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Abstract— Recent work has shown results on learning nav-
igation policies for idealized cylinder agents in simulation
and transferring them to real wheeled robots. Deploying such
navigation policies on legged robots can be challenging due to
their complex dynamics, and the large dynamical difference
between cylinder agents and legged systems. In this work,
we learn hierarchical navigation policies that account for the
low-level dynamics of legged robots, such as maximum speed,
slipping, contacts, and learn to successfully navigate cluttered
indoor environments. To enable transfer of policies learned
in simulation to new legged robots and hardware, we learn
dynamics-aware navigation policies across multiple robots with
robot-specific embeddings. The learned embedding is optimized
on new robots, while the rest of the policy is kept fixed, allowing
for quick adaptation. We train our policies across three legged
robots in simulation - 2 quadrupeds (A1, AlienGo) and a
hexapod (Daisy). At test time, we study the performance of our
learned policy on two new legged robots in simulation (Laikago,
4-legged Daisy), and one real-world quadrupedal robot (A1).
Our experiments show that our learned policy can sample-
efficiently generalize to previously unseen robots, and enable
sim-to-real transfer of navigation policies for legged robots.

I. INTRODUCTION

Legged robots such as quadrupeds from Boston Dynamics
[1], Unitree [2] and hexapods from Hebi robotics [3] have
emerged on the market as mature, robust, commercial robotic
platforms. Legged robots are agile and can easily traverse
uneven ground in homes like carpets and stairs, making them
ideal for indoor navigation. At the same time, progress has
been made in the field of learned indoor navigation using an
egocentric camera input, without the use of maps [4], [5],
showing real-world generalization of learned policies [6],
[7]. However, learned visual navigation literature typically
considers idealized virtual cylindrical agents, and does not
take the dynamics of the robot into account. While such
policies can be successful on wheeled robots, legged robots
have significantly different dynamics than an idealized agent,
or even other legged robots. These differences arise due to
properties such as turning radius, motor strength, size and
mass of the robot, etc. Fig. 1b shows an example where
a PointGoal Navigation (PointNav) [8] policy that assumes
an idealized agent is applied on the Daisy hexapod. While
the policy plans to turn around an obstacle, the robot gets
stuck, due to its larger size and turning radius, which were
not accounted for by the PointNav policy. On the other
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Fig. 1: Challenges of indoor navigation with legged robots. While
an idealized spherical agent (a) can navigate to the goal with a
PointNav policy, the same policy on Daisy (b) results in the robot
getting stuck around an obstacle. A navigation policy trained on
Daisy, with just egocentric images and no maps, can navigate to
the goal successfully (c), but the same policy on the AlienGo
quadruped (d) results in AlienGo drifting, and not reaching the
goal in maximum allowed steps. We learn navigation policies across
multiple legged robots and transfer to a real A1 robot (e).

hand, when the policy is trained directly on Daisy (Fig.
1c), and thus is aware of the dynamics of the robot, the
policy starts turning sooner to accommodate the robot body
and turning radius, leading to a successful navigation around
the obstacle. Applying a policy that was learned on Daisy
on another legged robot - the AlienGo quadruped (Fig. 1d)
leads to the robot drifting away, and not reaching the goal
in maximum allowed steps. This example highlights the
importance of incorporating robot-specific dynamics when
learning navigation policies for legged robots and the chal-
lenges of generalizing such learned policies to new robots.
If navigation policies learned on one legged robot do not
directly generalize to new systems, the experimental cost of
learning navigation policies for legged robots can be pro-
hibitively high, especially on hardware, reducing the overall
scalability of such an approach. Learning navigation policies
for complex legged robots, as well robustly transferring such
learned policies to hardware and new robots are important
challenges in the field of autonomous navigation.

In this work, we take a step towards learning visual
navigation policies for legged robots, which use egocentric
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Fig. 2: Legged robots and environments used for training and testing. We train PointNav policies in cluttered environments on A1, AlienGo,
and Daisy. At test-time, we study generalization to Laikago and 4-legged Daisy in simulation, and A1 in the real-world.

camera inputs and no maps, and generalize to hardware and
new legged systems. We learn a navigation policy across
three legged robots – two quadrupeds (A1, AlienGo) and one
hexapod (Daisy), in simulated indoor home environments
(Fig. 2), and test on previously unseen simulated legged
robots (Laikago, 4-legged Daisy) and a real quadruped robot
(A1-Real) in new environments. We develop hierarchical
navigation policies that divide the control of the robot into
a high-level policy that reasons about the center of mass
motion and a low-level policy that converts high-level (veloc-
ity) commands into desired footsteps. The high-level policy
consists of two components: (1) a universal navigation policy
(shared across multiple robots) and (2) a learned robot-
specific embedding used to specialize the universal policy
per robot. During training, we collect data from multiple
robots in separate environments which is collectively used
to update a universal navigation policy, thereby improving
sample-efficiency and leading to a policy that is inherently
robust to variations in robot dynamics. Once trained, this
high-level policy can be used on new legged robots in unseen
environments, by searching in the learned embedding space,
keeping the universal navigation policy fixed. To the best of
our knowledge, this is the first work that (1) demonstrates
learning navigation policies purely from visual input across
multiple legged robots; and (2) generalizes learned policies
to hardware and previously unseen simulated robots.

The core contribution of this work is a sample-efficient
approach for teaching legged robots to navigate unknown
indoor environments. Our simulation results are presented
in the iGibson [9] photo-realistic simulation, with a Pybul-
let [10] physics engine. We also present zero-shot sim-to-real
generalization hardware experiments on an A1 robot (Fig.
1e), where the robot navigates a new home using a policy
learned purely in simulation.

II. RELATED WORK

Navigation in unknown environments has been widely
studied in robotics. We mention some closely related works.
Indoor Navigation: Classical navigation approaches typi-
cally decompose the problem into mapping the environment,
localizing in the map, and planning a path to the goal [11],
[12], [13]. However, such approaches are highly dependent
on the quality of the map. Mappers that only utilize RGB-D

images are prone to failure in texture-less regions, and may
require the use of expensive LiDAR sensors [14]. Incomplete
maps with errors often lead to poor performance when used
by planners [6]. Additionally, the map building process can
be time-consuming, and require user-designed semantics for
more robust navigation [15]. In this work, we use a learned
policy that learns to extract relevant information from depth
images, without explicitly building a map.

Recent works have shown learning-based approaches to be
a robust at navigating unseen environments without explicit
mapping (purely from egocentric RGB-D images and local-
ization sensors) [4], [5], [6]. They can outperform traditional
planning approaches [6], and achieve near-optimal perfor-
mance in unknown houses [5]. However, these approaches
have only been demonstrated on simple, cylindrical mobile
base robots [7], and drones [16]. In contrast to these robots,
legged robots have significantly more complex dynamics,
arising from contacts and interactions between the robot and
the environment, and policies learned in simulation do not
directly generalize to hardware, due to the sim-to-real gap.
In this work, we learn hierarchical navigation policies for
legged robots that generalize to hardware and new robots.
RL for planning in legged robots: There is a significant
body of work on teaching legged robots to navigate rough
terrain, and robustly respond to disturbances in the envi-
ronment [17], [18], [19], [20], [21]. Some of these works
build policies that can navigate uneven terrain without any
visual input [17], [21], [19], while others use LiDAR sensors
or depth cameras to map the terrain, and use it to choose
footstep locations [18], [22], [23]. However, these works
do not address challenges associated with indoor navigation,
where the robot has to navigate around obstacles, go through
narrow hallways, and reach far away goals, without access to
a map. In our experiments, the robot is placed in a new house
that it has never seen before, and has to navigate to new
goals using only onboard RGB-D cameras, and localization
sensors, without a LiDAR, or a map. While previous work
has used a LiDAR sensor for mapping the environment and
using the map for navigating confined spaces [24], we only
use an onboard RGB-D camera in our experiments, making
our system cheaper and more scalable.

We diverge from classical planning literature [24], [25],
[22] by not building maps. Instead, we use a reactive policy



Fig. 3: A flowchart describing our hierarchical controller. The high-
level policy, described in Section III-B, commands a desired CoM
linear (vdes) and angular velocity (ωdes). The low-level controller
generates a foot trajectory followed using Inverse Kinematics,
which commands desired joint angles qdes to the robot.

trained using RL to reason about the space around the robot,
avoid obstacles as it observes them, and navigate to a goal.
The policy is trained in photo-realistic simulations of scans of
different homes, and can be applied to a real robot operating
in a new home. This helps with challenges such as building
expensive maps [26], planning errors from inaccurate maps
[27], and inflating obstacles for trajectory optimization [28].
Context-aware transfer learning: To adapt to new settings
such as sim-to-real transfer, several works propose a context-
aware learning setup, where a latent representation of context
is learned over a large range of training tasks. At test time,
the learned latent representation is used to infer the new
context [29], [30], or optimized for generalization [31], [32],
[33]. [31], [32] identify and encode dynamics parameters of
a robot into a latent representation and learn a policy condi-
tioned on this latent input. However, these approaches require
expert knowledge to determine which dynamics parameters
to encode, which can be difficult to choose when learning
policies across robots of different morphologies. Instead, we
propose to fully learn an embedding space for each robot,
obviating the need for expert domain knowledge.

III. DYNAMICS-AWARE NAVIGATION POLICIES

In this section, we introduce our approach which learns a
dynamics-aware navigation policy that can enable sim-to-real
transfer and generalize to unseen robots and environments.

A. Task: PointGoal Navigation

We consider the task of PointGoal Navigation (PointNav),
as defined by [8], in which a robot is initialized in an
unseen environment and must navigate to a goal location
without being provided a map. An episode is considered
successful if the robot can reach within 0.36m of the goal
location (approximately half the width of our largest robot)
in less than 150 robot steps. In our experiments, the robot is
equipped with an egocentric depth sensor and an egomotion
estimator for localization. The robot has access to the goal
coordinates relative to the robot, specified as polar coodinates
(r, θ), where r is the Euclidian distance to the goal, and θ
is the relative angle to the goal. The environments consist
of cluttered indoor spaces and the robot has to sense and
reason about moving around obstacles to reach a randomly
selected goal up to 7m away. For evaluation, we consider the
success rate of our policy at reaching random new goals, as
well as, Success inversely weighted by Path Length (SPL)
[8] to measure the efficiency of the path taken.

B. Dynamics-aware navigation policy

Our dynamics-aware navigation policy consists of a two-
layer hierarchical controller that divides the control of legged
robots into a high-level policy that commands linear and
angular center of mass (CoM) velocities, and a low-level
policy that achieves these desired commands (Fig. 3).
High-level policy: The high-level policy consists of (1) a
universal navigation policy shared across robots, and (2) a
robot-specific embedding. The universal navigation policy
takes as input the observed state s consisting of an egocen-
tric depth image, the goal coordinates (in robot’s reference
frame), and a robot-specific embedding z (Section III-C). The
output of the policy, or action a is a 2-dimensional vector
containing the desired CoM linear (forward or backward) and
angular (yaw) velocities (vdes, ωdes) for the robot to follow.
Note that though our policy operates in a horizontal plane
with 3 degrees of freedom (x-y and yaw), it only commands
a 2-dimensional velocity vector, making the problem under-
actuated and non-holonomic. To move laterally, the robot
first needs to turn and then command a linear velocity along
its new heading. This makes learning the high-level policy
more challenging, but once learned, the policy is easier to
generalize across multiple robot morphologies.

We use soft-actor critic (SAC) with an Autoencoder (AE)
(SAC+AE) [34] as the off-policy training approach of our
choice (training details described in Section III-E). However,
unlike [34], we use egocentric depth images from the robot’s
camera, instead of a physically implausible floating 3rd-
person camera. Since the camera is mounted on the robot,
the image input changes as the robot moves through space,
for example as the robot base tilts, the policy has to be robust
to such dynamic camera movements.
Low-level policy: Our low-level policy converts the de-
sired CoM velocities (vdes, ωdes) commanded by the high-
level policy into desired footstep locations using an expert
designed feedback policy, similar to [35], followed using
inverse kinematics (IK). The stance legs maintain a fixed
CoM height and achieve CoM velocity (vdes, ωdes) using
joint position control in simulation, and whole-body MPC
[36] on hardware.

One physical robot step takes ∆t = 0.25s; during
this time, the robot’s foot moves from current location
(xcur, ycur) to a desired foot placement location (xdes, ydes).
Given (vdes, ωdes) from the high-level policy, we calculate
the desired change in footstep position (δxf , δyf ) using
the desired change in CoM position δxcom = vdes∆t and
orientation δγcom = ωdes∆t. For turning, the foot moves in
a circle of radius rf , changing the current angle between the
foot and the robot heading γcur to γdes = γcur + δγcom at
the end of the step.

δxf = δxcom + rf · (cos(γdes)− cos(γcur)) (1)
δyf = rf · (sin(γdes)− sin(γcur)) (2)

xdes = xcur + δxf ydes = ycur + δyf (3)

where rf is the distance between the foot and CoM.



Fig. 4: (left): Center of Mass (CoM) trajectories for different robots
following the same high-level commands. Due to the differences
in the low-level controller, each robot ends up taking a different
trajectory, with A1, AlienGo, Laikago very different from Daisy
and 4-legged Daisy. (right) Zero-shot transfer of policies trained on
a single robot onto other robots. Each robot’s success rate is highest
with a policy trained on itself, and success rate deteriorates when
using a policy trained on a different robot.

Our footstep planner is shared across all our robots,
including hexapods and quadrupeds. The footstep trajectory
is then followed using robot-specific IK in swing, while
stance legs maintain a fixed CoM height and desired velocity
(vdes, ωdes). This enables us to experiment with 5 different
legged robot designs, which is otherwise cumbersome due to
robot-specific controllers. As our low-level policy structure
is shared across multiple robots, it is not perfect at following
the high-level commands for all robots. In fact, our robots
can fall when commanded high velocities, and don’t follow
the commands well when there is a large jump in the
desired velocities. Fig. 4a shows the CoM trajectories that
different robots exhibit given the same high-level action
sequence using our low-level controller. While A1, AlienGo
and Laikago have similar trajectories in the start, they diverge
later. On the other hand, Daisy and 4-legged Daisy have
significantly different trajectories, and tend to turn to the
left using our low-level controller. Fig. 4b shows the success
rate of reaching new goals, when pairing different low-level
controllers of each robot with high-level policies trained on
other robots. Each robot achieves the highest success rate
when using a high-level policy that was trained with its
own low-level controller, and success rate deteriorates when
using high-level policies trained on other robots; the largest
drop is seen in AlienGo’s performance – from 0.40 success
down to 0.26 success when using its own policy, vs. Daisy
policy, due to the largest dynamical shift in the robots. These
results empirically confirm our hypothesis that each legged
robot has different dynamics that need to be accounted for
by the high-level policy in order to achieve good navigation
performance, even when the low-level controllers share a
common structure. In the next section, we will describe how
to learn such a policy, while sharing data across robots.

C. Learning the high-level policy

To account for the differences between legged robots,
we propose to learn a robot-specific embedding, along with
a universal navigation policy across multiple robots. This
allows for robot-specific specialization, while sharing data,
and improved sample-efficiency.

We formulate our high-level policy πθ to take as input
both the observed state s and a latent embedding zi per robot

i = 1, 2, · · ·N , where N is the total number of robots used
during training. The output action (desired CoM velocities)
is a function of the state and the robot-specific embedding:
a ∼ πθ(a | s, zi). The critic is formulated similarly, where
the predicted Q-value is a function of the state-action pair as
well as zi: Qφ(s, a, zi) = r(s, a)+V̄ (s′, zi). Qφ is the critic,
r is the reward, s′ is the next state after taking action a, and
V̄ (s′, zi) is the robot-specific target value function [37].
Robot specific embeddings: We formulate the robot-
specific embedding as a feed-forward network g with 3 layers
and 100 hidden units, called the z-network. The ‘input’ to
the z-network is a scalar, initially randomly sampled from
a uniform distribution in [0, 1), and learned alongside the
parameters ψ of the z-network. Its output is a 1-dimensional
latent embedding z = gψ , where g is the z-network MLP,
and ψ are its learned parameters. We learn N z-networks
for N robots, resulting in learned parameters ψ1, ψ2, · · ·ψN ,
and corresponding robot embeddings z1, z2, · · · zN .
Shared universal policy: We also train a shared actor πθ
and critic Qφ across all robots. At the start of training, N
robots are initialized in different environments, and tasked
with navigating to a goal location. At every step, each robot
receives an egocentric depth observation, the goal vector
relative to its current position, and its current robot-specific
embedding z1, . . . , zN , which is added to individual replay
buffers Di = {(s, a, r, s′, zi)}; combined to create a shared
replay buffer D = {D1,D2,. . . ,DN}.
Learning high-level navigation policy: The z-network pa-
rameters ψ are learned alongside the critic parameters φ, by
minimizing Lcritic, a variant of the update from [37]:

Lcritic = E(s,a,s′,r,z∼gψ)

[
Qφ(s, a, z)−

(
r + V̄ (s′, z)

)]2
(4)

ψ∗1 , . . . , ψ
∗
N , φ

∗ = argmin
ψ1,...,ψN ,φ

Lcritic(D)

(5)

The partial derivative of Lcritic with respect to φ uses
samples from all robots, while when updating ψi the partial
derivative w.r.t Dj 6=i is 0.

∂Lcritic
∂φ

=
∂

∂φ
ED

[
Qφ(s, a, z)−

(
r + γV̄ (s′, z)

)]2
∂Lcritic
∂ψi

=
∂

∂ψi
EDi

[
Qφ(s, a, zi ∼ gψi)−

(
r + γV̄ (s′, zi)

)]2
This results in an update law that pools data across multiple
robots to update the critic parameters φ, but individual robot
datasets Di for updating robot-specific embedding zi. The
actor πθ is updated using the common dataset D, without
updating robot embedding ψi, by minimizing KL divergence
between πθ and the predicted optimal Q-value, as in [37].
Our training pipeline is summarized in Figure 5.

In practice, we leverage Pytorch’s multiprocessing
to create parallel processes for multiple robots to collect ex-
perience in their own individual environments. By collecting
data across multiple robots and environments for training
both πθ and Qφ, our training is more sample-efficient than



Fig. 5: We train a high-level navigation policy for A1, AlienGo, and
Daisy, along with robot-specific embeddings. The robots receive
an egocentric RGB or Depth observation, the goal relative to the
robot’s current position, and a robot-specific embedding. Each robot
contributes to a replay buffer, used for learning robot embeddings,
and all robot buffers contribute to the update of the shared policy.

training per robot, as well as robust to differences in robot
dynamics and environments.

Learned embeddings have been explored in literature be-
fore, for example in [29], [20], [31], [30]. However, none of
these works generalize to multiple robot morphologies or use
a high-dimensional image input as state. [29], [31], [30] use
dynamics randomization to create perturbed environments;
[31] input the dynamics parameters to learn the embedding,
while [29], [30] use robot state trajectories of past time steps
as input. In contrast, we present a fully-learned embedding
which does not need hand-defined dynamics features to learn
an embedding for significantly different robot morphologies.
We also compare our approach against [29] and [31] in
Section IV, and show that we outperform both.

Learning a shared high-level policy allows robots to share
data, significantly improving the sample-efficiency of learn-
ing. Our hierarchical controller makes training of the high-
level policy even more expensive as for every action com-
manded by the high-level policy, the low-level policy takes
multiple simulation steps to achieve the desired command.
Hence, the number of the data points collected per high-level
action is much smaller than the actual simulation steps. By
pooling data across N robots, we effectively get N times
as much data as we would if we collected data per robot.
Our experiments show that our hierarchical structure with
off-policy learning can learn navigation policies for multiple
legged robots, and generalize to unseen robots and hardware.
Generalization to unseen robots. Once learned, our navi-
gation policies can be adapted to new robots by searching in
the space of the learned 1-dimensional embedding zi which
is input to the policy πθ. We aim to find a robot embedding
z∗test that maximizes the long-term reward over trajectories τ
of length T induced on the test platform, using the learned
policy πθ(·, z∗test): z∗test = argmaxztest Eτ [

∑T
t=1 rt]. We

conduct a grid-search over ztest in the interval [−1, 1] to find
the globally-optimal z∗test (within discretization error) in the
space of learned embeddings. Approximate techniques like
[31], [38] can be used for higher dimensional z.

For successful navigation on new robots, the learned
embedding should capture different properties that the

robots demonstrate. For example, some robots might
be slower at turning while others might be faster.

Fig. 6: Different values of
z result in different CoM
trajectories.

We expect different values of
z to result in different motions
of robots around obstacles, etc.
Fig. 6 illustrates CoM trajec-
tories in an environment with
obstacles for different values of
z. For z = −0.7, we see that 4-
legged Daisy takes a relatively
direct path to the goal, while for
other z values, the robot gets
stuck on obstacles.

D. Reward function

Our reward function incentivizes path efficiency and safety
of the robot:

rt(at, st) = Rgeo +Rcoll + rfall + rsuccess (6)
Rgeo = ∆geo dist · kgeo dist, Rcoll = −1.0 if collision (7)

rfall = −5.0 if fall, rsuccess = 10.0 if success (8)

Rgeo is the change in geodesic distance to the goal (shortest
obstacle-free path to goal) from the previous step to the
current step, scaled by a geodesic reward weight kgeo dist, a
hyperparameter to encourage efficient paths. Rcoll penalizes
the robot if there was a collision with the environment. rfall
is the penalty for falling, applied if the robot falls in the
step, at which point the episode is terminated. rsuccess is the
terminal reward given to the robot, if it reaches the goal.

E. Training details

We use SAC+AE, a robust and sample-efficient method
for learning from high-dimensional images for training our
navigation policy and robot embeddings. The actor, which
serves as the universal policy, consists of a 3-layer multi-
layer perceptron (MLP) with a 1024-dimensional hidden
layer, and outputs a vector of means and a covariance matrix
that parameterize a Gaussian action distribution. The Q-
function is represented by a 3-layer MLP with 1024 units.

A convolutional autoencoder is used to provide the policy
with visual features extracted from the input depth image.
The encoder consists of 4 convolutional layers that map the
input depth image to a 50-dimensional latent representation.
The decoder consists of a fully connected layer followed by
4 deconvolutional layers that reconstructs the latent represen-
tation back to the original image. This reconstruction loss is
used as an auxiliary objective during training; it improves
sample efficiency and aids in training stability [34].

IV. EXPERIMENTAL EVALUATION

We evaluate our proposed approach on two experimental
setups: a set of cart-pole variants, and a set of legged robots.
In both cases, we aim to learn generalizable policies on
certain morphologies and test on new morphologies that
were not seen during training. We first choose cart-pole
environments as a simplified, but illustrative example of
our framework, and compare with other approaches from



literature. Our results show that our approach is faster at
learning on a set of cart-poles, and better at generalization
to unseen cart-poles than other approaches, like [29], [31].

Next, we tackle the much more challenging task of learn-
ing navigation policies on legged robots, and generalization
to unseen robots. Our experiments on legged robots show that
our approach can learn navigation policies across multiple
legged robots, and generalize to hardware and unseen robots
sample-efficiently. It outperforms baselines from literature
like [31], [29], ablations of our approach, and an oracle point-
agent policy (without dynamics) that uses A∗ on a map.

A. Experimental setup

We compare our approach (Learned-z) to the following:
– RL2 with DDPG (Meta-RL): We use RL2 [29] as a
baseline that learns robot-specific contexts during training.
At test time, context is inferred from state trajectories on the
test robot. This baseline compares our learned robot-specific
embedding to meta-learned embeddings from literature.
– Informed embedding (Informed-z): [31] learns a robot-
specific embedding by providing the z-network with the
robot’s dynamics parameters. At test time, z is optimized
for the new robot, similar to our approach. This experiment
compares our learned embedding, which does not require any
prior knowledge of the dynamics parameters, to an informed
embedding that has access to more privileged information.
– Semi-Informed embedding (Semi-Informed-z): In this
experiment, we only give a sub-set of the varied dynamics
parameters as inputs to the z-network during training (mass
and offset of the cart-poles). Deciding the ‘right’ input
parameters can be challenging, especially when working with
different robot morphologies. This experiment shows the
sensitivity of [31] to an incorrect set of parameters.
– Fixed robot embedding (Fixed-z): In this ablation of our
approach, we fix z during training, giving each robot a
distinct value. At test time, z is then optimized for the new
robot, similar to our approach. This experiment demonstrates
that a learned embedding captures the landscape of the
robot’s dynamics better than fixed initialized embeddings.
– No robot-specific embedding (No-z): In this ablation of
our approach, we learn a shared universal policy across
different environments, with no robot-specific embeddings.
At test time, the whole policy is fine-tuned on the new robot.
This experiment demonstrates the need for robot-specific
embeddings for sample-efficient generalization.

B. Cart-pole experiments

We create a family of cart-poles in Mujoco [39] by
changing the mass of cart, length of pole, and offset of pole
from center (Fig. 7, Table I). Test robots consist of one cart-
pole that lies ‘between’ the training cart-poles (CP5) and
one that lies outside of the training distribution (CP4). Our
aim is to test generalization of all approaches to both in and
out-of-distribution robots.

We visualize the learned latent space by sweeping over
different values of z and measuring performance (Fig. 7,
bottom). All train cart-poles have a singular maximum, near

the learned z, except CP1. Visualizing the latent space also
shows that CP4 is close to CP3 in learned latent space, but
out of distribution from train robots, while CP5 is between
CP2 and CP3, as expected. This demonstrates that the learned
embedding has captured dynamics properties of the robots.

Train Test

CP1 CP2 CP3 CP4 CP5

Fig. 7: (Top) Cart-pole robots used for training and testing. (Bottom)
Performance of cart-poles for different z in the learned latent space.
TABLE I: We create 5 variants of cart-poles with dynamics param-
eters shown below. We train on CP1-3, and test on CP4-5.

Parameter CP1 CP2 CP3 CP4 CP5

Mass 0.1 1 2 1.5 1.5
Pole Length 0.5 1 1.5 0.75 1.25
Pole Offset 0 0.15 -0.15 -0.1 -0.1

The training curves of our cart-pole experiments on CP3
are shown in Fig. 8, and Table II condenses results for all
cart-poles. Meta-RL does not learn to control CP3, and
performs poorly on test cart-poles CP4 and CP5 (0.66 reward
on CP4 and 0.83 reward on CP5), showing that Meta-RL
is unable to generalize to new unseen robots, with poorer
performance on CP4 which is out of the training distribution.

Informed-z is given the dynamics parameters of the robots
(Table I) during training, yet we notice that Learned-z gener-
alizes to test robot CP4 better (0.94 using Learned-z vs. 0.79
using Informed-z). This indicates that for Informed-z, the
information of dynamics parameters deteriorates generaliza-
tion to out-of-distribution robots. Semi-Informed-z performs
poorly at training and test robots, highlighting the sensitivity
of [31] to the ‘right’ set of dynamics parameters.

Among the ablation experiments of our approach, we ob-
serve that Learned-z generalizes better to the two test robots
than Fixed-z and No-z. While both Learned-z and Fixed-
z learn to control the training cart-poles, generalization to
CP4 is improved when using learned robot embeddings
(0.94 with Learned-z vs 0.77 with Fixed-z and 0.68 with
No-z). Informed-z and Fixed-z are close to Learned-z in
generalization to CP5, but Learned-z performs best when
testing on out-of-distribution robot (CP4).

C. Simulation legged robot experiments
Next, we present experiments on legged robots in simula-

tion (Fig. 9). In this setting, we use the hierarchical control
TABLE II: Cart-pole Evaluation (Episode reward)

Train Test

Experiment CP1 CP2 CP3 CP4 CP5

Semi-Informed-z 0.97±0.02 0.74±0.03 0.71±0.04 0.42±0.04 0.75±0.01

Meta-RL 0.99±0.01 0.93±0.02 0.70±0.09 0.66±0.11 0.83±0.06

Informed-z 0.99±0.01 0.90±0.04 0.93±0.02 0.79±0.16 0.94±0.04

No-z 0.99±0.01 0.76±0.08 0.80±0.05 0.68±0.10 0.85±0.06

Fixed-z 0.99±0.02 0.86±0.13 0.87±0.19 0.77±0.21 0.97±0.03

Learned-z 1.00±0.00 0.98±0.00 0.98±0.01 0.94±0.03 0.97±0.03



Fig. 8: Learning speed of different approaches, visualized on CP3.
Our approach learns faster, and achieves a higher performance than
all the other approaches. (Left) Comparison against context-aware
approaches; (Right) Ablations of our approach.

structure described in Section III-B and learn a high-level
navigation policy. Robots are trained from scratch in the
iGibson [9] simulator for a cumulative 1 million simulation
steps across all robots. For all approaches, we train on 3 train
robots (A1, Aliengo, Daisy), and evaluate generalization to
2 new robots (Laikago, Daisy-4-legged) in simulation. To
compare the different approaches, we report the mean and
standard deviation of SPL [8] over 5 random seeds when the
high-level policy is applied to both train and test robots.

TABLE III: Legged robots’ evaluation performance. Learned-z
achieves the highest SPL when tested on previously unseen robots.

Train Test

Experiment A1 AlienGo Daisy Laikago Daisy4

A* policy 0.49±0.07 0.45±0.15 0.22±0.10 0.38±0.15 0.18±0.06

Meta-RL 0.08±0.06 0.14±0.12 0.03±0.06 0.02±0.03 0.07±0.06

Informed-z 0.57±0.06 0.52±0.05 0.43±0.09 0.37±0.11 0.40±0.06

No-z 0.48±0.12 0.42±0.05 0.33±0.07 0.33±0.13 0.22±0.08

Fixed-z 0.59±0.07 0.59±0.14 0.40±0.10 0.47±0.09 0.38±0.11

Learned-z 0.59±0.07 0.54±0.04 0.48±0.14 0.48±0.08 0.49±0.08

Zero-shot transfer of A∗ policies without dynamics infor-
mation: We create an oracle point-based policy which uses a
map of the environment to find a near-optimal collision-free
path to goal. The policy samples a path to goal using A∗,
with near perfect performance (0.92 SPL) on an idealized
cylinder agent. However, when applied on the legged robots,
the performance drops significantly (Table III), with the most
significant drop seen on 4-legged Daisy (0.18 SPL). This
is because the oracle policy does not account for robot
dynamics, and the robots often fall, get stuck around an
obstacle, or exceed maximum allowed steps before reaching
the goal. This emphasizes that knowledge of the low-level
dynamics of legged robots is crucial for effective navigation.
Context-aware comparisons: Table III shows that relative
to other context-aware approaches, our approach is able to
achieve a higher SPL on the test robots while retaining high
SPL on the train robots. Meta-RL achieves poor perfor-
mance on all robots (<0.15 SPL), with the robots falling
over in most episodes. This result highlights the difficulty in
generalizing Meta-RL to more complex dynamical systems
such as legged robots. Although Informed-z is given the
dynamics parameters of the robots (Table IV) during training,
it does not generalize to Laikago and 4-legged Daisy as well
as Learned-z (0.37 SPL vs. 0.48 SPL for Laikago, 0.40
SPL vs. 0.49 SPL for 4-legged Daisy). This illustrates the
difficulty in selecting the ‘right’ set of dynamics parameters

Fig. 9: Our approach learns policies capable of successfully navi-
gating on different train (top) and test (bottom) robots.

across robots of different morphologies.
Learned-z and Fixed-z slightly outperform No-z. How-

ever, on generalization robots we see an improvement when
using Learned-z especially on 4-legged Daisy (0.49 SPL
with Learned-z vs 0.38 SPL with Fixed-z and 0.22 SPL
with No-z). Since 4-legged Daisy is the most ‘different’ robot
from the train robots, we again observe that our approach
performs best at out-of-distribution generalization.
TABLE IV: Dynamics parameters of the robots used as input to the
z-network for Informed-z.

Parameter A1 AlienGo Daisy Laikago Daisy4

Mass (kg) 12.46 20.64 24.76 20.74 17.62
Leg Length (m) 0.4 0.5 0.45 0.5 0.54
Number of Legs 4 4 6 4 4

D. Hardware experiments

Finally, we transfer our learned navigation policy from
simulation to a real A1 quadrupedal robot. The robot is
equipped with a RealSense depth and tracking camera for
capturing depth images of the environment, as well as
localizing itself with respect to its start location. The goal
is defined with respect to the start point of the robot, and
transformed to the current robot position at each robot step.

On hardware, we do not optimize z, and instead use the
learned z from simulation for the A1 robot. The high-level
policy operates at 4Hz, taking as input the depth camera
image as seen by the robot, relative goal location, and learned
z from simulation. It commands a desired CoM velocity to
the low-level controller, which operates at 250Hz. The stance
controller for the A1 robot is a whole-body MPC controller,
similar to [31], and the swing legs use IK (Section III-B).

Our hardware experiments show the A1 robot moving
through hallways to reach the next room, and avoiding
obstacles to reach a goal (Figure 10). These experiments
show that our proposed approach can learn robust high-
level navigation policies that can transfer from simulation to
real world, without any fine-tuning. During our experiments,
we noticed that the A1 robot would turn very close to
obstacles, and sometimes hit corners. This was caused by
the hardware having different dynamics than the simulation,
for example, the real robot turns slower than the simulation,
and hence can hit obstacles even when the policy planned



Fig. 10: Snapshots of the A1 robot navigating a new home. The
robot goes through hallways, and avoids obstacles to reach goals.
Depth images, as seen by the robot, are shown in the bottom right
corner of each frame.

not to. This performance can be improved by fine-tuning
the learned embedding on hardware, and searching for a
z that results in wider motions on the real robot. Sample-
efficiently optimizing z that can generalize to multiple goals
on hardware is challenging, and we leave this to future work.

V. CONCLUSION

In this work, we present a framework for learning hier-
archical navigation policies for legged robots. Our policy
shares data across multiple robots during learning, and learns
a high-level navigation policy with a shared universal navi-
gation policy across robots, and robot-specific embeddings,
used for specialization. The learned embedding captures
different dynamical properties, such as turning radius and
walking speed of different robots, and shows promising
results on hardware, and robots that were never seen during
training. This work opens up future avenues for large-scale
research on legged platforms for indoor navigation.
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