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ABSTRACT

The sensitivity of millimeter wave (mmWave) signals to blockages
is a fundamental challenge for mobile mmWave communication sys-
tems. The sudden blockage of the line-of-sight (LOS) link between
the base station and the mobile user normally leads to disconnect-
ing the communication session, which highly impacts the system
reliability. Further, reconnecting the user to another LOS base sta-
tion incurs high beam training overhead and critical latency prob-
lem. In this paper, we leverage machine learning tools and pro-
pose a novel solution for these reliability and latency challenges in
mmWave MIMO systems. In the developed solution, the base sta-
tions learn how to predict that a certain link will experience block-
age in the next few time frames using their observations of adopted
beamforming vectors. This allows the serving base station to proac-
tively hand-over the user to another base station with highly probable
LOS link. Simulation results show that the developed deep learn-
ing based strategy successfully predicts blockage/hand-off in close
to 95% of the times. This reduces the probability of communication
session disconnection, which ensures high reliability and low latency
in mobile mmWave systems.

Index Terms— Millimeter wave, machine learning, beamform-
ing, blockages, hand-off.

1. INTRODUCTION

Reliability and latency are two main challenges for millimeter
wave (mmWave) wireless systems [1–3]: (i) The high sensitivity
of mmWave signal propagation to blockages and the large signal-
to-noise ratio gap between LOS and non-LOS links greatly affect
the link reliability, and (ii) the frequent search for new base stations
(BSs) after link disconnections causes critical latency overhead [4].
This paper leverages machine learning tools to efficiently address
these challenges in mobile mmWave systems.

The coordination among multiple BSs to serve the mobile
user has been the main approach for enhancing the reliability of
mmWave communication links [1–3]. In [1], extensive measure-
ments were done for coordinated multi-point transmission at 73
GHz, and showed that simultaneously serving the user by a number
of BSs noticeably improves the network coverage. This cover-
age performance gain was also confirmed by [2] in heterogeneous
mmWave cellular networks using stochastic geometry tools. To
overcome the large training overhead and increase the effective
achievable rate in coordinated transmissions, especially for highly-
mobile applications, [3] proposed to use machine learning tools to
predict the beamforming directions at the coordinating BSs from
low-overhead features. Despite the interesting coverage gains of

coordinated transmission shown in [1–3], BSs coordination is asso-
ciated with high cooperation overhead and difficult synchronization
challenges.

In this paper, we develop a novel solution that enhances
mmWave system reliability in high-mobile applications without
requiring the high cooperation overhead of coordinated transmis-
sion. In our strategy, the serving BS uses the sequence of beams that
it used to serve a mobile user over the past period of time to predict
if a hand-off/blockage is going to happen in the next few moments.
This allows that user and its serving BS to pro-actively hand-over
the communication session to the next BS, which prevents sudden
link disconnections due to blockage, improves the system reliability,
and reduces the latency overhead. To do that, we develop a machine
learning model based on gated recurrent neural networks that are
best suited for dealing with variable-length sequences. Simulation
results showed that the proposed solution predicts blockages/hand-
off with almost 95% success probability and significantly improves
the reliability of mmWave large antenna array systems.

Notation: We use the following notation: A is a matrix, a is a
vector, a is a scalar, and A is a set. AT , A∗ are the transpose and
Hermitian (conjugate transpose) of A. [a]n is the nth entry of a.
A ◦ B is Hadamard product of A and B. N (m,R) is a complex
Gaussian random vector with mean m and covariance R.

2. SYSTEM AND CHANNEL MODELS

In this section, we describe the adopted mmWave system and chan-
nel models. Consider the communication setup in Fig. 1, where a
mobile user is moving in a trajectory. At every step in this trajec-
tory, the mobile user gets connected to one out of N candidate base
stations (BSs). For simplicity, we assume that the mobile user has
a single antenna while the BS is equipped with M antennas. Ex-
tending the results of this paper to the case of multi-antenna users
is straight-forward. Let hn,k denote the M × 1 uplink channel vec-
tor from the user to the nth BS at the kth subcarrier. If the user is
connected to the nth BS, this BS applies a beamforming vector fn to
serve this user. In the downlink transmission, the received signal at
the mobile user on the kth subcarrier can then be expressed as

yk = h∗n,kfns+ v, (1)

where data symbol s ∈ C satisfies E
[
|s|2
]

= P , with P the to-
tal transmit power, and v ∼ NC

(
0, σ2

)
is the receive noise at the

mobile user. Due to the high cost and power consumption of mixed-
signal components in mmWave large antenna array systems, beam-
forming processing is normally done in the analog domain using net-
works of phase shifters [5]. The constraints on these phase shifters
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Fig. 1. The system model considers one user moving in a trajectory,
and is served by one out of N candidate BSs at every step in the
trajectory.

limit the beamforming vectors to be selected from quantized code-
books. Therefore, we assume that the BS beamforming vector fn is
selected from a quantized codebook F with size/cardinality |F| =
MCB. The codewords of this codebook are denoted as gm,m =
1, 2, ...,MCB. Further, we assume that the beamforming vector fn
is selected from the codebook F to maximize the received signal
power, i.e., according to the criterion

fn = arg max
gm∈F

∑
k

|h∗n,kgm|2. (2)

We adopt a wideband geometric mmWave channel model [4]
with L clusters. Each cluster `, ` = 1, ..., L is assumed to contribute
with one ray that has a time delay τ` ∈ R, and azimuth/elevation an-
gles of arrival (AoA) θ`, φ`. Further, let ρn denote the path-loss be-
tween the user and the n-th BS, and prc(τ) represents a pulse shap-
ing function for TS-spaced signaling evaluated at τ seconds. With
this model, the delay-d channel between the user and the nth BS
follows

hn,d =

√
M

ρn

L∑
`=1

α` p(dTS − τ`)an (θ`, φ`) , (3)

where an (θ`, φ`) is the array response vector of the nth BS at the
AoAs θ`, φ`. Given the delay-d channel in (3), the frequency domain
channel vector at subcarrier k, hn,k, can be written as

hn,k =

D−1∑
d=0

hn,de
−j 2πk

K
d. (4)

Considering a block-fading channel model, {hn,k}Kk=1 are assumed
to stay constant over the channel coherence time, denoted TC [6] .

3. PROBLEM DEFINITION AND FORMULATION

Maintaining good link reliability is a key challenge for mmWave
communication systems, especially with mobility. This is mainly
due to the high sensitivity of mmWave signals to blockages, which
can frequently cause link disconnections. Further, when the link

to the current BS is blocked, the mobile user incurs critical latency
overhead to get connected to another BS. To overcome these chal-
lenges, can we predict that a link blockage is going to happen in
the next few moments? Successful blockage prediction can be very
helpful for mmWave system operation as it allows for proactive
hand-off to the next BS. This proactive hand-off enhances the sys-
tem reliability by ensuring session continuity and avoids the latency
overhead that results from link disconnection. In this section, we
formulate the mmWave blockage prediction and proactive hand-off
problem that we tackle in the next section.

Beam sequence and hand-off status: To formulate the prob-
lem, we first define two important quantities, namely the beam se-
quence and the hand-off status. Due to the user mobility, the cur-
rent/serving BS needs to frequently update its beamforming vector
fn ∈ F . The frequency of updating the beams depends on a number
of parameters including the user speed and the beam width. A good
approximation for the period every which the BS needs to update its
beam is the beam coherence time, TB, which is defined as [6]

TB =
D

vs sin(α)

Θn

2
, (5)

where vs denotes the user speed, D is the distance between the user
and the BS, α is the angle between the direction of travel and the di-
rection of the main scatterer/reflector (or the BS in the case of LOS),
and Θn defines the beam-width of the beams used by BS n. Now, as-
suming that the current/serving BS n updates its beamforming vector
every beam-coherence time and calling it a time step, we define f

(t)
n

as the beamforming vector selected by the nth BS to serve the mo-
bile user in the tth time step, with t = 1 representing the first time
step after the handing-over to the current BS. With this, we define
the beam sequence of BS n until time step t, denoted Bt as

Bt =
{
f (1)n , f (2)n , ..., f (t)n

}
. (6)

Further, we define st ∈ {1, 2, ..., N}, as the hand-off status at
the tth time step, with st = n indicating the user will stay connected
to the current BS n in the next time step, and st 6= n indicating that
the mobile user will hand-off to another BS in the t+ 1 time step. It
is important to note here that predicting a hand-off in the next time
step is more general that predicting a blockage, as the hand-off can
happen due to a sudden blockage or a better SNR. Therefore, we
will generally adopt the hand-off prediction that implicitly include
link blockage prediction.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying be-
havior in the channel. To complete the formulation, we leverage the
note that the beamforming vector that maximizes the received signal
power, as defined in (2), heavily relies on the user location and
the surrounding environment geometry (including blockages) [3].
Therefore, we formulate the problem as a prediction of the
hand-off status at time t+ 1, i.e., ŝt, given the beam-sequence at
time t, Bt. Formally, the objective of this paper is to maximize the
probability of successful blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to ad-
dress this problem.

4. DEEP LEARNING BASED PROACTIVE HAND-OFF

In this section, we explain our proposed solution that uses deep
learning tools, and more specifically recurrent neural networks, to ef-
ficiently predict hand-off/blockages. First, we highlight the key idea
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Fig. 2. The proposed deep learning model that leverages recurrent neural
networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:

softmax(a)n =
ean

PN
d=1 ead

. (13)

Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
X

i

si
t log ŝi

t. (14)
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of this paper is to maximize the probability of successful
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In this next section, we leverage machine learning tools to
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Input representation: At every time step t, the input to
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networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
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the sequence of beams until time step t, and the next step
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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networks to predict the hand-off BS in the next time step, ŝt, given the past
beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.

XXX note on variable length sequence

B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:
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beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.

IV. DEEP LEARNING BASED PROACTIVE HAND-OFF

A. Main Idea and System Operation

We model the problem of predicting blockage and reconnect
to base stations as a sequence labeling problem. Given a
sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.
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Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n

function is defined as follows:
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beam sequence Bt

Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.
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Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the
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where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations
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and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.
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model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.
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B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
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where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n
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Further, we define st 2 {0, 1}, as the hand-off status at the
tth time step, with st = 1 indicating the user will hand-off to
another BS in the t + 1 time step, and st = 0 indicating that
the mobile user will stay connected to the current BS in the
next time step.

In this paper, we will focus on stationary blockages, which
leaves the user mobility as the main factor of the time-varying
behavior in the channel. To complete the formulation, we
leverage the note that the beamforming vector that maximizes
the received signal power, as defined in (2), heavily relies on
the user location and the surrounding environment geometry
(including blockages) [6]. Therefore, we formulate the prob-
lem as a prediction of the hand-off state at time t+1, i.e., ŝt,
given the beam-sequence at time t, Bt. Formally, the objective
of this paper is to maximize the probability of successful
blockage/hand-off prediction defined as

P [ŝt = st |Bt ] . (7)

In this next section, we leverage machine learning tools to
address this problem.
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sequence of beams, predict the most likely base station to
connect with in the next time step. At every time step, our
model has access to the history of beams, and it uses that to
predict the base station. If the predicted base station is different
from the current one, that indicates a blockage.
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B. Machine Learning Model

Next, we describe the key elements of the proposed machine
learning model which is based on recurrent neural networks.

Input representation: At every time step t, the input to
our deep learning model is the tth beam index in the beam
sequence Bt. Let bt 2 {1, 2, ..., MCB} denote the index of the

tth beam index, then our model starts with an embedding layer
that maps every beam index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
The main value of this layer is to ... XXX.

Sequence processing: The central component of our model
is a Gated Recurrent Unit (GRU) [7] — a form of neural
networks that is best suited for processing variable length
sequnces. GRU is a recursive network that runs at every time
step of the input, and it maintains a hidden state qt which
is a function of the previous state and the current input. In
addition, it has a special gating mechanism that helps with long
sequences. More formally, GRU is implemented as depicted
in Fig. 2, and is described by the following model equations

rt = �g (Wrxt + Urqt�1 + cr) (9)
zt = �g (Wzxt + Uzqt�1 + cz) (10)
qt = (1 � zt) � qt�1

+ zt � �h (Wqxt + Uq (rt � qt�1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt

are ”gates” that help the model learn from long distance de-
pendencies if needed. The weight matrices Wr, Wz,Ur,Uz

and the bias vectors cr, cz, cq are model parameters that are
learned during the machine learning training phase. Finally, �g

and �h are nonlinear activation functions, the first is sigmoid
and the second is tanh. Using non linear activation functions
allows the model to represent complex non-linear functions.

Output: At every time step t, the model has a hidden
state qt which encompasses what the model learned about
the sequence of beams until time step t, and the next step
is to use qt to predict the most likely base station ŝt for
the next time step. For this, we use a fully connected layer
with output size N equals number of possible base stations,
followed by a softmax activation that normalizes the outputs
into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n2{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-
connected layer. The softmax(.)n function takes a vector of
length N and outputs the probability that the nth BS is going
to be the BS of the next time step t + 1. The softmax(.)n
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Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model
predictions ŝt and the actual base station of the following time
step st. We compute this loss at every time step t then sum
over all time steps. The cross entropy loss at every time step
t is computed as follows:

loss(ŝt, st) = �
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The final goal of training the model is to find the parameters
embd,Wr,Wz,Wh,Ur,Uz,Uh,Wf , cr, cz, ch, cf that
minimize this loss for all training instances.

V. SIMULATION RESULTS
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Fig. 2. The proposed deep learning model that leverages recurrent
neural networks to predict the hand-off BS in the next time step, ŝt,
given the past beam sequence Bt

and system operation before delving into the exact machine learning
modeling in Section 4.2.

4.1. Main Idea and System Operation

In this subsection, we briefly describe the key idea of the proposed
solution as well as the learning/communications system opera-
tion. We model the problem of predicting hand-off/blockage as a
sequence labeling problem. In summary, given the sequence of pre-
vious beams Bt, the serving BS predict the most likely base station
that the user will connect with in the next time step. If the predicted
base station is different from the current one, that indicates that a
proactive hand-off needs to happen. As we mentioned in Section 3,
by adopting the problem of predicting the hand-off, our system will
also predict link blockages if they are going to happen in the next
time step as they will require a hand-off.

System operation: The proposed learning/communication
system operates in two phases. In the first phase (learning), the
mmWave communication system operates as normal: At every
beam coherence time, the current BS will update its beamforming
vector that serves the user. If the link is blocked, the user will
follow the initial access process to hand-off to a new BS. During
this process, the serving BS will feed the beam sequence Bt and
the hand-off status st at every time step (beam coherence time) to
its machine learning model that will use it for training. It is impor-
tant to note here that these beam sequences have different lengths
depending on the speed of the user, its trajectory, the time period it
is spent connected to this BS, etc. As will be explained shortly, We
designed our deep learning model to carefully handle this variable
sequence length challenge.

After the machine learning model is well-trained, the serving
BS will leverage it to predict if the link to the user will face a
blockage/hand-off in the next time-step. If a hand-off is predicted,
the user and its serving BS will pro-actively initiate the hand-off
process to the next BS to ensure session continuity and avoid latency
problems.

4.2. Machine Learning Model

Next, we describe the key elements of the proposed machine learning
model which is based on recurrent neural networks.

Input representation: At every time step t, the input to our
deep learning model is the tth beam index in the beam sequence Bt.
Let bt ∈ {1, 2, ...,MCB} denote the index of the tth beam index,
then our model starts with an embedding layer that maps every beam
index bt to a vector xt.

xt = embd (bt) (8)

where embd is a lookup table we learn during the training.
Sequence processing: The central component of our model is a

Gated Recurrent Unit (GRU) [7] — a form of neural networks that
is best suited for processing variable length sequnces. GRU is a re-
cursive network that runs at every time step of the input, and it main-
tains a hidden state qt which is a function of the previous state and
the current input. In addition, it has a special gating mechanism that
helps with long sequences. More formally, GRU is implemented as
depicted in Fig. 2, and is described by the following model equations

rt = σg (Wrxt + Urqt−1 + cr) (9)
zt = σg (Wzxt + Uzqt−1 + cz) (10)
qt = (1− zt) ◦ qt−1

+ zt ◦ σq (Wqxt + Uq (rt ◦ qt−1) + cq) , (11)

where xt is the input vector, qt is the hidden state, rt and zt are
”gates” that help the model learn from long distance dependencies if
needed. The weight matrices Wr , Wz,Ur,Uz and the bias vectors
cr, cz, cq are model parameters that are learned during the machine
learning training phase. Finally, σg and σq are nonlinear activation
functions, the first is sigmoid and the second is tanh. Using non
linear activation functions allows the model to represent complex
non-linear functions.

Output: At every time step t, the model has a hidden state qt

which encompasses what the model learned about the sequence of
beams until time step t, and the next step is to use qt to predict the
most likely base station ŝt for the next time step. For this, we use a
fully connected layer with output size N equals number of possible
base stations, followed by a softmax activation that normalizes the
outputs into probabilities (they sum up to 1). The predicted hand-off
BS (the final output of the model) can then be expressed as

ŝt = arg max
n∈{1,2,...,N}

softmax (Wfqt + cf)n (12)

where Wf and cf are the weights and biases of the fully-connected
layer. The softmax(.)n function takes a vector of length N and out-
puts the probability that the nth BS is going to be the BS of the next
time step t+ 1. The softmax(.)n function is defined as follows:

softmax(a)n =
e[a]n∑N
d=1 e

[a]d
. (13)

Training: The training objective in our supervised learning
model is minimizing the cross entropy loss between our model pre-
dictions ŝt and the actual base station of the following time step st.
We compute this loss at every time step t then sum over all time
steps. The cross entropy loss at every time step t is computed as
follows:

loss(ŝt, st) = −
∑
i

[p]i,t log [p̂]i,t. (14)

where the reference prediction vector p has 1 in the entry corre-
sponding to the index of the correct BS in st, and zero otherwise.
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Fig. 3. This figure illustrates the considered simulation setup where
two candidate BSs, each has ULA, serve one vehicle moving in a
street.

Further, the model prediction vector p̂ has the dth entry equals to
softmax(a)d, ∀d.
The final goal of training the model is to find the parameters
embd,Wr,Wz,Wh,Ur,Uz,Uh,Wf , cr, cz, ch, cf that mini-
mize this loss for all training instances.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed deep-
learning based proactive hand-off solution.

Simulation setup: We adopt the mmWave system and chan-
nel models in Section 2, with two candidate BSs to serve one vehi-
cle/mobile user moving in a street, as depicted in Fig. 3. To generate
realistic data for the channel parameters (AoAs/delay/etc.), we use
the commercial ray-tracing simulator, Wireless InSite [8], which is
widely used in mmWave research [6,9], and is verified with channel
measurements [9]. Each BS is installed on one lamp post at height
4 m, and employs a 32-element uniform linear array (ULA) facing
the street. The mobile user is moving in straight-line trajectories
in the street, that can be any where of the street width, and with
maximum trajectory length of 160 m. The trajectory starting point is
randomly selected from the first 40m of the street, and the user speed
is randomly selected from {8, 16, 24, 32, 40} km/hr. The BS selects
its beamforming vector from a uniformly quantized beamsteering
codebook with an oversampling factor of 4, i.e. the codebook size is
MCB = 128. At every beam coherence time, the BS beamforming
vector is updated to maximize the receive SNR at the user. During
the uplink training, the MS is assumed to use 30dBm transmit power,
and the noise variance corresponds to 1GHz system bandwidth. The
system is assumed to operate at 60GHz carrier frequency.

We consider the deep learning model described in Section 4.2.
The neural network model has an embedding that outputs vectors of
length 20 to the GRU unit, with maximum sequence length of 454.
Since we have only 2 BSs in out experiment, the fully-connected
layer has only two outputs that go to the softmax function. We use
the Adam optimizer [10]. In the deep learning experimental work,
we used the Keras libraries [11] with a TensorFlow backend.

Hand-off/Blockage prediction: To evaluate the performance
of the proposed deep-learning based proactive hand-off solution,
Fig. 4 plots the blockage/hand-off successful prediction probability,
defined in (7), versus the training size. Fig. 4 shows that with suf-
ficient dataset size (larger than 12 thousand samples), the machine
learning model successfully predicts the hand-off with more than
90% probability, given only the sequence of past beams Bt. This
illustrates the potential of the proposed solution in enhancing the
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Fig. 4. This figure shows that the proposed deep-learning proactive
hand-off solution successfully predicts blockages/hand-off with high
probabilities when the machine learning model is well-trained.

reliability of next-generation mmWave systems.

6. CONCLUSION

In this paper, we proposed a novel solution for the reliability and la-
tency problem in mobile mmWave systems. Our solution leveraged
deep learning tools to efficiently predict blockage and the need for
hand-off. This allows the mobile user to proactively hand-off to the
next BS without disconnecting the session or suffering from high la-
tency overhead due to sudden link disconnections. The simulation
results showed that the developed proactive hand-off strategy can
successfully predicts blockage/hand-off with high probability when
the machine learning model is trained with reasonable dataset sizes.
In the future, it is interesting to extend the developed solution to
multi-user systems and account for mobile blockages.
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