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Abstract
We introduce the lookahead-bounded Q-learning
(LBQL) algorithm, a new, provably convergent
variant of Q-learning that seeks to improve the
performance of standard Q-learning in stochastic
environments through the use of “lookahead” up-
per and lower bounds. To do this, LBQL employs
previously collected experience and each itera-
tion’s state-action values as dual feasible penalties
to construct a sequence of sampled information
relaxation problems. The solutions to these prob-
lems provide estimated upper and lower bounds
on the optimal value, which we track via stochas-
tic approximation. These quantities are then used
to constrain the iterates to stay within the bounds
at every iteration. Numerical experiments confirm
the fast convergence of LBQL as compared to the
standard Q-learning algorithm and several related
techniques. Our approach is particularly appeal-
ing in problems that require expensive simulations
or real-world interactions.

1 Introduction
Since its introduction by Watkins (1989), Q-learning has
become one of the most widely-used reinforcement learning
(RL) algorithms (Sutton & Barto, 2018), due to its concep-
tual simplicity, ease of implementation, and convergence
guarantees (Jaakkola et al., 1994; Tsitsiklis, 1994; Bertsekas
& Tsitsiklis, 1996). However, practical implementations of
Q-learning on real-world problems is difficult due to the
(often) high cost of obtaining data and experience from real
environments, along with other issues such as overestima-
tion bias (Szepesvári, 1998; Even-Dar & Mansour, 2003;
Lee & Powell, 2019).

In this paper, we address these challenges by focusing on
a specific class of problems with partially known models
in the following sense: writing the transition dynamics as
st+1 = f(st, at, wt+1), where st and at are the current
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state and action, st+1 is the next state, and wt+1 is ran-
dom noise, we consider problems where f is known but
wt+1 can only be observed through interactions with the
environment. This type of model is the norm in the con-
trol (Bertsekas & Tsitsiklis, 1996) and operations research
(Powell, 2007) communities. We propose and analyze a
new RL algorithm called lookahead-bounded Q-learning
(LBQL), which exploits knowledge of f to improve the ef-
ficiency of Q-learning and address overestimation bias. It
does so by making better use of the observed data through
estimating upper and lower bounds using a technique called
information relaxation (IR) (Brown et al., 2010).

Indeed, there are abundant real-world examples that fall
into this subclass of problems, as we now illustrate with
a few examples. In inventory control, the transition from
one inventory state to the next is a well-specified function f
given knowledge of a stochastic demand wt+1 (Kunnumkal
& Topaloglu, 2008). For vehicle routing, f is the often
just the routing decision itself, while wt+1 are exogenous
demands that require observation (Secomandi, 2001). In
energy systems operations, a typical setting is to optimize
storage that behaves through linear transitions f together
with unpredictable renewable supply, wt+1 (Kim & Powell,
2011). In portfolio optimization, f is the next portfolio, and
wt+1 represents random prices (Rogers, 2002). In Section
5 of this paper, we discuss another application that follows
this paradigm: spatial dynamic pricing for car sharing.

Although we specialize to problems with partially known
transition dynamics, this should not be considered restric-
tive: in fact, our proposed algorithm can be integrated seam-
lessly with the model-based RL framework to handle the
standard model-free RL setting, where f is constantly being
learned. We leave this extension to future work.

Main Contributions. We make the following methodolog-
ical and empirical contributions in this paper.

1. We propose a novel algorithm that takes advantage
of IR theory and Q-learning to generate upper and
lower bounds on the optimal value. This allows our
algorithm to mitigate the effects of maximization bias,
while making better use of the collected experience and
the transition function f . A variant of the algorithm
based on experience replay is also given.

2. We prove that our method converges almost surely to
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the optimal action-value function. The proof requires
a careful analysis of several interrelated stochastic pro-
cesses (upper bounds, lower bounds, and the Q-factors
themselves).

3. Numerical experiments on five test problems show su-
perior empirical performance of LBQL compared to
Q-learning and other widely-used variants. Interest-
ingly, sensitivity analysis shows that LBQL is more
robust to learning rate and exploration parameters.

The rest of the paper is organized as follows. In the next
section, we review the related literature. In Section 3, we
introduce the notation and review the basic theory of IR. In
Section 4, we present our algorithm along with its theoretical
results. In Section 5, we show the numerical results where
LBQL is compared to other Q-learning variants. Finally, we
state our conclusion and future work in Section 6.

2 Related Literature
Upper and lower bounds on the optimal value have recently
been used by optimism-based algorithms, e.g., Dann et al.
(2018) and Zanette & Brunskill (2019). These papers fo-
cus on finite horizon problems, while we consider infinite
horizon case. Their primary use of the lower and upper
bounds is to achieve better exploration, while our work is fo-
cused on improving the action-value estimates by mitigating
overestimation and enabling data re-use.

In the context of real-time dynamic programming (RTDP)
(Barto et al., 1995), Bounded RTDP (McMahan et al., 2005),
Bayesian RTDP (Sanner et al., 2009) and Focused RTDP
(Smith & Simmons, 2006) propose extensions of RTDP
where a lower bound heuristic and an upper bound are
maintained on the value function. These papers largely
use heuristic approaches to obtain bounds, while we use the
principled idea of IR duality.

More closely related to our paper is the work of He et al.
(2016), which exploits multistep returns to construct bounds
on the optimal action-value function, before utilizing con-
strained optimization to enforce those bounds. However,
unlike our work, no theoretical guarantees are provided. To
the best of our knowledge, we provide the first asymptotic
proof of convergence to the general approach of enforcing
dynamically computed (noisy) bounds. Thus, our analysis
can serve as a base for deriving theoretical guarantees of
similar algorithms.

There are also two papers that utilize IR bounds in the re-
lated setting of finite horizon dynamic programming. Jiang
et al. (2020) use IR dual bounds in a tree search algorithm
in order to ignore parts of the tree. Recent work by Chen
et al. (2019) uses IR duality in a duality-based dynamic
programming algorithm that converges monotonically to
the optimal value function through a series of “subsolu-

tions” under more restrictive assumptions (e.g., knowledge
of probability distributions).

3 Background
In this section, we first introduce some definitions and con-
cepts from Markov decision process (MDP) theory. Then,
we describe the basic theory of information relaxations and
duality, which is the main tool used in our LBQL approach.

3.1 MDP Model

Consider a discounted, infinite horizon MDP with a finite
state space S , and a finite action space A, and a disturbance
spaceW . Let {wt} be a sequence of independent and identi-
cally distributed (i.i.d.) random variables defined on a prob-
ability space (Ω,F ,P), where each wt is supported on the
setW . Let st ∈ S be the state of the system at time t. We
also define a state transition function f : S ×A×W → S ,
such that if action at is taken at time t, then the next state
is governed by st+1 = f(st, at, wt+1). This “transition
function” model of the MDP is more convenient for our
purposes, but we note that it can easily be converted to the
standard model used in RL, where the transition probabil-
ities, p(st+1 | st, at), are modeled directly. For simplicity
and ease of notation, we assume that w is independent1

from (s, a). Let r(st, at) be the expected reward when tak-
ing action at ∈ A in state st ∈ S. We assume that the
rewards r(st, at) are uniformly bounded by Rmax and for
simplicity in notation, that the feasible action set A does
not depend on the current state. As usual, a deterministic
Markov policy π ∈ Π is a mapping from states to actions,
such that at = π(st) whenever we are following policy π.
We let Π be the set of all possible policies (or the set of all
“admissible” policies).

Given a discount factor γ ∈ (0, 1) and a policy π ∈ Π, the
value and the action-value functions are denoted respec-
tively by

V π(s) = E

[ ∞∑
t=0

γtr(st, at)
∣∣∣π, s0 = s

]
and

Qπ(s, a) = E

[ ∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a, π

]
,

where the notation of “conditioning on π” refers to ac-
tions at selected by π(st). The expectation E, here and
throughout the paper, is taken with respect to P. Our
objective is to find a policy π ∈ Π such that starting
from any state s, it achieves the optimal expected dis-
counted cumulative reward. The value of this optimal
policy π∗ for a state s is called the optimal value func-
tion and is denoted by V ∗(s) = maxπ V

π(s). Specifi-

1However, we can also allow for (s, a)-dependent w with es-
sentially no fundamental changes to our approach.
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cally, it is well-known that an optimal policy selects ac-
tions according to π∗(s) = arg maxa∈AQ

∗(s, a), where
Q∗(s, a) = maxπ Q

π(s, a) is the optimal action-value func-
tion (Puterman, 2014). The Bellman optimality equation
gives the following recursion:

Q∗(st, at) = r(st, at) + γE
[
max
at+1

Q∗(st+1, at+1)
]
.

The goal in many RL algorithms, including Q-learning
(Watkins, 1989), is to approximate Q∗.

3.2 Information Relaxation Duality

Now let us give a brief review of the theory behind informa-
tion relaxation duality from Brown et al. (2010), which is a
way of computing an upper bound on the value and action-
value functions. This generalizes work by Rogers (2002),
Haugh & Kogan (2004), and Andersen & Broadie (2004)
on pricing American options. Note that any feasible policy
provides a lower bound on the optimal value, but computing
an upper bound is less straightforward. The information re-
laxation approach proposes to relax the “non-anticipativity”
constraints on policies, i.e., it allows them to depend on
realizations of future uncertainties when making decisions.
Naturally, optimizing in the class of policies that can “see
the future” provides an upper bound on the best admissible
policy. We focus on the special case of perfect information
relaxation, where full knowledge of the future uncertainties,
i.e., the sample path (w1, w2, . . .), is used to create upper
bounds. The naive version of the perfect information bound
is simply given by

V ∗(s0) ≤ E

[
max

a

{ ∞∑
t=0

γtr(st, at)

}]
,

which, in essence, is an interchange of the expectation and
max operators; the interpretation here is that an agent who
is allowed to adjust her actions after the uncertainties are
realized achieves higher reward than an agent who acts
sequentially. As one might expect, perfect information can
provide upper bounds that are quite loose. The central idea
of the information relaxation approach to strengthen these
upper bounds is to simultaneously (1) allow the use of future
information but (2) also penalize the agent for doing so.
A penalty function is said to be dual feasible if it does not
penalize any admissible policy π ∈ Π in expectation. Let
st+1 = f(st, at, wt+1) be the next state, ϕ : S × A → R
be a bounded function, and w have the same distribution as
wt+1. Then, penalties involving terms of the form

zπt (st, at, wt+1 |ϕ) := γt+1
(
ϕ(st+1, π(st+1))

−E
[
ϕ
(
f(st, at, w), π(f(st, at, w))

)]) (1)

are dual feasible because

E

[ ∞∑
t=0

zπt (st, at, wt+1 |ϕ)

]
= 0.

This is a variant of the types of penalties introduced in
Brown & Haugh (2017), extended to the case of action-
value functions. Intuitively, if ϕ is understood to be an
estimate of the optimal action-value function Q∗ and π an
estimate of the optimal policy π∗, then zπt can be thought
of as the one-step value of future information (i.e., knowing
wt+1 versus taking an expectation over its distribution).

These terms, however, may have negative expected value
for policies that violate non-anticipativity constraints. Let
πϕ be the policy that is greedy with respect to the bounded
function ϕ (taken as an action-value function). Consider the
problem constructed by subtracting the penalty term from
the reward in each period and relaxing non-anticipativity
constraints by interchanging maximization and expectation:

QU (s0, a0) = E
[
max

a

{ ∞∑
t=0

γtr(st, at)

− zπϕ

t (st, at, wt+1 |ϕ)
}]
.

(2)

Brown & Haugh (2017) shows that the objective value of
this problem, QU (s0, a0), is an upper bound on Q∗(s0, a0),
where a := (a0, a1, . . .) is an infinite sequence of actions.
Notice that in principle, it is possible to estimate the problem
in (2) using Monte Carlo simulation. To do this, we generate
infinitely long sample paths of the form w = (w1, w2, . . .),
and for each fixed w, we solve the inner deterministic dy-
namic programming (DP) problem. Averaging over the re-
sults produces an estimate of the upper bound ofQU (s0, a0).
Our new approach to Q-learning will take advantage of this
idea, with ϕ and π being continuously updated.

3.3 Absorption Time Formulation

In practice, however, we cannot simulate infinitely long sam-
ple paths w. One solution is to use an equivalent (random)
finite horizon formulation (see for e.g. Proposition 5.3.1
of Puterman 2014) where instead of discounting, a new ab-
sorbing state s̃ with zero reward is added to the state space
S. This new state s̃ can be reached from every state and
for any feasible action with probability 1− γ. We define a
new state transition function h, which transitions to s̃ with
probability 1− γ from every (s, a), but conditioned on not
absorbing (i.e., with probability γ), h is identical to f . We
refer to this as the absorption time formulation, where the
horizon length τ := min{t : st = s̃} has a geometric dis-
tribution with parameter 1− γ and the state transitions are
governed by the state transition function h instead of f . Let
Q be the set of bounded functions ϕ such that ϕ(s̃, a) = 0
for all a ∈ A. The penalty terms for the absorption time
formulation are defined in a similar way as (1), except we
now consider ϕ ∈ Q:

ζπt (st, at, wt+1 |ϕ) := ϕ(st+1, π(st+1))

−E
[
ϕ
(
h(st, at, w), π(h(st, at, w))

)]
,

(3)
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where st+1 = h(st, at, wt+1). We now state a proposition
that summarizes the information relaxation duality results,
which is a slight variant of results in Proposition 2.2 of
Brown & Haugh (2017).
Proposition 1 (Duality Results, Proposition 2.2 in Brown
& Haugh (2017)). The following duality results are stated
for the absorption time formulation of the problem.

(i) Weak Duality: For any π ∈ Π and ϕ ∈ Q,

Qπ(s0, a0) ≤ E
[
max

a

τ−1∑
t=0

(
r(st, at)

− ζπϕ

t (st, at, wt+1 |ϕ)
)] (4)

(ii) Strong Duality: It holds that

Q∗(s0, a0) = inf
ϕ∈Q

E
[
max

a

τ−1∑
t=0

(
r(st, at)

− ζπϕ

t (st, at, wt+1 |ϕ)
)]
,

(5)

with the infimum attained at ϕ = Q∗.

The DP inside the expectation of the right hand side of (4) is
called the inner problem. Weak duality tells us that by using
a dual feasible penalty, we can get an estimated upper bound
on the optimal action-value function Q∗(s0, a0) by simulat-
ing multiple sample paths and averaging the optimal value
of the resulting inner problems. Strong duality suggests that
the information gained from accessing the future is perfectly
cancelled out by the optimal dual feasible penalty.

For a given sample path w = (w1, . . . , wτ ), each of the
inner DP problems can be solved via the backward recursion

QUt (st, at) = r(st, at)− ζ
πϕ

t (st, at, wt+1 |ϕ)

+ max
a

QUt+1(st+1, a),
(6)

for t = τ −1, τ −2, . . . , 0 with st+1 = h(st, at, wt+1) and
QUτ ≡ 0 (as there is no additional reward after entering the
absorbing state s̃). The optimal value of the inner problem
is given by QU0 (s0, a0).

3.4 Lower Bounds using IR

The penalty function approach also allows for using a feasi-
ble policy to estimate a lower bound on the optimal value,
such that when using a common sample path, this lower
bound is guaranteed to be less than the corresponding esti-
mated upper bound, a crucial aspect of our theoretical analy-
sis. Specifically, given a sample path (w1, w2, . . . , wτ ), the
inner problem used to evaluate a feasible policy π ∈ Π is
given by

QLt (st, at) = r(st, at)− ζπt (st, at, wt+1 |ϕ)

+QLt+1(st+1, π(st+1)),
(7)

for t = 0, . . . , τ − 1, with st+1 = h(st, at, wt+1) and
QLτ ≡ 0. It follows that E

[
QL0 (s0, a0)

]
= Qπ(s0, a0),

because penalty terms ζπt (st, at, wt+1 |ϕ) have zero mean.

4 QL with Lookahead Bounds
We now introduce our proposed approach, which integrates
the machinery of IR duality with Q-learning in a unique
way. An outline of the essential steps is given below.

1. On a given iteration, we first experience a realization of
the exogenous information wt+1 and make a standard
Q-learning update.

2. We then set ϕ to be the newly updated Q-iterate and
compute upper and lower bounds on the trueQ∗, which
are then tracked and averaged using a stochastic ap-
proximation step.

3. Finally, we project the Q-iterate so that it satisfies the
averaged upper and lower bounds and return to Step 1.

Figure 1 shows an illustration of each of these steps at a
given iteration of the algorithm. Since we are setting ϕ to
be the current Q-iterate at every iteration, the information
relaxation bounds are computed using a dynamic sequence
of penalty functions and averaged together using stochastic
approximation. The idea is that as our approximation of Q∗

improves, our upper and lower bounds also improve. As the
upper and lower bounds improve, the projection step ensures
that the Q-iterates also improve. It is this back-and-forth
feedback between the two processes that has the potential
to yield rapid convergence toward the optimal Q∗.

The primary drawback of our approach is that in the com-
putation of the information relaxation dual bounds, expec-
tations need to be computed. We first show an idealized
version of the algorithm where these expectations are esti-
mated using unbiased samples of wt+1 from a black-box
simulator. Later, we relax the need for a black-box simulator
and show how our algorithm can be implemented with a
replay-buffer. Both versions are analyzed theoretically and
convergence results are provided.

Q′n Qn+1

Un+1

Ln+1

Π[Ln+1,Un+1][Qn+1]

Projection

Q′n+1

Lookahead samples +
ϕ = Qn+1

Q-learning

Figure 1: Illustration of LBQL Algorithm at iteration n.

4.1 An Idealized Algorithm

Let {w1
t+1, w

2
t+1, . . . , w

K
t+1} be a batch (as opposed to a

sample path) of K samples from the distribution of the ex-
ogenous informationwt+1 (i.e., from a black-box simulator).
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An empirical version of (3) is simply given by:

ζ̂πt (st, at, wt+1 |ϕ) := ϕ(st+1, π(st+1))

− 1

K

K∑
k=1

ϕ
(
h(st, at, w

k
t+1), π(h(st, at, w

k
t+1))

)
,

(8)

where st+1 = h(st, at, wt+1). Given a sample path w =
(w1, w2, . . . , wτ ) of the absorption time formulation of the
problem, analogues to (6) and (7) using ζ̂πt , where in (7) we
set π = πϕ (i.e., the lower bound on the optimal value is
constructed by approximately evaluating the feasible policy
πϕ) are given by

Q̂Ut (st, at) = r(st, at)− ζ̂
πϕ

t (st, at, wt+1 |ϕ)

+ max
a

Q̂Ut+1(st+1, a)
(9)

Q̂Lt (st, at) = r(st, at)− ζ̂
πϕ

t (st, at, wt+1 |ϕ)

+ Q̂Lt+1(st+1, πϕ(st+1))
(10)

for t = 0, 1, . . . , τ − 1, where st+1 = h(st, at, wt+1),
Q̂Uτ ≡ Q̂Lτ ≡ 0, and we assume that each call to ζ̂πt uses a
fresh batch of K samples.

Proposition 2. The valid upper and lower bound properties
continue to hold in the empirical case:

E[ Q̂L0 (s, a) ] ≤ Q∗(s, a) ≤ E[ Q̂U0 (s, a) ],

for any state-action pair (s, a).

We include the proof in Appendix A.1. The proof is similar
to that of Proposition 2.3(iv) of Brown et al. (2010), except
extended to the infinite horizon setting with the absorption
time formulation. A detailed description of the LBQL al-
gorithm is given in Algorithm 1, where we use ‘n’ for the
iteration index in order to avoid confusion with the ‘t’ used
in the inner DP problems. We use Π[a,b][x] to denote x
projected onto [a, b], i.e., Π[a,b][x] = max{min{x, b}, a},
where either a or b could be infinity. Let ρ = Rmax/(1−γ),
the initial lower and upper bounds estimates are set such
that L0(s, a) = −ρ and U0(s, a) = ρ for all (s, a) ∈ S×A.
The initial action-value Q0 is set arbitrarily such that
L0(s, a) ≤ Q0(s, a) ≤ U0(s, a) for all (s, a) ∈ S ×A.

L
A

R

L

B
R−1, 0.5

−1, 0.5 −1, 0.5

1, 0.5

−1, 1

1, 0.5

−1, 0.5

Figure 2: A simple stochastic MDP.

Example 1. We demonstrate the idealized LBQL algo-
rithm using the simple MDP shown in Figure 2. The MDP
has two non-terminal states A and B. Each episode starts
in state A, with a choice of two actions: right and left

Algorithm 1 Lookahead-Bounded Q-Learning

Input: Initial estimates L0 ≤ Q0 ≤ U0, batch size K,
and stepsize rules αn(s, a), βn(s, a).
Output: Approximations {Ln}, {Q′n}, and {Un}.
Set Q′0 = Q0 and choose an initial state s0.
for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g.,
ε-greedy). Observe wn+1. Let

Qn+1(sn, an) = Q′n(sn, an) + αn(sn, an)
[
rn(sn, an)

+ γmax
a

Q′n(sn+1, a)−Q′n(sn, an)
]
. (11)

Set ϕ = Qn+1. Using one sample path w, compute
Q̂U0 (sn, an) and Q̂L0 (sn, an) using (9) and (10).
Update and enforce upper and lower bounds:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an)

+ βn(sn, an)
[
Q̂U0 (sn, an)− Un(sn, an)

]]
, (12)

Ln+1(sn, an) = Π[∞, ρ]

[
Ln(sn, an)

+ βn(sn, an)
[
Q̂L0 (sn, an)− Ln(sn, an)

]]
, (13)

Q′n+1(sn, an) =

Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)] . (14)

end for

denoted by R and L respectively. The rewards and tran-
sition probabilities of taking an action in each state are
shown on the edges in the figure. Assume that the tran-
sitions are governed by the outcome of a fair coin. If
the outcome is Head then we transition in the direction
of our chosen action and in the opposite direction for a
Tail outcome. For a discount factor γ = 0.95, the op-
timal policy is to go right at both A and B. The optimal
action-values are given by Q∗(A,R) = Q∗(B,R) = 0,
Q∗(A,L) = Q∗(B,L) = −1. Consider applying the ideal-
ized version of LBQL described in Algorithm 1.

AEpisode 1:

L R
Qn :
Ln :
Q′n :
Un :

0

−20

0

20

−0.1

−18.9

−0.1

19.3

B

L R
0

−20

0

20

−0.1

−18.98

−0.1

−19.02

AEpisode 58 :

L R
−1.05

−5.56

−1.05

4.08

0.15

−0.12

0.07

0.07

B

L R
−0.87

−8.29

−0.87

4.98

−0.12

−0.08

−0.08

0.05

next iter. next iter.

Figure 3: An illustration of LBQL iterates for Example 1.

We let αn = 0.1, βn = 0.05 for all n. Figure 3 illustrates
two iterations from the first and the 58th episodes. Initially
Q0(s, a) = 0 and ρ = 20. After one episode the bounds are
still loose so we have Q1(A,R) = Q′1(A,R) = −0.1. At
episode 58 (281 iterations): learning has occurred for the
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lower and upper bounds values for the right action at A and
B. We see that the bounds are effective already in keeping
the Q-iterate close to Q∗. Interestingly, the upper bound is
enforced at A and the lower bound is enforced at B. Note
that these are the results of a real simulation.

4.2 Analysis of Convergence

In this section, we analyze the convergence of the idealized
version of the LBQL algorithm to the optimal action-value
functionQ∗. We start by summarizing and developing some
important technical results that will be used in our analysis.
All proofs are presented in Appendix A.

The following proposition establishes the boundedness of
the action-value iterates and asymptotic bounds on the Ln
and Un iterates of Algorithm 1, which are needed in our
proof of convergence. The proof of this proposition is pre-
sented in Section A.2 in the Appendix.

Proposition 3 (Boundedness). For all (s, a) ∈ S ×A, we
have the following:

(i) The iterates Qn(s, a) and Q′n(s, a), remains bounded
for all (s, a) ∈ S ×A and for all n.

(ii) For every η > 0, and with probability one, there exists
some finite iteration index n0 such that
Ln(s, a) ≤ Q∗(s, a)+η and Q∗(s, a)−η ≤ Un(s, a)

for all iterations n ≥ n0.

Proposition 3(i) ensures that at each iteration n the action-
value iterates Qn and Q′n are bounded. This allows us to set
ϕ = Qn+1 at each iteration of Algorithm 1 and is required
to establish convergence in general. The proof is based on
establishing an inductive relationship that connects Qn and
Q′n to the previous lower and upper bounds iterates. Specif-
ically, we show that both action-value iterates are bounded
below by the preceding upper bounded iterates and above
by the preceding lower bound iterates. Proposition 3(ii)
ensures that there exists a finite iteration after which the
lower and upper bound iterates Ln and Un are lower and
upper bounds on the optimal action-value function Q∗ with
an error margin of at most an arbitrary amount η > 0. In the
proof of Proposition 3(ii), we bound the lower and upper
bound iterates by a noise process and another sequence that
converges to Q∗. We show that the noise process possesses
some properties that help to eliminate the effect of the noise
asymptotically. With the effects of the noise terms vanish-
ing, the boundedness of the lower and upper bound iterates
by Q∗ is achieved. Examining the update equations (12)
and (13) for Un+1 and Ln+1 in Algorithm 1, we remark
that they are not “standard” stochastic approximation or
stochastic gradient updates because Q̂U0 and Q̂L0 are com-
puted with iteration-dependent penalty functions generated
by ϕ = Qn+1. In other words, the noiseless function itself
is changing over time. The proof of Proposition 3(ii) essen-
tially uses the fact that even though these updates are being

performed with respect to different underlying functions,
as long as we can apply Proposition 2 in every case, then
after the noise is accounted for, the averaged values Un+1

and Ln+1 are eventually bounded below and above by Q∗,
respectively. The following lemma derives some guaran-
tees on the lower and upper bound iterates of Algorithm 1,
whose proof appears in Section A.3 of the Appendix.

Lemma 1 (Consistency of Bounds). If L0(s, a) ≤ U0(s, a),
then Ln(s, a) ≤ Un(s, a) for all iterations n and for all
(s, a) ∈ S ×A.

In particular, Lemma 1 shows that the upper and lower
bound iterates do not interchange roles and become inconsis-
tent. This is an important property; otherwise, the projection
step of Algorithm 1 loses its meaning and would require
additional logic to handle inconsistent bounds. The results
of Lemma 1 follows mainly by the fact that we are using
the same sample path to solve the upper and lower bound
inner problems, (9) and (10), respectively. Before stating
our convergence results, we first state a typical assumption
on the stepsizes and the state visits.

Assumption 1. We assume that:

(i)
∑∞
n=0 αn(s, a) =∞,

∑∞
n=0 α

2
n(s, a) <∞,∑∞

n=0 βn(s, a) =∞,
∑∞
n=0 β

2
n(s, a) <∞,

(ii) Each state s ∈ S is visited infinitely often with prob-
ability one.

We now state one of our main theoretical results.

Theorem 1 (Convergence of LBQL). Under Assumption 1,
the following hold with probability 1:

(i) Q′n(s, a) in Algorithm 1 converges to the optimal
action-value function Q∗(s, a) for all state-action
pairs (s, a).

(ii) If the penalty terms are computed exactly, i.e. as
per (3), then the iterates Ln(s, a), Q′n(s, a), Un(s, a)
in Algorithm 1 converge to the optimal action-value
function Q∗(s, a) for all state-action pairs (s, a).

The primary challenge in the analysis is to handle the inter-
dependent feedback between Q, U , and L, which is unique
to our algorithm (it is not immediately obvious that the
proposed scheme does not diverge).

4.3 LBQL with Experience Replay

We now introduce a more practical version of LBQL that
uses experience replay in lieu of a black-box simulator.
Here, we use a noise buffer B to record the unique noise val-
uesw that are observed at every iteration. We further assume
that the noise spaceW is finite, a reasonable assumption for
a finite MDP. The buffer B is used to in two ways: (1) to
generate the sample path w and (2) to estimate the expecta-
tion in the penalty function. Here, we track and update the
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distribution of the noise w after every iteration as opposed
to using a batch of size K. Note that this is equivalent to
using a sample of batch size equal to the current size of the
buffer whenever the bounds are updated if we were record-
ing the noise observations at each iteration. To illustrate
how this can be done, supposeW = {wa, wb, wc, wd} and
that at iteration n we observe wn+1 = wa. Let pa denote
the probability of observing wa, and Nn(wa) the number
of times wa is observed in the first n iterations, then the em-
pirical estimate of pa is given by p̂n(wa) = Nn(wa)/n.2

We denote by Ên[ . ] the expectation computed using the
empirical distribution p̂n. To differentiate the penalty and
the action-values (solutions to the inner problems used in up-
dating both lower and upper bounds) that use noise sampled
from the buffer from those defined in the Idealized-version
of the algorithm, we define the following reciprocal versions
of each, respectively:

ζ̃πt (st, at,w |ϕ) := ϕ(st+1, π(st+1))

− Ên[ϕ
(
h(st, at, w), π(h(st, at, w))

)
],

(15)

and given a sample path w = (w1, w2, . . . , wτ ) the inner
problems analogous to (9) and (10) are given by

Q̃Ut (st, at) = r(st, at)− ζ̃
πϕ

t (st, at, wt+1 |ϕ)

+ max
a

Q̃Ut+1(st+1, a)
(16)

Q̃Lt (st, at) = r(st, at)− ζ̃
πϕ

t (st, at, wt+1 |ϕ)

+ Q̃Lt+1(st+1, πϕ(st+1))
(17)

for t = 0, 1, . . . , τ − 1, where st+1 = h(st, at, wt+1) and
Q̃Uτ ≡ Q̃Lτ ≡ 0. The pseudo-code of LBQL with experience
replay is shown in Algorithm 2 in Appendix B.

4.4 Convergence of LBQL with Experience Replay

In this section, we prove that the version of LBQL with
experience replay also converges to the optimal action-value
function. We start by stating a lemma that confirms Proposi-
tion 3 and Lemma 1 still hold when the penalty terms are
computed using (15).

Lemma 2. If at any iteration n, the penalty terms are com-
puted using the estimate distribution p̂n, i.e., as per (15),
then Proposition 3 and Lemma 1 still hold.

Theorem 2 (Convergence of LBQL with experience replay).
Under Assumption 1, the following hold with probability 1:

(i) Q′n(s, a) in Algorithm 2 converges to the optimal
action-value function Q∗(s, a) for all state-action
pairs (s, a).

2Note that LBQL could, in principle, be adapted to the case of
of continuous noise (i.e., where w is continuous random variable)
using methods like kernel density estimation (KDE).

(ii) The iterates Ln(s, a), Q′n(s, a), Un(s, a) in Algo-
rithm 2 converge to the optimal action-value function
Q∗(s, a) for all state-action pairs (s, a).

The proof is similar to that of Theorem 1, but using the
observations collected in the buffer naturally results in an
additional bias term in our analysis. The proof of Lemma 2
shows that as we learn the distribution of the noise, this bias
term goes to zero and our original analysis in the unbiased
case continues to hold.

Notice that the results in part (ii) of the theorem are, in
a sense, stronger than that of Theorem 1(ii). While both
achieve asymptotic convergence of the lower and upper
bounds to the optimal action-value function, Theorem 2(ii)
does not require computing the penalty with the true dis-
tribution, i.e., using (3). This is because in the experience
replay version, the distribution of the noise random variables
is also learned.

5 Numerical Experiments
In our numerical experiments we make slight modifications
to Algorithm 2 which help reducing its computational re-
quirements. A detailed description of all changes is included
in Appendix C. We also open-source a Python package3

for LBQL that reproduces all experiments and figures pre-
sented in this paper. We compare LBQL with experience
replay with several algorithms: Q-learning (QL), double
Q-learning (Double-QL), speedy Q-learning (SQL), and
bias-corrected Q-learning (BCQL) (van Hasselt, 2010; Azar
et al., 2011; Lee & Powell, 2019). The environments we
consider are summarized below. Detailed description of the
environments, the parameters used for the five algorithms,
and sensitivity analysis are deferred to Appendix D.

Windy Gridworld (WG). This is a well-known variant of
the standard gridworld problem discussed in Sutton & Barto
(2018). There is an upward wind with a random intensity.
The agent moves extra steps in the wind direction whenever
it reaches an affected square. The reward is −1 until the
goal state is reached, and the reward is 0 thereafter.

Stormy Gridworld (SG). We then consider a new do-
main that adds the additional complexity of rain and multi-
directional wind to windy gridworld. The location of the
rain is random and when it occurs, puddles that provide
negative rewards are created. The reward is similar to that
of WG, except that puddle states provide a reward of −10.

Repositioning in Two-Location Car-sharing (2-CS-R).
Our next benchmark is a synthetic problem of balancing
inventory of cars by repositioning in a car-sharing platform
with two stations, (He et al., 2019). The actions are to decide
on the number of cars to be repositioned from one station

3https://github.com/ibrahim-elshar/LBQL ICML2020.

https://github.com/ibrahim-elshar/LBQL_ICML2020
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(A) WG (B) SG (C) 2-CS-R

(D) 2-CS (E) 4-CS

Figure 4: Illustration of LBQL Upper and Lower Bounds.

to the other before random demand is realized. All rentals
are one-way (i.e., rentals from station A end up at B, and
vice-versa). The goal is to maximize revenue for a fixed
rental price subject to lost sales and repositioning costs.

Pricing in Two-Location Car-sharing (2-CS). Here, we
consider the benchmark problem of spatial dynamic pric-
ing on a car-sharing platform with two stations, motivated
partially by (Bimpikis et al., 2019). The actions are to set a
price at each station, which influence the station’s (stochas-
tic) demand for rentals. Rentals are one-way and the goal is
to maximize revenue under lost sales cost.

Pricing in Four-Location Car-sharing (4-CS). The final
benchmark that we consider is a variant of the above pricing
problem with four stations. Now, however, we consider both
one way and return trips at each station. In this case, we
have two sources of randomness: the noise due to stochastic
demand and the noise due to the random distribution of
fulfilled rentals between the stations.

First, we illustrate conceptually in Figure 4 how the upper
and lower bounds of LBQL can “squeeze” the Q-learning
results toward the optimal value (the plots show a partic-
ular state-action pair (s, a) for illustrative reasons). For
example, in Figure 4A, we observe that the LBQL iterates
(orange) match the Q-learning iterates (solid black) initially,
but as the upper bound (green) becomes better estimated, the
LBQL iterates are pushed toward the optimal value (dotted
black). We see that even though the same hyperparameters
are used between LBQL and QL, the new approach is able
to quickly converge. In the 4-CS example, Figure 4E, Q∗

is not shown since it is computationally difficult to obtain,
but the gap between the upper and lower bounds, along with
Theorem 2(ii), suggest that LBQL is converging faster than
standard Q-learning.

The full results (with 95% confidence intervals) of the nu-
merical experiments are shown in Figure 5. LBQL dras-
tically outperforms the other algorithms in terms of the
performance curve on the gridworld domains, but for the
car-sharing problems, double Q-learning is superior in the
first 20,000 steps. Afterwards, LBQL catches up and re-
mains the best performing algorithm. From the relative
error plots (which measure the percent error, in l2-norm, of
the approximate value function with the true optimal value
function, i.e., ‖Vn − V ∗‖2/‖V ∗‖2), we see that LBQL has
the steepest initial decline. In windy gridworld and car-
sharing, LBQL outperforms the rest in terms of relative
error, but BCQL and SQL achieve slightly lower relative
error than LBQL for stormy gridworld.

We also conducted a set of sensitivity analysis experiments,
where we varied the learning rate and exploration hyper-
parameters across all algorithms (results in Appendix D.3).
We examine the number of iterations and CPU time needed
to reach 50%, 20%, 5%, and 1% relative error. The re-
sults show that LBQL outperforms BCQL, SQL, and QL in
terms of both iterations and CPU time in reaching 20%, 5%,
and 1% relative error across all 15 hyperparameter settings
that we tested. For the case of 50% relative error, BCQL
outperforms LBQL in five out of 15 cases. This indicates
that LBQL is significantly more robust to hyperparameter
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(A) Performance (WG) (B) Relative Error (WG) (C) Performance (SG)

(D) Relative Error (SG) (E) Performance (2-CS-R) (F) Relative Error (2-CS-R)

(G) Performance (2-CS) (H) Relative Error (2-CS) (I) Performance (4-CS)

Figure 5: Results from Numerical Experiments.

settings than the other algorithms. Roughly speaking, this
robustness might be attributed to the planning aspect of the
algorithm where lower and upper bounds are computed.

6 Conclusion
In this paper, we present LBQL algorithm and prove its al-
most sure convergence to the optimal action-value function.
We also propose a practical extension of the algorithm that
uses an experience replay buffer. Numerical results illustrate
the rapid convergence of our algorithm empirically when
compared to a number of well-known variants of Q-learning
on five test problems. LBQL is shown to have superior per-
formance, robustness against learning rate and exploration
strategies, and an ability to mitigate maximization bias.

Interesting future work is the extension of our new frame-
work to the model-based RL setting, where the transition
function f is learned while the policy is optimized. Other
interesting future work includes looking beyond the tabu-

lar case and adapting our algorithm to the setting of value
function approximations, such as DQN (Mnih et al., 2013).
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Appendix to Lookahead-Bounded Q-Learning

A Proofs

A.1 Proof of Proposition 2

Proof. We provide a proof that is similar to that of Proposition 2.3 (iv) of (Brown et al., 2010) but for the case of the
absorption time formulation of an infinite horizon problem. Here, we define a policy π := {πt}t≥0 as a sequence of
functions, that maps from {wt}t≥1 to feasible actions. We may also use stationary policies where πt is the same for all t
and only depends on the current state st. Let G = {Gt}t≥0 be the perfect information relaxation of the natural filtration
F = {Ft}t≥0. Under G, we have Gt = F , i.e., we have access to the entire future uncertainties at each t. Define by ΠG the
set of policies that includes the policies that have access to future uncertainties in addition to nonanticipative policies. Let Ĝ
be a relaxation of G such that in addition to what is known under G the estimate penalty terms ζ̂πϕ

t (st, at, wt+1 |ϕ) are
revealed at time t.

We first prove E[Q̂L0 (s, a)] ≤ Q∗(s, a). For an admissible policy π, we have

E[Q̂L0 (s, a)]
(a)
= E

[
τ−1∑
t=0

r(st, π(st))− ζ̂πt (st, at, wt+1 |ϕ) | s0 = s, a0 = a

]
(b)
= E

[
τ−1∑
t=0

(r(st, π(st))− ζ̂πt (st, at, wt+1 |ϕ))1{τ<∞} | s0 = s, a0 = a

]

(c)
=

∞∑
τ ′=1

E

τ ′−1∑
t=0

(r(st, π(st))− ζ̂πt (st, at, wt+1 |ϕ))1{τ=τ ′} | s0 = s, a0 = a


(d)
=

∞∑
τ ′=1

E

τ ′−1∑
t=0

(r(st, π(st))−E[ζ̂πt (st, at, wt+1 |ϕ) | Gt])1{τ=τ ′} | s0 = s, a0 = a


(e)
=

∞∑
τ ′=1

E

τ ′−1∑
t=0

(r(st, π(st))− ζπt (st, at, wt+1 |ϕ))1{τ=τ ′} | s0 = s, a0 = a


(f)
= E

[
τ−1∑
t=0

(r(st, π(st))− ζπt (st, at, wt+1 |ϕ))1{τ<∞} | s0 = s, a0 = a

]
(g)
= E

[
τ−1∑
t=0

(r(st, π(st))− ζπt (st, at, wt+1 |ϕ)) | s0 = s, a0 = a

]
≤ Q∗(s, a)

Equality (a) follows from the definition of Q̂0(s, a). Equality (b) follows since τ has finite mean and r and ϕ are uniformly
bounded. Equalities (c) and (d) follow from the law of total expectations. Equality (e) follows from Lemma A.1 in (Brown
et al., 2010) and from the estimated penalty terms being unbiased, i.e., E[ζ̂

π∗G
t (st, at, wt+1 |ϕ) | Gt] = ζ

π∗G
t (st, at, wt+1 |ϕ).

Equalities (f) and (g) follow by the law of total expectation and τ being almost surely finite stopping time, respectively. The
inequality follows since the expected value of the penalty terms for a feasible policy is zero and the action-value function of
a feasible policy, Qπ(s, a), is less than Q∗(s, a).

Now, we prove Q∗(s, a) ≤ E[Q̂U0 (s, a)]. Let π∗G be the optimal solution for the dual problem,

max
πG∈ΠG

E

[
τ−1∑
t=0

(r(st, πG)− ζπG
t (st, at, wt+1 |ϕ)) | s0 = s, a0 = a

]
. (18)
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We have,

E[Q̂U0 (s, a)]
(a)
= E

[
max

a

{
τ−1∑
t=0

r(st, at)− ζ̂
πϕ

t (st, at, wt+1 |ϕ)

}
| s0 = s, a0 = a

]
(b)
= max

πG∈ΠĜ

E

[
τ−1∑
t=0

(r(st, πG)− ζ̂πG
t (st, at, wt+1 |ϕ)) | s0 = s, a0 = a

]

≥ E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζ̂π

∗
G

t (st, at, wt+1 |ϕ)) | s0 = s, a0 = a

]
(c)
= E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζ̂π

∗
G

t (st, at, wt+1 |ϕ))1{τ<∞} | s0 = s, a0 = a

]

(d)
=

∞∑
τ ′=1

E

τ ′−1∑
t=0

(r(st, π
∗
G)− ζ̂π

∗
G

t (st, at, wt+1 |ϕ))1{τ=τ ′} | s0 = s, a0 = a


(e)
=

∞∑
τ ′=1

E

τ ′−1∑
t=0

(r(st, π
∗
G)−E[ζ̂

π∗G
t (st, at, wt+1 |ϕ) | Gt])1{τ=τ ′} | s0 = s, a0 = a


(f)
=

∞∑
τ ′=1

E

τ ′−1∑
t=0

(r(st, π
∗
G)− ζπ

∗
G

t (st, at, wt+1 |ϕ))1{τ=τ ′} | s0 = s, a0 = a


(g)
= E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζπ

∗
G

t (st, at, wt+1 |ϕ))1{τ<∞} | s0 = s, a0 = a

]
(h)
= E

[
τ−1∑
t=0

(r(st, π
∗
G)− ζπ

∗
G

t (st, at, wt+1 |ϕ)) | s0 = s, a0 = a

]
(i)
= max
πG∈ΠG

E

[
τ−1∑
t=0

(r(st, πG)− ζπG
t (st, at, wt+1 |ϕ)) | s0 = s, a0 = a

]
≥ Q∗(s, a).

Equality (a) and (b) follow from the definition of Q̂U0 (s, a) and since Ĝ is a relaxation of the perfect information relaxation
G which allow us to interchange the maximum and the expectation. The first inequality follows because π∗G ∈ ΠĜ since
ΠG ⊆ ΠĜ. Equality (c) follows since r and ϕ are uniformly bounded and τ has finite mean. Equalities (d) and (e) follow
from the law of total expectations. Equality (f) follows from Lemma A.1 in (Brown et al., 2010) and from the estimated
penalty terms being unbiased, i.e., E[ζ̂

π∗G
t (st, at, wt+1 |ϕ) | Gt] = ζ

π∗G
t (st, at, wt+1 |ϕ). Equalities (g) and (h) follow by the

law of total expectation and τ being almost surely finite stopping time, respectively. Equality (i) follows since by definition
π∗G is the optimal solution of (18). The last inequality follows by weak duality (Proposition 1(i)).

First, we state a technical lemma that is used in the proof of Proposition 3 and Lemma 1.

Lemma A.1. For all n = 1, 2, . . ., if Ln−1(s, a) ≤ Un−1(s, a) and Q′n−1 ∈ Q then Ln(s, a) ≤ Un(s, a) for all
(s, a) ∈ S ×A.

Proof. Fix an (s, a) ∈ S ×A. Note that the optimal values of the inner problems in (9) and (10), Q̂U0 (s, a) and Q̂L0 (s, a)
respectively, are computed using the same sample path w and for each period within the inner DP, the same batch of samples
is used for estimating the expectation in both the upper and lower bound problems. For clarity, let us denote the values of
Q̂L0 (s, a) and Q̂U0 (s, a) at iteration n = 1, 2, 3, . . . by Q̂Ln,0(s, a) and Q̂Un,0(s, a), respectively. Assume αn(s, a) ≤ 1 for all
n. We provide a proof by induction. For n = 1, we have:

Q1(s0, a0) = Q′0(s0, a0) + α0(s0, a0)
[
r(s0, a0) + γmax

a
Q′0(s1, a)−Q′0(s0, a0)

]
.
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Since the rewards r(s, a) are uniformly bounded, 0 < γ < 1 and |Q′0(s, a)| ≤ ρ then Q1 is bounded. Set ϕ = Q1, since the
actions selected by the policy πQ1 are feasible in (9), we have

Q̂U1,0(s, a)− Q̂L1,0(s, a) ≥ 0,

and with L0(s, a) ≤ U0(s, a), it follows that L1(s, a) ≤ U1(s, a). A similar proof can be used to show the inductive case
also holds at iteration n,

Qn(sn−1, an−1) = Q′n−1(sn−1, an−1)

+ αn−1(sn−1, an−1)
[
r(sn−1, an−1) + γmax

a
Q′n−1(sn, a)−Q′n−1(sn−1, an−1)

]
.

By the inductive hypothesis, we have Q′n−1 ∈ Q and Ln−1(s, a) ≤ Un−1(s, a). Then, similar to the base case, we have
Qn ∈ Q and Q̂Un,0(s, a)− Q̂Ln,0(s, a) ≥ 0. Therefore, Ln(s, a) ≤ Un(s, a). Since our choice of (s, a) was arbitrary then
the result follows for all (s, a) ∈ S ×A.

A.2 Proof of Proposition 3

Proof. Part (i): First, note that by (12) and (13) the upper and lower bound estimates Un(s, a) and Ln(s, a) are bounded
below and above by ρ and −ρ respectively for all (s, a) ∈ S ×A and for all n, where ρ = Rmax/(1− γ). We assume in
this proof that αn(s, a) ≤ 1 for all n. Let L̃n = max(s,a) Ln(s, a) and Ũn = max(s,a) Un(s, a). We claim that for every
iteration n, we have that for all (s, a),

L̄n ≤ Qn(s, a) ≤ Ūn and L̄′n ≤ Q′n(s, a) ≤ Ū ′n (19)

where

L̄n = min
{
Ũn−1(1 + γ), . . . , Ũ1

∑n−1
i=0 γ

i,−M
∑n
i=0 γ

i
}

(20)

Ūn = max
{
L̃n−1(1 + γ), . . . , L̃1

∑n−1
i=0 γ

i,M
∑n
i=0 γ

i
}
, (21)

L̄′n = min
{
Ũn, Ũn−1(1 + γ), . . . , Ũ1

∑n−1
i=0 γ

i,−M
∑n
i=0 γ

i
}
, (22)

Ū ′n = max
{
L̃n, L̃n−1(1 + γ), . . . , L̃1

∑n−1
i=0 γ

i,M
∑n
i=0 γ

i
}
, (23)

and M is a finite positive scalar defined as M = max
{
Rmax, max(s,a)Q0(s, a)

}
.

The result follows from the claim in (19). To see this note that at any iteration n, L̄n and L̄′n are bounded below by
−ρ
∑n
i=0 γ

i since each term inside the minimum of (20) and (22) is bounded below by −ρ
∑n
i=0 γ

i. As n→∞, we have

−ρ
1− γ

≤ lim inf
n→∞

L̄n and
−ρ

1− γ
≤ lim inf

n→∞
L̄′n. (24)

An analogous argument yields

lim sup
n→∞

Ūn ≤
ρ

1− γ
and lim sup

n→∞
Ū ′n ≤

ρ

1− γ
. (25)

Boundedness of Qn(s, a) and Q′n(s, a) for all (s, a) ∈ S ×A follows from (19), (24) and (25).

Now, we prove our claim in (19) by induction. Since Algorithm 1 is asynchronous then at the nth iteration, the updates for
the action-value iterates for (s, a), Qn+1(s, a) and Q′n+1(s, a), are either according to (11) and (14) (case 1) or set equal to
Qn(s, a) and Q′n(s, a) respectively (case 2).

We first focus on Q′n(s, a) ≤ Ūn part of (19), since L̄′n ≤ Q′n(s, a) and L̄n ≤ Qn(s, a) ≤ Ūn proceed in an analogous
manner. For n = 1, we have Q′0(s, a) = Q0(s, a), so if the update is carried out as in case 1,

Q1(s, a) = (1− α0(s, a))Q′0(s, a) + α0(s, a) [r(s, a) + γmaxaQ
′
0(s′, a)]

≤ (1− α0(s, a))M + α0(s, a)M + α0(s, a)γM

≤M(1 + γ)
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so Q′1(s, a) ≤ max{L1(s, a),min{U1(s, a),M(1 + γ)}}. Now consider the case where U1(s, a) ≤M(1 + γ). Since Q0

is bounded by ρ and L0(s, a) ≤ U0(s, a) then by Lemma A.1, we have L1(s, a) ≤ U1(s, a), so

Q′1(s, a) ≤ U1(s, a) ≤M(1 + γ). (26)

Otherwise, if U1(s, a) ≥M(1 + γ), we then have

Q′1(s, a) ≤ max{L1(s, a),M(1 + γ)}. (27)

From (26) and (27), we have

Q′1(s, a) ≤ max{L1(s, a),M(1 + γ)}
≤ max{L̃1,M(1 + γ)}.

(28)

If the update is carried out as in case 2, we have,

Q′1(s, a) = Q′0(s, a)

≤M
< M(1 + γ)

≤ max{L̃1,M(1 + γ)}.

Thus Ū ′n(s, a) part of (19) is true for n = 1. Suppose that it is true for n = 1, 2, . . . , k. We will show it for n = k + 1.
Consider first the instance where the update is carried out according to case 1. We do casework on the inequality

Q′k(s, a) ≤ max
{
L̃k, L̃k−1(1 + γ), . . . , L̃1

∑k−1
i=0 γ

i,M
∑k
i=0 γ

i
}
, (29)

which holds for all (s, a). First, let us consider the case where the right-hand-side of (29) is equal to L̃k′
∑k−k′
i=0 γi for some

k′ such that 1 ≤ k′ ≤ k. Then, we have

Qk+1(s, a) = (1− αk(s, a))Q′k(s, a) + αk(s, a)[r(s, a) + γmaxaQ
′
k(s′, a)]

≤ (1− αk(s, a))L̃k′
∑k−k′
i=0 γi + αk(s, a)M + αk(s, a)γL̃k′

∑k−k′
i=0 γi

≤ (1− αk(s, a))L̃k′
∑k−k′
i=0 γi + αk(s, a)L̃k′ + αk(s, a)L̃k′

∑k−k′+1
i=1 γi

= (1− αk(s, a))L̃k′
∑k−k′
i=0 γi + αk(s, a)L̃k′

∑k−k′
i=0 γi + αk(s, a)L̃k′γ

k−k′+1

≤ L̃k′
∑k−k′
i=0 γi + L̃k′γ

k−k′+1

= L̃k′
∑k−k′+1
i=0 γi

(30)

The first inequality holds by the induction assumption, (29). The second inequality holds since in this case we have the
right-hand-side of (29) is equal to L̃k′(1 + γ + . . .+ γk−k

′
) so it follows that

L̃k′(1 + γ + . . .+ γk−k
′
) ≥M(1 + γ + . . .+ γk)

which in turn implies that L̃k′ ≥M . Finally, the third inequality holds by the assumption that αn(s, a) ≤ 1 for all n. We
have

Q′k+1(s, a) = max{Lk+1(s, a),min{Uk+1(s, a), Qk+1(s, a)}}

≤ max{Lk+1(s, a),min{Uk+1(s, a), L̃k′(1 + γ + . . .+ γk−k
′+1)}}.

Now, consider the case where Uk+1(s, a) ≤ L̃k′(1 + γ+ . . .+ γk−k
′+1). By the induction assumption Q′n(s, a) is bounded

below by−ρ
∑n
i=0 γ

i and above by ρ
∑n
i=0 γ

i for all (s, a) ∈ S×A and all n = 1, 2, . . . , k. SinceL0(s, a) ≤ U0(s, a) then
Lemma A.1 can be applied iteratively on n = 1, . . . , k + 1, to obtain that LK+1(s, a) ≤ Uk+1(s, a) for all (s, a) ∈ S ×A.
Thus, we have

Q′k+1(s, a) ≤ Uk+1(s, a) ≤ L̃k′(1 + γ + . . .+ γk−k
′+1). (31)
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Otherwise, if Uk+1(s, a) ≥ L̃k′(1 + γ + . . .+ γk−k
′+1), we have

Q′k+1(s, a) ≤ max{Lk+1(s, a), L̃k′(1 + γ + . . .+ γk−k
′+1)}

≤ max{L̃k+1, L̃k′(1 + γ + . . .+ γk−k
′+1)}. (32)

Moving on to the case where the right-hand-side of (29) is equal to M(1 + γ + . . .+ γk):

Qk+1(s, a) = (1− αk(s, a))Q′k(s, a) + αk(s, a) [r(s, a) + γmax
a

Q′k(s′, a)]

≤ (1− αk(s, a))M
∑k
i=0 γ

i + αk(s, a)M + αk(s, a)γM
∑k
i=0 γ

i

= (1− αk(s, a))M
∑k
i=0 γ

i + αk(s, a)M + αk(s, a)M
∑k+1
i=1 γ

i

≤M
∑k
i=0 γ

i − αk(s, a)M
∑k
i=0 γ

i + αk(s, a)M
∑k
i=0 γ

i +Mγk+1

= M(1 + γ + . . .+ γk+1).

(33)

We have

Q′k+1(s, a) = max{Lk+1(s, a),min(Uk+1(s, a), Qk+1(s, a))}
≤ max{Lk+1(s, a),min(Uk+1(s, a),M(1 + γ + . . .+ γk+1)}}

Now if Uk+1(s, a) ≤M(1 + γ + . . .+ γk+1) then by applying Lemma A.1 as before,

Q′k+1(s, a) ≤ Uk+1(s, a) ≤M(1 + γ + . . .+ γk+1). (34)

Otherwise, if Uk+1(s, a) ≥M(1 + γ + . . .+ γk+1), we have

Q′k+1(s, a) ≤ max{Lk+1(s, a),M(1 + γ + . . .+ γk+1)}
≤ max{L̃k+1,M(1 + γ + . . .+ γk+1)}. (35)

Now, if the update is carried out according to case 2,

Q′k+1(s, a) = Q′K(s, a)

≤ max{L̃k, L̃k−1(1 + γ), . . . , L̃1

∑k−1
i=0 γ

i,M
∑k
i=0 γ

i}

≤ max{L̃k+1, (1 + γ)L̃k, . . . , L̃1

∑k
i=0 γ

i,M
∑k+1
i=0 γ

i}.

(36)

By (31), (32), (34), (35) and (36), we have Q′k+1(s, a) ≤ Ū ′k+1.

A similar argument can be made to show L̄n ≤ Q′n(s, a) and L̄n ≤ Qn(s, a) ≤ Ūn, which completes the inductive
proof.

Proof. Part (ii): Fix an (s, a) ∈ S ×A. By part (i) we have the action-value iterates Qn and Q′n are bounded for all n. We
denote the “sampling noise” term using

ξLn (s, a) = Q̂Ln,0(s, a)−E[Q̂Ln,0(s, a)].

We also define an accumulated noise process started at iteration ν by WL
ν,ν(s, a) = 0, and

WL
n+1,ν(s, a) = (1− αn(s, a))WL

n,ν(s, a) + αn(s, a) ξLn+1(s, a) ∀ n ≥ ν,

which averages noise terms together across iterations. Note that since τ is an almost surely finite stopping time, the rewards
r(s, a) are uniformly bounded and Qn+1 is also bounded (by part (i)). Then, Q̂Ln,0 is bounded by some random variable and
so is the conditional variance of ξLn (s, a). Hence, Corollary 4.1 in (Bertsekas & Tsitsiklis, 1996) applies and it follows that

lim
n→∞

WL
n,ν(s, a) = 0 ∀ ν ≥ 0.



Lookahead-Bounded Q-Learning

Let ν̃ be large enough so that αn(s, a) ≤ 1 for all n ≥ ν̃. We also define

Y Lν̃ (s, a) = ρ,

Y Ln+1(s, a) = (1− αn(s, a))Y Ln (s, a) + αn(s, a)Q∗(s, a), ∀n ≥ ν̃.

It is easy to see that the sequence Y Ln (s, a)→ Q∗(s, a). We claim that for all iterations n ≥ ν̃, it holds that

Ln(s, a) ≤ min{ρ, Y Ln (s, a) +WL
n,ν̃(s, a)}.

To prove this claim, we proceed by induction on n. For n = ν̃, we have

Y Lν̃ (s, a) = ρ and WL
ν̃,ν̃(s, a) = 0,

so it is clear that the statement is true for the base case. We now show that it is true for n+ 1 given that it holds at n:

Ln+1(s, a) = min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) (Q̂Ln,0(s, a)−E[Q̂Ln,0(s, a)] + E[Q̂Ln,0(s, a)])}

= min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) ξLn (s, a) + αn(s, a)E[Q̂Ln,0(s, a)]}
≤ min{ρ, (1− αn(s, a)) (Y Ln (s, a) +WL

n,νk
(s, a)) + αn(s, a) ξLn (s, a) + αn(s, a)Q∗(s, a)}

≤ min{ρ, Y Ln+1(s, a) +WL
n+1,ν̃(s, a)},

where the first inequality follows by the induction hypothesis and E[Q̂Ln,0(s, a)] ≤ Q∗(s, a) follows by Proposition 2. Next,
since Y Ln (s, a)→ Q∗(s, a), WL

n,νk
(s, a)→ 0 and Q∗(s, a) ≤ ρ, we have

lim sup
n→∞

Ln(s, a) ≤ Q∗(s, a).

Therefore, since our choice of (s, a) was arbitrary, it follows that for every η > 0, there exists some time n′ such that
Ln(s, a) ≤ Q∗(s, a) + η for all (s, a) ∈ S ×A and n ≥ n′.

Using Proposition 2, Q∗(s, a) ≤ E[Q̂Un,0(s, a)], a similar argument as the above can be used to establish that

Q∗(s, a) ≤ lim inf
n→∞

Un(s, a).

Hence, there exists some time n′′ such that Q∗(s, a)− η ≤ Un(s, a) for all (s, a) and n ≥ n′′. Take n0 to be some time
greater than n′ and n′′ and the result follows.

A.3 Proof of Lemma 1

Proof. We use induction on n. Since for all (s, a) ∈ S × A, L0(s, a) ≤ U0(s, a) and −ρ ≤ Q′0(s, a) ≤ ρ then
L1(s, a) ≤ U1(s, a) by Lemma A.1. Suppose that, Ln(s, a) ≤ Un(s, a) holds for all (s, a) for all n = 1, . . . , k. For
all (s, a) ∈ S × A, we have Q′k(s, a) is bounded since by Proposition 3(i) Q′n(s, a) is bounded for all n. We also
have Lk(s, a) ≤ Uk(s, a) for all (s, a) by the induction assumption. Applying Lemma A.1 again at n = k + 1 yields
Lk+1(s, a) ≤ Uk+1(s, a) and the inductive proof is complete.

A.4 Proof of Theorem 1

Proof. We first prove part (i). We start by writing Algorithm 1 using DP operator notation. Define a mapping H such that

(HQ′)(s, a) = r(s, a) + γE [maxa′ Q
′(s′, a′)] ,

where s′ = f(s, a, w). It is well-known that the mapping H is a γ-contraction in the maximum norm. We also define a
random noise term

ξn(s, a) = γmaxa′ Q
′
n(s′, a′)− γE [maxa′ Q

′
n(s′, a′)] . (37)

The main update rules of Algorithm 1 can then be written as

Qn+1(s, a) = (1− αn(s, a))Q′n(s, a) + αn(s, a) [(HQ′n)(s, a) + ξn+1(s, a)] ,
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Un+1(s, a) = Π[−ρ,∞]

[
(1− βn(s, a))Un(s, a) + βn(s, a) Q̂U0 (s, a)

]
,

Ln+1(s, a) = Π[∞, ρ]

[
(1− βn(s, a))Ln(s, a) + βn(s, a) Q̂L0 (s, a)}

]
,

Q′n+1(s, a) = Π[Ln+1(s,a), Un+1(s,a)] [Qn+1(s, a)] . (38)

Assume without loss of generality that Q∗(s, a) = 0 for all state-action pairs (s, a). This can be established by shifting
the origin of the coordinate system. Note that by (38) at any iteration n and for all (s, a), we have Ln(s, a) ≤ Q′n(s, a) ≤
Un(s, a).

We proceed via induction. First, note that by Propostion 3(i) the iterates of Algorithm 1 Q′n(s, a) are bounded in the sense
that there exists a D0 such that |Q′n(s, a)| ≤ D0 for all (s, a) and iterations n. Define the sequence Dk+1 = (γ + ε)Dk,
such that γ + ε < 1 and ε > 0. Clearly, Dk → 0. Suppose that there exists some time nk such that for all (s, a),

max{−Dk, Ln(s, a)} ≤ Q′n(s, a) ≤ min{Dk, Un(s, a)}, ∀n ≥ nk.

We will show that this implies the existence of some time nk+1 such that

max{−Dk+1, Ln(s, a)} ≤ Q′n(s, a) ≤ min{Dk+1, Un(s, a)} ∀ (s, a), n ≥ nk+1.

This implies that Q′n(s, a) converges to Q∗(s, a) = 0 for all (s, a). We also assume that αn(s, a) ≤ 1 for all (s, a) and n.
Define an accumulated noise process started at nk by Wnk,nk

(s, a) = 0, and

Wn+1,nk
(s, a) = (1− αn(s, a))Wn,nk

(s, a) + αn(s, a) ξn+1(s, a), ∀n ≥ nk, (39)

where ξn(s, a) is as defined in (37). We now use Corollary 4.1 in (Bertsekas & Tsitsiklis, 1996) which states that under
the assumptions of Theorem 1 on the step size αn(s, a), and if E[ξn(s, a) | Fn] = 0 and E[ξ2

n(s, a) | Fn] ≤ An, where the
random variable An is bounded with probability 1, the sequence Wn+1,nk

(s, a) defined in (39) converges to zero, with
probability 1. From our definition of the stochastic approximation noise ξn(s, a) in (37), we have

E[ξn(s, a) | Fn] = 0 and E[ξ2
n(s, a) | Fn] ≤ C(1 + maxs′,a′ Q

′2
n (s′, a′)),

where C is a constant. Then, it follows that

lim
n→∞

Wn,nk
(s, a) = 0 ∀ (s, a), nk.

Now, for the sake of completeness, we restate a lemma from (Bertsekas & Tsitsiklis, 1996) below, which we will use to
bound the accumulated noise.

Lemma A.2 (Lemma 4.2 in (Bertsekas & Tsitsiklis, 1996)). For every δ > 0, and with probability one, there exists some n′

such that |Wn,n′(s, a)| ≤ δ, for all n ≥ n′.

Using the above lemma, let nk′ ≥ nk such that, for all n ≥ nk′ we have

|Wn,nk′ (s, a)| ≤ γεDk < γDk.

Furthermore, by Proposition 3(ii) let νk ≥ nk′ such that, for all n ≥ νk we have

Ln(s, a) ≤ γDk − γεDk and γεDk − γDk ≤ Un(s, a).

Define another sequence Yn that starts at iteration νk.

Yνk(s, a) = Dk and Yn+1(s, a) = (1− αn(s, a))Yn(s, a) + αn(s, a) γ Dk (40)

Note that it is easy to show that the sequence Yn(s, a) in (40) is decreasing, bounded below by γDk, and converges to γDk

as n→∞. Now we state the following lemma.

Lemma A.3. For all state-action pairs (s, a) and iterations n ≥ νk, it holds that:

(1) Q′n(s, a) ≤ min{Un(s, a), Yn(s, a) +Wn,νk(s, a)},
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(2) max{Ln(s, a),−Yn(s, a) +Wn,νk(s, a)} ≤ Q′n(s, a).

Proof. We focus on part (1). For the base case n = νk, the statement holds because Yνk(s, a) = Dk and Wνk,νk(s, a) = 0.
We assume it is true for n and show that it continues to hold for n+ 1:

Qn+1(s, a) = (1− αn(s, a))Q′n(s, a) + αn(s, a) [(HQ′n)(s, a) + ξn+1(s, a)]

≤ (1− αn(s, a)) min{Un(s, a), Yn(s, a) +Wn,νk(s, a)}
+ αn(s, a) (HQ′n)(s, a) + αn(s, a) ξn+1(s, a)

≤ (1− αn(s, a)) (Yn(s, a) +Wn,νk(s, a)) + αn(s, a) γDk + αn(s, a) ξn+1(s, a)

≤ Yn+1(s, a) +Wn+1,νk(s, a),

where we used (HQ′n) ≤ γ‖Q′n‖ ≤ γDk. Now, we have

Q′n+1(s, a) = Π[Ln+1(s,a), Un+1(s,a)] [Qn+1(s, a)]

≤ Π[Ln+1(s,a), Un+1(s,a)] [Yn+1(s, a) +Wn+1,νk(s, a)]

≤ min{Un+1(s, a), Yn+1(s, a) +Wn+1,νk(s, a)}.

The first inequality holds because
Qn+1(s, a) ≤ Yn+1(s, a) +Wn+1,νk(s, a).

The second inequality holds because Yn+1(s, a) + Wn+1,νk(s, a) ≥ γDk − γεDk, Ln(s, a) ≤ γDk − γεDk, and
Ln(s, a) ≤ Un(s, a) by Lemma 1. Symmetrically, it can be shown that

max{Ln+1(s, a),−Yn+1(s, a) +Wn+1,νk(s, a)} ≤ Q′n+1(s, a),

which completes the proof.

Since Yn(s, a)→ γDk and Wn,νk(s, a)→ 0, we have

lim supn→∞‖Q′n‖ ≤ γDk < Dk+1.

Therefore, there exists some time nk+1 such that

max{−Dk+1, Ln(s, a)} ≤ Q′n(s, a) ≤ min{Dk+1, Un(s, a)} ∀ (s, a), n ≥ nk+1,

completing thus the induction.

For part (ii) of the theorem: we fix (s, a) and focus on the convergence analysis of Un(s, a) to Q∗(s, a). A similar analysis
can be done to show Ln(s, a)→ Q∗(s, a) almost surely. First note that we can write (12) the update equation of Un(s, a)
as:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
ψn(Un(sn, an), Qn+1(sn, an))

]]
where ψn(Un(sn, an), Qn+1(sn, an)) is the stochastic gradient and in this case is equal to Q̂U0 (sn, an)− Un(sn, an). We
define the noise terms

ε̄n+1(sn, an) = ψn(Un(sn, an), Q∗(sn, an))−E[ψn(Un(sn, an), Q∗(sn, an))] (41)
ε̄n+1(sn, an) = ψn(Un(sn, an), Qn+1(sn, an))− ψn(Un(sn, an), Q∗(sn, an)). (42)

Note here that ε̄n+1(sn, an) represents the error that the sample gradient deviates from its mean when computed using the
optimal action-value Q∗ and ε̄n+1(sn, an) is the error between the two evaluations of ψn due only to the difference between
Qn+1(sn, an) and Q∗(sn, an). Thus, we have

ψn(Un(sn, an), Qn+1(sn, an)) = E[ψn(Un(sn, an), Q∗(sn, an))] + ε̄n+1(sn, an) + ε̄n+1(sn, an).

Since Qn → Q∗ by part (i) of the Theorem, then ε̄n(sn, an)→ 0 almost surely. It is now convenient to view Un(s, a) as a
stochastic process in n, adapted to the filtration {Fn}n≥0. By definition of ε̄n+1(s, a), we have that

E[ε̄n+1(s, a)|Fn] = 0 a.s.

Since ε̄n+1(s, a) is unbiased and ε̄n+1(s, a) converges to zero, we can apply Theorem 2.4 of (Kushner & Yin, 2003), a
standard stochastic approximation convergence result, to conclude that Un(s, a)→ Q∗(s, a) almost surely. Since our choice
of (s, a) was arbitrary, this convergence holds for all (s, a) ∈ S ×A.
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A.5 Proof of Lemma 2

Proof. First note that Lemma A.1 still holds in this case. To see this, note that if the requirements of the lemma are satisfied,
i.e., if we are at iteration n = 1, 2, . . . , and in the previous iteration, we had Ln−1(s, a) ≤ Un−1(s, a) for all (s, a) and
Q′n−1 ∈ Q then Qn is bounded using the same argument as before. Since the rewards r(s, a) are uniformly bounded and τ
is an almost surely finite stopping time, then Q̃Ln,0 and Q̃Un,0 are finite. Moreover, since Q̃Ln,0 and Q̃Un,0 are computed using
the same sample path w, it follows that

Q̃Un,0(s, a)− Q̃Ln,0(s, a) ≥ 0, for all (s, a) ∈ S ×A.

This can be easily seen if we subtract (17) from (16). Notice that the reward and the penalty will both cancel out and we’ll
have Q̃Un,t − Q̃Ln,t ≥ 0 for all t = 0, 1, . . . , τ − 1. With Ln−1(s, a) ≤ Un−1(s, a) and Q̃Un,0(s, a) ≥ Q̃Ln,0(s, a) it follows
that Ln(s, a) ≤ Un(s, a) for all (s, a).

Now, we prove Proposition 3 again for the experience buffer case.
For part (i): our original proof still holds since Lemma A.1 still holds.
For part (ii): first note that since the experience buffer is updated with a new observation of the noise at every iteration then
by Borel’s law of large numbers, we have our probability estimate p̂(w) for the noise converges to the true noise distribution
p(w) as n→∞, i.e.,

lim
n→∞

p̂n(w) = p(w) for all w ∈ W. (43)

Fix an (s, a) ∈ S ×A. By part (i) we have the action-value iterates Qn and Q′n are bounded for all n. Now we write the
iterate Q̃Ln,0(s, a) in terms of a noise term and a bias term as follows,

Q̃Ln,0(s, a) = Q̃Ln,0(s, a)−E[Q̃Ln,0(s, a)]︸ ︷︷ ︸
noise

+E[Q̃Ln,0(s, a)]−E[QLn,0(s, a)]︸ ︷︷ ︸
bias

+E[QLn,0(s, a)]

Now, we define the noise term using

ξLn (s, a) = Q̃Ln,0(s, a)−E[Q̃Ln,0(s, a)].

Also similar to the original proof we define an accumulated noise process started at iteration ν by WL
ν,ν(s, a) = 0, and

WL
n+1,ν(s, a) = (1− αn(s, a))WL

n,ν(s, a) + αn(s, a) ξLn+1(s, a) ∀ n ≥ ν,

which averages noise terms together across iterations. We have E[Q̃Ln,0(s, a)− E[Q̃Ln,0(s, a)]|Fn] = 0, so Corollary 4.1
applies and it follows that

lim
n→∞

WL
n,ν(s, a) = 0 ∀ ν ≥ 0.

Let ν̃ be large enough so that αn(s, a) ≤ 1 for all n ≥ ν̃. We denote the bias term by

χn(s, a) = E[Q̃Ln,0(s, a)]−E[QLn,0(s, a)].

Since as n→∞ we have p̂n(w)→ p(w) then the bias due to sampling from the experience buffer χn(s, a)→ 0. Let η > 0
and ν̄ ≥ ν̃ be such that |χ(s, a)| ≤ η

2 for all n ≥ ν̄ and all (s, a). We also define

Y Lν̃ (s, a) = ρ,

Y Ln+1(s, a) = (1− αn(s, a))Y Ln (s, a) + αn(s, a)Q∗(s, a) + αn(s, a)
η

2
, ∀n ≥ ν̄.

It is easy to see that the sequence Y Ln (s, a)→ Q∗(s, a) + η
2 . Now we show that our original claim still holds. Claim: for all

iterations n ≥ ν̄, it holds that
Ln(s, a) ≤ min{ρ, Y Ln (s, a) +WL

n,ν̄(s, a)}.

To prove this claim, we proceed by induction on n. For n = ν̄, we have

Y Lν̄ (s, a) = ρ and WL
ν̄,ν̄(s, a) = 0,
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so the statement is true for the base case. We now show that it is true for n+ 1 given that it holds at n:

Ln+1(s, a) = min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) (Q̃Ln,0(s, a)−E[Q̃Ln,0(s, a)]

+ E[Q̃Ln,0(s, a)]−E[QLn,0(s, a)] + E[QLn,0(s, a)])}
= min{ρ, (1− αn(s, a))Ln(s, a) + αn(s, a) ξLn (s, a) + αn(s, a)χn(s, a)

+ αn(s, a)E[QLn,0(s, a)]}
≤ min{ρ, (1− αn(s, a)) (Y Ln (s, a) +WL

n,νk
(s, a)) + αn(s, a) ξLn (s, a)

+ αn(s, a)
η

2
+ αn(s, a)Q∗(s, a)}

≤ min{ρ, Y Ln+1(s, a) +WL
n+1,ν̃(s, a)},

where the first inequality follows by the induction hypothesis and E[QLn,0(s, a)] ≤ Q∗(s, a). Next, since Y Ln (s, a) →
Q∗(s, a) + η

2 , WL
n,νk

(s, a)→ 0 then if Q∗(s, a) + η
2 ≤ ρ, we have

lim sup
n→∞

Ln(s, a) ≤ Q∗(s, a) +
η

2
.

Otherwise, if ρ < Q∗(s, a) + η
2 then

lim sup
n→∞

Ln(s, a) ≤ ρ < Q∗(s, a) +
η

2
.

Therefore, since our choice of (s, a) was arbitrary, it follows that for every η > 0, there exists some time n′ such that
Ln(s, a) ≤ Q∗(s, a) + η for all (s, a) ∈ S ×A and n ≥ n′.

Using Proposition 1(i), Q∗(s, a) ≤ E[QUn,0(s, a)], a similar argument as the above can be used to establish that

Q∗(s, a)− η

2
≤ lim inf

n→∞
Un(s, a).

Hence, there exists some time n′′ such that Q∗(s, a)− η ≤ Un(s, a) for all (s, a) and n ≥ n′′. Take n0 to be some time
greater than n′ and n′′ and the result follows.

The proof of Lemma 1 when using an experience buffer is similar to that given in appendix A.3 so it is omitted.

A.6 Proof of Theorem 2

Proof. The proof of both parts (i) and (ii) are like that of Theorem 1 so we omit them.
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B LBQL with Experience Replay Algorithm

Algorithm 2 LBQL with Experience Replay

Input: Initial estimates L0 ≤ Q0 ≤ U0, batch size K, stepsize rules αn(s, a), βn(s, a), and noise buffer B.
Output:Approximations {Ln}, {Q′n}, and {Un}.
Set Q′0 = Q0 and choose an initial state s0.
for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., ε-greedy). Observe wn+1.
Store wn+1 in B and update p̂n(wn+1).
Perform a standard Q-learning update:

Qn+1(sn, an) = Q′n(sn, an) + αn(sn, an)
[
rn(sn, an) + γmax

a
Q′n(sn+1, a)−Q′n(sn, an)

]
.

Sample randomly a sample path w = (w1, w2, . . . , wτ ) from B, where τ ∼ Geom(1− γ).
Set ϕ = Qn+1. Using w and the current p̂n compute Q̃U0 (sn, an) and Q̃L0 (sn, an), using (16) and (17), respectively.
Update and enforce upper and lower bounds:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
Q̃U0 (sn, an)− Un(sn, an)

]]
,

Ln+1(sn, an) = Π[∞, ρ]

[
Ln(sn, an) + βn(sn, an)

[
Q̃L0 (sn, an)− Ln(sn, an)

]]
,

Q′n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)]

end for
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C Implementation Details of LBQL with Experience Replay
We use a noise buffer B of size κ to record the noise values w that have been previously observed. The buffer B is used to
generate the sample path w and the batch sample {w1, . . . , wK} used to estimate the expectation in the penalty function.
Here, it is not necessary that the noise spaceW is finite. This is also convenient in problems with a large noise support
such as the carsharing problem with four stations where we have two sources of noise. Specifically, the noise due to the
distribution of the rentals among the stations has a very large support.

In order to reduce the computational requirements of LBQL, the lower and upper bounds updates are done every m steps
and only if the difference between the current values of the bounds is greater than some threshold δ.

Since we can easily obtain inner DP results for all (s, a) each time the DP is solved, we perform the upper and lower bound
updates for all (s, a) whenever an update is performed (as opposed to just at the current state-action pair). However, only
the action-value of the current (s, a) is projected between the lower and upper bounds, so the algorithm is still asynchronous.
The pseudo-code of LBQL with experience replay with these changes, is shown in Algorithm 3.

Algorithm 3 LBQL with Experience Replay (Full Details)

Input:Initial estimates L0 ≤ Q0 ≤ U0, batch size K, stepsize rules αn(s, a), βn(s, a), noise buffer B of size κ, number
of steps between bound updates m, and threshold δ.
Output:Approximations {Ln}, {Q′n}, and {Un}.
Set Q′0 = Q0 and choose an initial state s0.
for n = 0, 1, 2, . . . do

Choose an action an via some behavior policy (e.g., ε-greedy). Observe wn+1.
Store wn+1 in B.
Perform a standard Q-learning update:

Qn+1(sn, an) = Q′n(sn, an)

+ αn(sn, an)
[
rn(sn, an) + γmax

a
Q′n(sn+1, a)−Q′n(sn, an)

]
.

if n ≥ κ and n mod m = 0 and |Un(sn, an)− L(sn, an)| > δ then
Sample randomly a batch D = {w1, w2, . . . , wK} and a sample path w = {w1, w2, . . . , wτ} from B, where
τ ∼ Geom(1− γ).
Set ϕ = Qn+1. Using w and D, compute Q̂U0 (s, a) and Q̂L0 (s, a) for all (s, a) ∈ S × A, using (9) and (10),
respectively.
For all (s, a) ∈ S ×A, update upper and lower bounds:

Un+1(sn, an) = Π[−ρ,∞]

[
Un(sn, an) + βn(sn, an)

[
Q̂U0 (sn, an)− Un(sn, an)

]]
,

Ln+1(sn, an) = Π[∞, ρ]

[
Ln(sn, an) + βn(sn, an)

[
Q̂L0 (sn, an)− Ln(sn, an)

]]
,

end if
Enforce upper and lower bounds:

Q′n+1(sn, an) = Π[Ln+1(sn,an), Un+1(sn,an)] [Qn+1(sn, an)]

end for
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D Numerical Experiments Details
Let ν(s, a) and ν(s) be the number of times state-action pair (s, a) and state s, have been visited, respectively. For all
algorithms, a polynomial learning rate αn(s, a) = 1/νn(s, a)r is used, where r = 0.5. Polynomial learning rates have been
shown to have a better performance than linear learning rates (van Hasselt, 2010).

We use a discount factor of γ = 0.95 for the pricing car-sharing/stormy gridworld problems, γ = 0.9 for the windy
gridworld problem and γ = 0.99 for the repositioning problem. Moreover, we use an ε-greedy exploration strategy
such that ε(s) = 1/ν(s)e, where e is 0.4 for the four-stations pricing car-sharing problem and 0.5 for all the other
problems. For the car-sharing/windy gridworld problems, the initial state-action values are chosen randomly such that
L0(s, a) ≤ Q0(s, a) ≤ U0(s, a) where

L0(s, a) = −Rmax/(1− γ) and U0(s, a) = Rmax/(1− γ)

for all (s, a). For the stormy gridworld problem, we set the initial state-action values to zero (we find that a random
initialization caused all algorithms except LBQL to perform extremely poorly).

We report LBQL parameters used in our numerical experiments in Table 1. Note that for a fair comparison, the parameter
K of bias-corrected Q-learning algorithm is taken equal to K of LBQL in all experiments. In addition, the κ steps used
to create the buffer for LBQL are included in the total number of steps taken. Results of the gridworld and car-sharing
problems are averaged over 50 and 10 runs, respectively. All experiments were run on a 3.5 GHz Intel Xeon processor with
32 GB of RAM workstation.

Table 1: LBQL parameters.

Parameter

Problem β κ K m δ

2-CS-R 0.01 40 20 10 0.01
2-CS 0.01 40 20 15 0.01
4-CS 0.01 1000 20 200 0.01
WG 0.2 100 10 10 0.01
SG 0.2 500 20 20 0.05

A detailed description of the environments is given in the next two sections.

D.1 Gridworld Examples

First we consider, windy gridworld, a well-known variant of the standard gridworld problem discussed in (Sutton & Barto,
2018). Then we introduce, stormy gridworld, a new environment that is more complicated than windy gridworld. The
environments are summarized below.

Windy Gridworld. The environment is a 10× 7 gridworld, with a cross wind pointing upward, (Sutton & Barto, 2018).
The default wind values corresponding to each of the 10 columns are {0, 0, 0, 1, 1, 1, 2, 2, 1, 0}. Allowable actions are {up,
right, down, left}. If the agent happens to be in a column whose wind value is different from zero, the resulting next states
are shifted upward by the “wind” whose intensity is stochastic, varying from the given values in each column by {−1, 0, 1}
with equal probability. Actions that corresponds to directions that takes the agent off the grid leave the location of the agent
unchanged. The start and goal states are (3, 1) and (3, 8), respectively. The reward is −1 until the goal state is reached,
where the reward is 0 thereafter.

Stormy Gridworld. Consider the stochastic windy gridworld environment. Now, however, we allow the wind to blow
half the time as before and the other half it can blow from any of the three other directions. The horizontal wind values
corresponding to each row from top to bottom are given by {0, 0, 1, 1, 1, 1, 0}. Also, it can randomly rain with equal
probability in any of the central states that are more than two states away from the edges of the grid. The start and goal
states are (3, 1) and (3, 10) respectively. Rain creates a puddle which affects the state itself and all of its neighboring states.
The reward is as before except when the agent enters a puddle state the reward is −10.
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D.2 Car-sharing Benchmark Examples

In this section, we give the detailed formulations of the two variants of the car-sharing benchmark, repositioning and pricing.
The essential difference is that in the pricing version, the decision maker “repositions” by setting prices to induce directional
demand (but does not have full control since this demand is random).

D.2.1 REPOSITIONING BENCHMARK FOR CAR-SHARING

We consider the problem of repositioning cars for a two stations car-sharing platform, (He et al., 2019). The action is the
number of cars to be repositioned from one station to the other, before random demand is realized. Since repositioning in
both directions is never optimal, we use r > 0 to denote the repositioned vehicles from station 1 to 2 and r < 0 to denote
repositioning from station 2 to 1. The stochastic demands at time t are D1,t and D2,t for stations 1 and 2 respectively,
are i.i.d., discrete uniform, each supported on {3, . . . , 9}. The rental prices are p1 = 3.5 and p2 = 4 for stations 1 and 2,
respectively. All rentals are one-way (i.e., rentals from station 1 end up at station 2, and vice-versa). The goal is to maximize
profit, where unmet demands are charged a lost sales cost ρ1 = ρ2 = 2 and repositioning cost c1 = 1 for cars reposition
from station 1 to 2 and c2 = 1.5 for cars repositioned from station 2 to 1. We assume a total of s̄ = 12 cars in the system
and formulate the problem as an MDP, with state st ∈ S = {0, 1, . . . , 12} representing the number of cars at station 1 at
beginning of period t. We denote by V ∗(st) the optimal value function starting from state st. The Bellman recursion is:

V ∗(st) = max
st−s̄≤rt≤st

E

[ ∑
i∈{1,2}

pi ωit(Di,t+1)−
∑

i∈{1,2}

ρi

(
Di,t+1 − ωit(Di,t+1)

)
− c1 max(rt, 0) + c2 min(rt, 0) + γV ∗(st+1)

]
,

ω1t(D1,t+1) = min(D1,t+1, st − rt),
ω2t(D2,t+1) = min(D2,t+1, s̄− st + rt),

st+1 = st − rt + ω2t(D2,t+1)− ω1t(D1,t+1),

(44)

where γ ∈ (0, 1) is a discount factor. The repositioning problem for two stations is illustrated in Figure 6A. The nodes
represent stations, solid arcs represent fulfilled demands, and dashed arcs represent repositioned vehicles.

D.2.2 PRICING BENCHMARK FOR CAR-SHARING

Suppose that a vehicle sharing manager is responsible for setting the rental price for the vehicles at the beginning of each
period in an infinite planning horizon. We model a car sharing system with N stations. The goal is to optimize the prices to
set for renting a car at each of the N stations; let the price at station i and time t be pit for i ∈ [N ] := {1, . . . , N}. Demands
are nonnegative, independent and depends on the vehicle renting price according to a stochastic demand function

Dit(pit, εi,t+1) := κi(pit) + εi,t+1,

where Dit(pit, εi,t+1) is the demand in period t, εi,t+1 are random perturbations that are revealed at time t+ 1 and κi(pit)
is a deterministic demand function of the price pit that is set at the beginning of period t at station i ∈ [N ]. The random
variables εi,t+1 are independent with E[εi,t+1] = 0 without loss of generality. Furthermore, we assume that the expected
demand E[Dit(pit, εi,t+1)] = κi(pit) <∞ is strictly decreasing in the rental price pit which is restricted to a set of feasible
price levels [p

i
, pi] for all i ∈ [N ], where p

i
, pi are the minimum and the maximum prices that can be set at station i,

respectively. This assumption implies a one-to-one correspondence between the rental price pit and the expected demand
dit ∈ D := [di, di] for all pit ∈ [p

i
, pi] where di = κi(pi) and di = κi(pi).

The problem can be formulated as an MDP with state st, which is a vector whose components represent the number of
available cars at each of the N stations at beginning of period t. The state space is SN−1 with S = {0, 1, . . . , s̄} and s̄
is the maximum number of cars in the vehicle sharing system. We assume that a customer at station i goes to station j
with probability φij for all i, j ∈ [N ]. Let Yik,t+1 be a random variable taking values in [N ] that represents the random
destination of customer k at station i, which is only observed at the beginning of period t+ 1. We have Yik,t+1 = j with
probability φij , so Yik,t+1 are i.i.d. for each customer k. Denote by lij the distance from station i to j, for all i, j ∈ [N ].
We penalize unmet demands by a lost sales unit cost ρi, i ∈ [N ]. The decision vector is pt = {pit ∈ [p

i
, pi],∀i ∈ [N ]

}
.
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Let V ∗(st) be the revenue-to-go function with number of available vehicles st. Thus, we have the Bellman recursion

V ∗(st) = max
pt

E

[ ∑
i∈[N ]

pit
∑
j∈[N ]

lij ωijt(εi,t+1)−
∑
i∈[N ]

ρi

(
κi(pit) + εi,t+1 − ωit(εi,t+1)

)
+ γV ∗(st+1)

]
ωit(εi,t+1) = min (κi(pit) + εi,t+1, sit) ∀ i ∈ [N ],

ωijt(εi,t+1) =

ωit(εi,t+1)∑
k=1

1{Yik,t+1=j} ∀ i, j ∈ [N ],

si,t+1 = sit +
∑
j∈[N ]

ωjit(εi,t+1)− ωit(εi,t+1), ∀ i ∈ [N ],

(45)

where γ ∈ (0, 1) is a discount factor. Note that the MDP in (45) can be reformulated using the action-value function
Q(st, pt) instead of V (st). The quantity ωit(εi,t+1) represents the total fulfilled customer trips from station i at time t for a
given realization of the noise εi,t+1. Notice that in (45) there are two sources of randomness: the noise due to stochastic
demand represented by εi, for all i ∈ [N ] and the noise due to the random distribution of fulfilled rentals between the
stations, i.e., due to the random variables Yi1, . . . , Yiωit(εi,t+1) for all i ∈ [N ]. Due to the high dimensionality involved in
the state, action, and noise spaces, solving (45) is computationally challenging.

Spatial Pricing in Two-Location Car-sharing. We first consider the pricing problem on two stations and 12 cars in total.
The state space is S = {0, 1, . . . , 12} representing the number of cars at station 1. All rentals are one-way. The prices,
at each period t, are restricted to p1t ∈ [1, 6] and p2t ∈ [1, 7]. The stochastic demand functions at period t are given by:
D1t(p1t, ε1,t+1) := 9−p1t+ ε1,t+1 and D2t(p2t, ε2,t+1) := 10−p2t+ ε2,t+1 for stations 1 and 2 respectively. The random
variables ε1,t+1 and ε2,t+1 are independent, discrete uniform, each supported on {−3,−2, . . . , 3}. We use the discretized
expected demands, as our actions: d1t ∈ {3, . . . , 8} and d2t ∈ {3, . . . , 9}. The lost sales cost is 2 at both stations.

Spatial Pricing in Four-Location Car-sharing. Consider the car-sharing problem for four stations with s̄ = 20 cars and
dit ∈ {3, 4} for each station. In total there are 1771 states and 16 actions. The random variables εi,t+1 are independent,
discrete uniform, each supported on {−3,−2, . . . , 3}. We consider both one way and return trips at each station. Figure 6B
shows an illustration of the stations (nodes) and the rentals between the stations (arcs). The probabilities φij = 0.25 for all
i, j ∈ {1, 2, 3, 4} and the lost sales costs (ρi) are 1.7, 1.2, 1.5, 2 at stations 1, 2, 3, 4, respectively. The distance between the
stations are taken such that lij = 1 if i = j, and the other distances being symmetrical, meaning lij = lji with l12 = 1.8,
l13 = 1.5, l14 = 1.4, l23 = 1.6, l24 = 1.1, and l34 = 1.2.

1 2

r > 0

r < 0

ω1

ω2

(A) Repositioning problem with 2 stations.

3 4

1

2

(B) Pricing problem with 4 stations.

Figure 6: Illustrations of the repositioning and pricing car-sharing problems.
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D.3 Sensitivity Analysis

We also do sensitivity analysis on the five algorithms with respect to the learning rate and exploration parameters r and e for
the car-sharing problem with two stations. Here, r controls the polynomial learning rate defined by, αn(s, a) = 1/νn(s, a)r

and e controls the ε-greedy exploration strategy, where ε is annealed according to ε(s) = 1/ν(s)e. We use ν(s, a) and ν(s)
to denote the number of times a state-action pair (s, a) and state s, have been visited, respectively. We report our results in
Table 2. These results show the average number of iterations and CPU time until each algorithm first reach 50%, 20%, 5%,
1% relative error for each case of the parameters e and r while keeping all other parameters as before. The “-” indicates that
the corresponding % relative error for the corresponding case was not achieved during the course of training. The values in
the table are obtained by averaging five independent runs for each case. Except for the few cases where BCQL performs
slightly better, LBQL once again drastically outperforms the other algorithms and exhibits robustness against the learning
rate and exploration parameters, an important practical property that the other algorithms seem to lack.

The effect of varying parameters m and K of LBQL is presented in Figure 7. These plots are obtained by tuning parameters
m ∈ {1, 10, 50, 150, 200} and K ∈ {1, 5, 10, 100, 1000} of LBQL algorithm in the car-sharing problem with two stations.
All other parameters are kept the same as before. Figures 7A and 7C show the mean total reward with a 95% CI. Figures 7B
and 7D show the mean and 95% CI of the relative error given by: ‖Vn − V ∗‖2/‖V ∗‖2. The results are obtained from 10
independent runs. Using larger values of m reduces the strength of LBQL in both performance and relative error measures
as shown in Figures 7A and 7B. This is expected since the effect of the bounds fades as we update the bounds less frequently.
Interestingly, we can see from the performance plot that m = 10 strikes a good balance between how often to do the bounds
and Q-learning updates and achieves a performance that is slightly better and more stable than that of m = 1 after about half
of the training process (50,000 steps). In terms of the sample size K, Figures 7C and 7D clearly show that larger values of
K improve the performance of LBQL in terms of performance and relative error measures. This is not unexpected because a
larger sample yields a better approximation of the penalty.

(A) Performance (2-CS) (B) Relative Error (2-CS)

(C) Performance (2-CS) (D) Relative Error (2-CS)

Figure 7: Plots showing the effect of tuning the parameter M and K of LBQL algorithm.
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Table 2: Computational results for different exploration & learning rate parameters. Bold numbers indicate the best performing algorithm.

% Relative error
e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)
L
B
Q
L

0.4 0.5 3,672.6 1.9 9,323.6 4.6 18,456.6 8.9 33,054.0 15.7
0.6 3,632.0 1.7 9,147.4 4.4 18,270.0 8.6 39,624.8 18.6
0.7 3,725.2 1.8 9,087.4 4.3 18,217.8 8.6 41,941.2 19.7
0.8 3,698.2 1.8 9,321.8 4.4 20,860.0 9.9 53,752.6 25.6
0.9 3,992.2 1.9 10,119.2 4.9 23,070.2 11.0 80,252.8 38.4

0.5 0.5 3,316.0 1.6 8,040.2 3.8 15,050.2 7.2 27,912.8 13.2
0.6 3,514.4 1.7 8,529.4 4.0 16,595.6 7.9 36,100.2 17.0
0.7 3,531.8 1.7 8,712.8 4.1 17,835.6 8.6 46,010.0 21.9
0.8 3,449.2 1.6 8,571.8 4.0 18,152.6 8.5 65,007.6 30.4
0.9 3,398.4 1.6 8,346.4 3.9 18,844.8 8.8 99,820.2 46.6

0.6 0.5 2,877.4 1.3 7,129.0 3.3 13,046.0 6.2 23,822.0 11.2
0.6 3,182.8 1.5 8,066.0 3.8 15,421.4 7.3 33,286.0 15.6
0.7 2,979.4 1.4 7,625.6 3.6 15,414.6 7.2 34,238.0 15.9
0.8 3,272.6 1.6 8,431.0 4.1 17,809.2 8.5 114,032.8 54.2
0.9 3,185.6 1.5 8,480.0 4.1 19,242.4 9.2 123,331.2 58.8

B
C
Q
L

0.4 0.5 3,200.8 1.0 22,455.0 7.0 65,329.0 20.3 107,785.6 33.7
0.6 4,618.2 1.5 43,724.6 13.6 159,662.6 49.6 292,421.0 34.9
0.7 8,059.4 2.5 123,484.2 38.4 - - - -
0.8 17,287.0 5.3 - - - - - -
0.9 67,162.2 20.9 - - - - - -

0.5 0.5 2,209.6 0.7 15,604.0 4.9 48,715.6 15.3 80,317.4 25.2
0.6 3,274.2 1.0 31,422.8 9.8 124,319.6 38.7 243,101.4 75.6
0.7 5,619.6 1.8 89,857.0 27.8 - - - -
0.8 11,417.0 3.6 - - - - - -
0.9 42,605.4 13.1 - - - - - -

0.6 0.5 1,830.4 0.6 11,639.6 3.6 35,763.0 11.1 61,249.0 19.0
0.6 2,612.4 0.8 23,571.6 7.4 92,101.4 28.8 177,127.6 55.5
0.7 4,371.2 1.3 66,526.0 20.5 - - - -
0.8 9,028.2 2.8 297,368.6 17.9 - - - -
0.9 31,673.6 9.8 - - - - - -

S
Q
L

0.4 0.5 7,750.6 1.9 37,889.8 9.1 93,820.0 22.5 141,171.0 33.8
0.6 11,329.4 2.8 75,364.0 18.3 233,422.0 56.4 - -
0.7 20,131.4 4.8 212,767.0 51.0 - - - -
0.8 46,986.8 11.3 - - - - - -
0.9 182,890.0 43.8 - - - - - -

0.5 0.5 6,122.2 1.5 30,944.8 7.4 79,167.4 19.0 120,527.8 29.0
0.6 9,166.6 2.2 62,540.6 14.9 201,822.4 48.2 - -
0.7 15,835.6 3.8 174,233.6 42.0 - - - -
0.8 36,548.8 8.7 - - - - - -
0.9 157,029.0 37.7 - - - - - -

0.6 0.5 4,984.0 1.2 24,989.0 6.0 64,605.4 15.4 98,554.6 23.6
0.6 7,396.2 1.8 50,282.4 12.0 165,574.2 39.8 - -
0.7 13,018.8 3.1 143,142.6 34.1 - - - -
0.8 29,201.0 6.9 - - - - - -
0.9 122,335.6 29.2 - - - - - -

(continued on next page)



Lookahead-Bounded Q-Learning

Table 2: (continued)

% Relative error
e r 50% 20% 5% 1%

n t (s) n t (s) n t (s) n t (s)
Q
L

0.4 0.5 7,743.0 1.7 38,114.2 8.2 93,303.4 20.2 136,851.4 29.6
0.6 11,644.0 2.5 76,625.0 16.6 232,679.4 50.9 - -
0.7 20,181.6 4.4 212,401.4 46.3 - - - -
0.8 45,987.2 10.1 - - - - - -
0.9 191,442.2 41.9 - - - - - -

0.5 0.5 6,143.6 1.3 30,996.2 6.8 78,131.8 16.9 116,361.2 25.3
0.6 9,331.6 2.0 63,998.2 13.9 204,593.6 44.6 - -
0.7 16,247.0 3.5 178,842.8 38.4 - - - -
0.8 38,297.0 8.2 - - - - - -
0.9 165,835.8 35.7 - - - - - -

0.6 0.5 5,005.2 1.1 24,877.2 5.4 63,777.8 13.7 96,402.0 20.8
0.6 7,547.0 1.9 51,369.4 13.1 166,179.2 42.3 289,882.8 46.1
0.7 13,288.2 3.1 144,318.2 33.1 - - - -
0.8 30,172.6 6.5 - - - - - -
0.9 139,952.6 30.3 - - - - - -

D
o
u
b
l
e
-
Q
L

0.4 0.5 224,490.2 51.2 - - - - - -
0.6 - - - - - - - -
0.7 - - - - - - - -
0.8 - - - - - - - -
0.9 - - - - - - - -

0.5 0.5 - - - - - - - -
0.6 - - - - - - - -
0.7 - - - - - - - -
0.8 - - - - - - - -
0.9 - - - - - - - -

0.6 0.5 - - - - - - - -
0.6 - - - - - - - -
0.7 - - - - - - - -
0.8 - - - - - - - -
0.9 - - - - - - - -


