairness as follows,
Exposure (Go|Rk) _ Exposure (G1|Rk)
|Gol 1G] ’

where groups Gy and G are divided based on the item popularity
in the recommendation scenario.

®)

3.3.2 Exact-K Fairness (EK). Following [19], we can also use the
Exact-K fairness in ranking, which requires the proportion/chance
of protected candidates in every recommendation list with length
K remains statistically indistinguishable from a given maximum
«a. This kind of fairness constraint is more suitable and feasible in
practice for recommender systems as the system can adjust the
value of a. The concrete form of this fairness is shown as below,
Exposure (Go|Rk)

Exposure (G1|Rk) “ ©)

where a € (0,1). Note that when « = % and the equation holds
strictly, the above expression would be exactly the same as demo-
graphic parity.

3.3.3 Disparity. In practice, we can take the difference between
the two sides of the equalities in the above definitions as a quantifi-
cation measure for disparity. For example,

¥pp = |G1| - Exposure (Go|Rk) — |Gol - Exposure (G1|Rk) (10)

Yrx = Exposure (Go|Rk) — @ - Exposure (G1|Rk)  (11)

are two popular algorithm disparity measures used in fairness learn-
ing algorithms [19].

3.4 Counterfactual Reasoning

With the above notations and definitions of item exposure fairness,
we can measure the disparity of the top-K recommendation result
Rk Then, the objective of our counterfactual reasoning problem
is to generate feature-based explanations for the given black-box
recommendation model g. The essential idea of the proposed expla-
nation model is to discover a slight change A, on each feature via
solving a counterfactual optimization problem, which minimizes
the disparity and a perturbation constraint that represents the effort
to change the disparity.

Specially, for each user-feature vector A.r, we slightly intervene
with a vector A, € R™ (and for each item-feature vector B, f>we
intervene with A, € R™), more specifically, the value of certain
user feature f for all users A.¢ will be added to Ay, and get A<S | (or
the value of certain item feature f for all items B,y will be added
to A, and get BS). With the new user-feature matrix A/ and
item-feature matrix B¢/, g will change the recommendation result

from Rk to a counterfactual result ‘R;f . More importantly, this will
also change the fairness measure of that result to ¢S where ¥¢f

can either be ‘I‘EJI(( or ‘Plc)fp depending on the choice of disparity.

And our goal is to look for the minimum intervention on user/item



feature that is able to result in the greatest reduction in terms of
disparity or (un)fairness. Thus, objective function would be:

min [[¥°/||2 + A|All (12)

where A can be either A, or A, or the concatenation of them
(A = [Au,Ap]), A € (0,1) is a hyper-parameter that is used to
control the weight between the two terms, and </ can be:

\PICEJI; = Exposure(Gy IRIc(f) — a - Exposure( G |Rlc<f)

=2, 2, IweGo-a-}, )

I(weg) 1

uelU yeRref (u,K) uelU yeref (u,K)
‘I’Cf -E ﬂcf |Gol E Rcf
B = Exposure(Go|RY) = 1 2L - Exposure(61IRY/)
_ |Gol
=) 2 IeeGn-1Zn-) ), I(ed
ueU yeRef (u,K) uel yeRef (u,K)
(14)

A major challenge to optimize Eq. (12) is the non-differentiable
nature of ¥¢/. As a relaxation, we replace the indicator function
7 () in the original definition (Eq. (14) or Eq. (13)) with g(-, -), which
is the predicted ranking score, and normalize the final results to
stabilize the gradients of the objective function. And the resulting
disparity metric ¥¢f becomes:

2uell (nggoﬂﬂcf(uj() g(Acuf, Bzc;f) -« 20661 nRef (u,K) g(AZf, B

Vi =
Suctt Bgeref (i) 9(AT B )
(15)

or becomes:

Exposure (Go|Rk) — Exposure (G |Rk)

Validity = e
m -
cf cf (19)
Exposure (Qo |ﬂK ) — Exposure (Ql IRK )
- m-K ’

where m is the number of users and K is the length of recommen-
dation lists.

Finally, the explainability score (ES) is the linear combination of
Proximity and Validity, which is shown as follows:

ES = Validity — B - Proximity, (20)

where § € (0,1) and larger score represents better explainability.
This score determines the ranking of a feature in terms of its abil-
ity to reduce the disparity of model g while keeping the perturbation
small. Note that the original value of the feature correspond to the
optimal recommendation utility of R that the model g learned, so
larger proximity score may imply a greater sacrifice of utility. Thus,
the inclusion of this term in the objective function and the scoring
function will result in an explanation finding process that is aware
of the influence on both the fairness and recommendation utility.

4 EXPERIMENTS
4.1 Datasets

To evaluate the models under different data scales, data sparsity

and application scenarios, we perform experiments on three real-

world datasets. Some basic statistics of the experimental datasets

are shown in Table 2.

e Yelp The Yelp dataset? contains users’ reviews on various kinds
of businesses such as restaurants, dentists, salons, etc.

e Amazon The Amazon dataset [32] contains user reviews on

161] ZveGi RS (1K) gAY, BY) products in Amazon e-commerce system®. The Amazon dataset

f gefy _ Gl
s of Dueu (Zuegﬂmwf(u,x) g(Ad . BY) - g
¥pp = of ocf
Zueul ZU;;RCf(u,K) 9(A; ., B,)
(16)
Thus, our final objective for a given feature is
min [ 5 + A1A]l2- (17)

The first term aims to realize the greatest reduction in terms of
pre-defined disparity or (un)fairness. The second perturbation con-
straint represents the edit distance between original inputs and
the corresponding counterfactuals. Finally, for each feature, we
solve a optimization problem defined as Eq. (17) and use the cor-
responding counterfactual recommendation result to calculate the
explainability score, which will be detailed in the next section.

3.5 Generate Feature-based Explanations

For each feature in the feature space, we will solve the optimiza-
tion problem defined as Eq. (17) and consider A as the only train-
able parameters. Once finished optimizing, we will get the “min-
imial” change A and the corresponding recommendation results
under such change to that feature. Then, we use Proximity—the
average edit distance between original inputs and the correspond-
ing counterfactuals—to measure the degree of perturbations. And
we use Validity—the changes of fairness caused by the feature’s
perturbation—to measure the degree of influence on fairness [34,
35, 43].

Proximity = ||A||§ (18)

contains 29 sub-datasets corresponding to 29 product categories.
We adopt two datasets of different scales to evaluate our method,
which are CDs & Vinyl and Electronics.

Since the Yelp and Amazon review datasets are very sparse,
similar as previous work [41, 45, 55], we remove the users and
items with fewer than 20 reviews. For each dataset, we first sort
the records of each user based on the timestamp, and then hold-out
the last 5 interacted items together with 100 randomly sampled
negative items for each user to serve as the test data to evaluate
black-box recommenders and do fairness explanation. The last item
in the training set of each user is put into the validation set. Since
we focus on item exposure fairness, we need to split items into two
groups Go and G based on item popularity. It would be desirable if
we have the item impression/listing information and use it to group
items, however, since Yelp and Amazon datasets are public dataset
and only have interaction data, we use the number of interaction
to group items in them. Specifically, for Yelp and Amazon review
datasets, the top 20% items in terms of number of interactions
belong to the popular group Gy, and the remaining 80% belong to
the long-tail group G;.

4.2 Black-box Recommender System

As mentioned before, we first follow prior works [11, 45, 54] to
build a user-feature attention matrix and an item-feature quality

Zhttps://www.yelp.com/dataset
3http://jmcauley.ucsd.edu/data/amazon/links.html
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Figure 1: The accuracy-fairness trade-off curves for NDCG and Long-tail Rate on various datasets. The upper-right corner (high
accuracy, low disparity) is preferred. Each data point is generated by cumulatively removing top 5 features in the explanation

lists provided by explanation methods.

Table 2: Basic statistics of the experimental datasets.

Dataset #User #ltem #Review #Aspect Density
Yelp 12,028 20,181 502,158 106 0.208%
CDs & Vinyl 3,225 46,709 179,992 118 0.119%
Electronics 2,762 19,449 51,777 77 0.096%

matrix, and use both matrices together with the user-item interac-

In this work, to demonstrate the idea of counterfactual explain-
able fairness, we use a simple deep neural network as the imple-
mentation of the recommendation model g, which includes one
fusion layer followed by three fully connected layers with size {256,
64, 1}. The architecture of the fusion layer depends on how we
are going to merge the user-feature and item-feature vectors (as

is provided in Eq. (4) and Eq. (3.2)). Specifically, for Element-wise

Product merge, the fusion layer is {2*feature size, 256}, while for
Concatenation merge, it is {feature size, 256}. The final output layer
is a sigmoid activation function so as to map @, into the range of

(0,1).

tion history to train a feature-aware recommendation model.



Table 3: Summary of recommendation performance on
three datasets for black-box recommendation models us-
ing Element-wise Product merge (Eq. (4)) and Concatenation
merge (Eq. (3.2)) in term of F1 and NDCG.

Recommender F1 (%) NDCG (%)
@1 @201 @57 @201
Yelp

Element-wise 17.161 16.563 16.069 29.192
Concatenation 16.266 16.929 17.338 29.780

Electronics

Element-wise 15.112 13.975 16.384 25.886
Concatenation 15.083 14.044 16.350 25.946

CDs & Vinyl

Element-wise 21.463 18.517 23.150 35.162
Concatenation 20.737 18.443 22.393 34.672

The model parameters are optimized by stochastic gradient de-
scent (SGD) optimizer with a learning rate of 0.01. After the recom-
mendation model is trained, all the parameters will be fixed in the
counterfactual reasoning phase and explanation evaluation phase.
The recommendation performance on Element-wise product merge
(Eq. (4)) and Concatenation merge (Eq. (3.2)) are presented in Tab.
3. The evaluations of fairness explanation methods presented in
the experiment section are based on Element-wise product merge
(Eq. (4)), while those based on Concatenation merge (Eq. (3.2)) are
provided in the Appendix.

4.3 Baselines

Since there is no existing method specifically designed to explain
disparity in recommendation. We adopt the following explanation
methods as baselines:

o Random: We randomly choose multiple features from the feature
space without replacement and use them as explanation results.

e Popularity: We rank all the features in the user-feature matrix
and item feature matrix based on their number of existences, and
select the top ones as explanations, and denote them as Pop-User
and Pop-Item, respectively.

o EFM [55]: The Explicit Factor Model (EFM) for explainable rec-
ommendation. This work combines matrix factorization with
sentiment analysis technique to align latent factors with ex-
plicit aspects. In this way, it predicts the user-feature preference
scores and item-feature quality scores. The orgianl EFM uses the
element-wise product of user-feature vector and item-feature vec-
tor and select the top ones as explanations to a given user-item
pair. To generate global explanations, we calculate the average
value of each feature from both user side and item side, and
use them as explanations. Therefore, we have EFM-User and
EFM-Item.

e Feature-based Explanation by Shapley Values (SV): Begley
et al. [4] leveraged Shapley value based methods to attribute the
model disparity as the sum of individual contributions from input
features to understand which feature contributes more or less to

the model disparity. Considering the large number of features in
the feature space, instead of using all possible coalitions, which
is r!, we randomly sample 100 feature coalitions to calculate the
Shapley value for each feature.

For CEF, we choose to minimize Eq. (17), where A = [Ay, Ay],

yef = \I’g; (Eq. (14)), and % = ‘—11. We set the hyper-parameter
A =1and K = 5. The model parameters are optimized by Adam

optimizer with a learning rate of 0.01.

4.4 Evaluation Methods and Metrics

Once we obtained the feature-based explanations from each base-
line as well as our proposed CEF, we need to compare the effec-
tiveness of these results, in other words, their contributions to the
fairness-utility trade-off. In order to evaluate the feature-based ex-
planations, we follow the widely deployed erasure-based evaluation
criterion in explainable AL The intuition behind the erasure-based
criterion is to measure how much the model performance would
drop after the set of the “most important” features in an explanation
is removed [50, 52]. Similarly, in the setting of explainable fairness,
we use it to measure the fairness-utility trade-off in recommenda-
tion, namely, how much the recommendation performance would
drop and how much the recommendation fairness would improve
after the set of the “most important” features in an explanation
is removed. Specifically, for each feature-based explanation result,
we erase the set of the “most important” features in both the user-
feature and item-feature matrices for all users and items, then input
the erased user-feature and item-feature matrices into pre-trained
recommendation model g to generated a new recommendation re-
sults. Based on the recommendation performance and fairness of
the new results, we compare the effectiveness of each explainable
fairness methods.

We select several most commonly used top-K ranking metrics to
evaluate the model’s recommendation performance after erasure,
including F1 Score, and NDCG. For fairness evaluation, we define
Long-tail Rate, which simply refers to the ratio of the number of
long-tailed items in the recommendation list to the total number of
items in the list. We also employ KL-divergence (KL) to compute
the expectation of the difference between protected group mem-
bership at top-K vs. in the over-all population, which is shown as
below,

S D1()
dgr (D1]|D2) = ) D1(j)In —= (21)
; Da(J)
where D represents the true group distribution between Gy and

G1 in top-K recommendation list, and Dy = [%, %] represents

their ideal distribution of the overall population.

4.5 Experimental Results

The major experimental results are shown in Fig. 1, where we plot
the fairness-utility trade-off, i.e., the relationship between NDCG
and Long-tail Rate (namely, 1-Popularity Rate) with different length
of recommendation lists (@5, @20, @50). Since the relationship
between F1 and and Long-tail Rate has very similar conclusions, we
choose not to present them here. Each data point Fig. 1 is generated
by cumulatively removing top 5 features in the remaining explana-
tion list provided by each explanation method. We also present the



Table 4: Summary of the performance and fairness on three datasets. We evaluate for ranking (F1 and NDCG, in percentage (%)
values, % symbol is omitted in the table for clarity) and fairness (KL Divergence and Long — tail Rate, also in % values) with top 5
recommended items, and E is the number of erased features. Bold scores are used to indicate the greatest values.

Methods F1@5(%) T NDCG@5 (%) T Long-tail Rate@5 (%) T KL@5 (%) |
E=5 E=10 E=20 E=5 E=10 E=20 E=5 E=10 E=20 E=5 E=10 E=20
Yelp
Random 15.671 15.345 14.809 16.788 16.255 15.674 4.3191 4.8066 5.2302 10.506 9.6994 9.0410
Pop-User 16.074 15.636 14.956 17.236 16.748 15.983 4.6047 6.0428 6.6289 10.026 7.8770 7.1107
Pop-Item 16.050 15.498 14.868 17.055 16.522 16.013 4.7180 4.5703 6.3580 9.8421 10.083 7.4577
EFM-User 15.735 15.370 14.710 16.804 16.392 15.626 3.7084 3.9940 5.0086 11.598 11.075 9.3808
EFM-Item 15.538 14.434 13.533 16.558 15.406 14.320 5.0874 6.8406 9.3622 9.2588 6.8477 4.2092
SV 15.680 15.188 14.814 16.700 16.235 15.719 4.4570 6.3974 8.2688 10.272 7.4064 5.2486
CEF 15.897 15.513 15.296 17.015 16.635 16.309 5.0233 7.1706 10.169 9.3579 6.4518 3.5328
Electronics
Random 14.981 14.960 14.945 15.253 15.272 15.336 5.2715 5.4018 5.3439 8.9788 8.7846 8.8705
Pop-User 13.330 11.940 9.9782 14.417 12.795 10.361 8.6676 13.164 22.947 4.8522 1.6141 0.2621
Pop-Item 13.149 11.701 9.6017 14.118 12.482 9.9908 9.6886 14.460 24.540 3.9269 1.0372 0.6115
EFM-User 15.018 15.018 15.018 16.454 16.451 16.426 4.6125 4.4822 4.7139 10.014 10.230 9.8487
EFM-Item 12.541 11.622 10.586 13.453 12.314 10.976 7.7552 10.644 16.857 5.7903 3.1690 0.3218
SV 15.061 15.126 15.112 16.379 16.418 16.487 5.0615 49312 4.9674 9.2987 9.5019 9.4451
CEF 14.829 14.887 13.164 15.956 16.115 14.149 6.5821 7.1976 10.275 7.1697 6.4201 3.4500
CDs & Vinyl

Random 21.463 21.246 21.103 22.131 21.968 21.821 7.2062 7.3612 7.5906 6.4102 6.2307 5.9715
Pop-User 21.413 21.432 21.432 23.118 23.133 23.162 7.1937 7.1999 7.2496 6.4247 6.4174 6.3596
Pop-Item 21.457 21.469 21.413 23.156 23.196 23.150 7.2062 7.2062 7.2186 6.4102 6.4102 6.3957
EFM-User 20.241 20.210 20.055 21.621 21.594 21.482 6.1395 6.0651 6.0093 7.7465 7.8468 7.9226
EFM-Item 19.968 18.381 17.159 21.653 19.972 18.619 8.5271 10.449 14.325 4.9896 3.3154 1.0908
SV 20.675 20.700 20.545 22.290 22.283 22.174 6.9271 6.8403 6.9147 6.7424 6.8481 6.7574
CEF 21.463 21.438 21.333 23.099 23.061 22.962 7.2124 7.2496 7.4046 6.4029 6.3596 6.1811

values of F1@5, NDCG@5, Long-tail Rate@5 and KL@5 in Tab. 4
after removing top-5, top-10, top-20 features in each explanation
result to quantitatively analyse the results.

First, in Fig. 1 and Tab. 4, we can easily find that all the methods,
even randomly selecting features and erasing them, can improve
recommendation fairness. Besides, the higher the number of fea-
tures we erase, the lower the disparity rate we can achieve. This is
easy to understand as erasing features will mitigate the represen-
tation gap between popular items and long-tailed items, causing
more under-represented items to be recommended. However, it
also brings huge decline to the recommendation performance. For
example, compared with the original recommendation performance
on NDCG@5, the method with the worst trade-off behavior drops
relatively 2.119 % on Yelp, 21.786 % on Electronics, and 7.072 % on
CDs & Vinly when deleting top 5 features. Second, we can see that
even though the idea of using popular features as explanations is
very intuitive, their performance may even worse than randomly
selecting, which indicates that compared with fairness, popular
features either from user side or item side are more sensitive to
recommendation performance, while randomly selecting guaran-
tees low probabilities of choosing those scarce features, which in
turn results in better trade-off. Third, the performances of SV are
much worse than CEF as it only explain disparity alone, ignoring

the inherent trade-off between fairness and utility. Finally, in Fig.
1, where the blue dotted line represents the performance of our
proposed CEF framework, it is obvious that the feature-based ex-
planations provided by CEF are capable of achieving much better
fairness-utility trade-off on datasets with various scales and den-
sities. Specifically, compared with the original recommendation
performance on NDCG@5, CEF method drops only relatively 0.851
% on Yelp, 2.682 % on Electronics, and 0.594 % on CDs & Vinly, while
it increases relatively 13.431 % on Yelp, 25.73 % on Electronics, and
on 3.085 % CDs & Vinly at Long-tail Rate@5.

4.6 Ablation

As mentioned in Sec. 3.4, the choice of A in the objective function
(Eq. (12) or Eq. (17)) can either be A, or A, or both of them, de-
pending on how we are going to intervene the given feature in the
feature space. Besides, all the experimental results in Table 4 and
Fig. 1 are based on intervening the given feature using both A, and
Ay (namely, A = [Ay, Ay]). Therefore, to study how the choice of
A is going to influence the experimental results, we run additional
experiments based on the variants of the original CEF by either
choosing Ay, or A, alone, denoted them as CEF-User and CEF-Item,

respectively. The objective of CEF-User is min ||‘i’;];(||g + AllAyll2.

And that of CEF-Item is min ||‘i‘§{(||g + A||Ayl|2. For convenience,
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Figure 2: Ablation study on Yelp dataset.

we only present the results in Yelp dataset, as is shown in Fig. 3.
The similar conclusions can also be proved using other datasets.

As is shown in Fig. 3, the evaluations of CEF-User and CEF-Item
achieve worse fairness-utility trade-off when compared with the
original CEF. This is understandable as CEF uses both A, and A,
as its parameters, which is a much larger parameter space and can
achieve better representations. Moreover, even though CEF-User
and CEF-Item are worse than CEF, they are still far more better
than most of the baselines, especially, CEF-User is better than all
the baselines, which indicates the effectiveness of our proposed
framework.

5 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of explainable fairness in rec-
ommendation and propose a framework based on counterfactual
reasoning, called CEF. To the best of our knowledge, this is the
first time that the idea of explainable fairness has been introduced
into the area of recommender systems. We design a learning-based
counterfactual reasoning method to discover critical features that
will significantly influence the fairness-utility trade-off and use
them as fairness explanations for black-box feature-aware recom-
mendation systems. Extensive experiments have been conducted to
evaluate the effectiveness of our proposed frameworks and these
explanations generated by CEF can achieve better fairness-utility
trade-off than all the baselines when using them to do fair learn-
ing. In the future, we hope to design algorithmic methods that can
generate multiple explanations at the same time without greedy
choosing them through explainability scores.

A APPENDIX: BLACK-BOX RECOMMENDER
SYSTEM BASED ON CONCATENATION
MERGE

The experimental results on three datasets for black-box recommen-
dation models using Concatenation merge (Eq. (3.2)) are shown in
Fig. 3, where we plot the fairness-utility trade-off with the length
of recommendation lists equals to 5. In Fig. 3, we can still find out
that the feature-based explanations provided by CEF are capable
of achieving much better fairness-utility trade-off on datasets with
various scales and densities when used for fair learning, which
further proves the effectiveness and generality of the proposed
framework.

B CASE STUDY

In this section, we provide the top-5 feature-based explanations
that are generated by each method on Yelp dataset. The explanation
results are shown in Tab. 5, which exactly verifies our motivation
that it’s difficult to manually identify feature explanations for pop-
ularity bias in recommender system. For example, it is hard to tell
how input features (like chicken, cheese, pizza) would influence the
popularity bias in restaurant recommendation. Thus, we do need
explainable fairness methods to identify such features in recom-
mendation.

Method Feature-based Explanations
Pop-User  food, service, chicken, prices, hour
Pop-Item  food, service, prices, visit, hour

EFM-User store, patio, dishes, dish, rice

EFM-Item flavor, decor, dishes, inside, cheese
SV server, size, pizza, food, restaurant
CEF meal, cheese, dish, chicken, taste

Table 5: Top-5 feature-based explanations on Yelp dataset.
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Figure 3: The accuracy-fairness trade-off curves for NDCG@5 and Long-tail Rate@5 on three datasets using model with
Concatenation merge. The upper-right corner (high accuracy, low disparity) is preferred. Each data point is generated by
cumulatively removing top 5 features in the explanation lists provided by explanation methods.
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