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Abstract. Learning-based methods produce remarkable results on single
image depth tasks when trained on well-established benchmarks, however,
there is a large gap from these benchmarks to real-world performance
that is usually obscured by the common practice of fine-tuning on the
target dataset. We introduce a new depth dataset that is an order of
magnitude larger than previous datasets, but more importantly, contains
an unprecedented gamut of locations, camera models and scene types
while offering metric depth (not just up-to-scale). Additionally, we inves-
tigate the problem of training single image depth networks using images
captured with many different cameras, validating an existing approach
and proposing a simpler alternative. With our contributions we achieve
excellent results on challenging benchmarks before fine-tuning, and set
the state of the art on the popular KITTI dataset after fine-tuning.

The dataset is available at mapillary.com/dataset/depth

1 Introduction

The availability of large-scale training datasets has significantly contributed to
the rise of deep learning based approaches in computer vision. Starting with
ImageNet [6] for image classification, also the quality of object detection [8,3] or
semantic-, instance- and panoptic segmentation algorithms [5,18,22,31] has been
greatly improved within a few years only. Yet, metric-accurate, large-scale, natural
image datasets are still to come for the task of monocular depth estimation, most
likely because they cannot be collected with commodity hardware in a straightfor-
ward way. Research in monocular depth estimation therefore predominantly use
smaller, less varied or up-to-scale datasets for training [11,17,30]. Unsupervised
methods are achieving remarkable results [13,12], but their performance still lags
behind that of supervised methods.

For validation of single image depth methods, an important benchmark is the
Make3D [24] dataset, comprising laser scans coupled with RGB images. Although
dated, it is still a reference benchmark in the field. Recently, modern hardware
has been used in a similar fashion to produce very high-quality datasets to be
used as benchmarks for single-image depth methods such as DIODE [29] and
iBims-1 [15]. Please refer to Tab. 1 for an overview of depth datasets.
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Fig. 1: Global distribution of the Mapillary Planet-Scale Depth (MPSD) dataset

Fig. 2: Sample images and depth values from the proposed MPSD dataset

In this paper we introduce a novel, virtually arbitrarily scalable dataset –
MPSD – providing training data for monocular depth estimation. Our dataset is
solely derived from Mapillary’s publicly available image database3.

The dataset is generated by running monocular Structure-from-Motion and
multi-view stereo we obtain dense depth for eligible images. Our dataset, con-
taining images from all over the world, is larger, more complex and diverse
than any previously published depth dataset. It currently comprises ≈ 750,000
images, extracted from over 50, 000 individual 3D reconstructions captured by a
broad range of camera types with different focal lengths (Fig. 4) and distortion
characteristics, in a broad set of environments (Fig. 1) and weather conditions,
seasons, times of day, viewpoint and with real noise and motion patterns.

Training with such a dataset is not straightforward, as it is necessary to
account for the heterogeneous cameras used to capture the images. This is a
problem often overlooked and only recently studied by Fácil et al [9], where
they demonstrate the advantage of explicitly accounting for the camera intrinsics
during training. We successfully use their proposed CAM-Convs to train using
our dataset, and also suggest an alternative, simpler technique to deal with the
problem of multi-camera training.

3 Currently holding ≈ 109 images and corresponding GPS positions.
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Table 1: Overview of depth datasets The proposed Mapillary Planet-Scale Depth
(MPSD) dataset is large and diverse enough to effectively transfer onto several
target datasets without fine-tuning. Refer to Section 4 for more details.

Dataset n. Images Source Extent Metric

Make3D [24] 534 Lidar Palo Alto yes
iBims-1 [15] 100 Lidar Various scenes yes
DIODE [29] 26 k Lidar 25 Scenes yes
KITTI [11] 94 k Lidar Karlsruhe yes
WSVD [30] 1.5M Stereo 7k videos no
Cityscapes [5] 25 k Stereo 50 Cities yes
MegaDepth [17] 130 k SfM 200 Scenes no
MPSD 750 k SfM 50k Scenes(Fig. 1) yes
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Fig. 3: Volume-normalized depth (m) distributions on several datasets

At the core of our work, we discuss the challenges to be tackled during the
generation of MPSD from real-world data and how to take advantage of it in
modern deep-learning based algorithms. We particularly address how to:

– Generate a metric-accurate-depth dataset from images captured in sub-
optimal conditions for structure-from-motion such as low framerate, non-
orbital trajectories, and under-constrained camera parameters.

– Effectively train deep neural networks for monocular depth estimation with
data from many heterogeneous camera sources.

We conducted exhaustive ablations for the task of monocular depth estimation,
proving the superior quality of our dataset against reference benchmarks like
KITTI [11], MegaDepth [17], Cityscapes [5], DIODE [29] or Make3D [24]. With
our approach and dataset, we achieve new state-of-the-art results for monocular
depth prediction on the well-known KITTI benchmark.

2 Dataset

The Mapillary Planet-Scale Depth (MPSD) dataset contains 750,000 images and
associated depth maps. It is based on imagery collected from Mapillary4, on
which we perform monocular structure-from-motion (SfM) to obtain relative

4 Mapillary is a street-level imagery platform hosting images collected by members of
their community.

www.mapillary.com
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camera poses. A multi-view stereo algorithm is then used to compute dense depth.
Absolute (metric) depth is recovered from the GPS metadata that is available
alongside the images. Although similar approaches to produce depth have been
used on phototourism-style [27,17] datasets sourced from photography websites
such as Flickr, Mapillary imagery poses new challenges when used in this manner.

Mapillary collects street-level imagery that is uploaded by individual users
and organizations. It is a very heterogeneous source, presenting imagery captured
in a wide range of conditions and locations with a vast number of cameras, both
consumer-grade and professional. This type of imagery is of great interest as the
community progresses towards algorithms that are expected to perform beyond
small benchmarks. However, recovering depth from Mapillary images cannot be
performed by using out-of-the-box SfM pipelines, as it presents some challenges
not present in phototourism datasets: All images in Mapillary are uploaded
as-is from thousands of different uncalibrated cameras, requiring self-calibration
from the SfM pipeline itself. However, most sequences are not valid to perform
self-calibration because they are captured using forward-facing cameras and
under forward / zooming motion, underconstraining the camera parameters [28].
Moreover, capture is usually performed at a low framerate, increasing the baseline
between consecutive frames, which makes the correspondence problem non-trivial.

Due to these sub-optimal conditions for perfoming structure-from-motion, we
found no turnkey solution (including the MegaDepth [17] pipeline) that could
extract valid depth at scale from Mapillary sequences. Our process is described in
the following sections as three stages: 2.1) Global model-wise camera calibration,
2.2) Image search and 2.3) Reconstruction and multi-view stereo.

2.1 Global Model-wise Camera Calibration

Camera calibration is required for metric 3D reconstruction. Cameras are usually
calibrated using a physical printed calibration pattern imaged under a variety of
poses with respect to the camera. In the case of Mapillary imagery, this is not
possible as there are thousands of independent users and camera calibration is
not enforced on them by the Mapillary app used to record images. However, it is
also possible to automatically obtain good calibration parameters with monocular
SfM for a camera or set of cameras if there are enough images capturing a scene
with a layout such that the camera parameters are constrained. This method for
automatically calibrating cameras is common in the ‘phototourism’ scenario where
a large number of images capture the same object, generally following orbital-like
trajectories.We attempt to obtain camera parameters from Mapillary images
in a similar fashion, however, the coverage offered by Mapillary is not optimal
for this. Imagery is most often recorded from forward-facing cameras mounted
on vehicles driven on roads. Motion is thus mostly linear and without rotation.
Naively downloading imagery and attempting to perform reconstructions did not
yield stable camera parameters. Instead, we sample sequences that are: 1. Dense
enough (less than 5 meters and 30 degrees5 between consecutive frames) in order

5 We obtain an initial estimate of the turning angle as the angle between consecutive
segments on the GPS track of the sequence.
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Fig. 4: Distribution of focal lengths (mm) in MPSD

to get enough point correspondences. 2. Have enough rotation (cumulative turn
of 70+ degrees) in order to better constrain the focal length.

For each sequence, we compute the optimal calibration by running SfM recon-
structions iteratively. We first run an incremental SfM algorithm with a default
set of intrinsic parameters—focal length equiv. to 30mm and no radial distortion.
The focal length and the first two distortion parameters of the Brown model are
optimized during bundle adjustment. The result is a 3D reconstruction and an
updated set of camera parameters. These parameters are used as initialization
for a new SfM reconstruction, which in turn yields updated camera parameters.
We iterate this process several times until the camera parameters stabilize. It
is necessary to run the reconstruction process multiple times because improved
initial camera parameters can improve the matching step which leads to better
tracks and more constraints for the camera parameters.

Since the images at Mapillary are gathered by thousands of users with
different devices, we can’t obtain camera parameters for all of them as it isn’t
always the case that we can find adequate imagery on which to perform the
aforementioned calibration process. We simplify the problem by assuming that
all cameras reporting the same make, model, resolution and focal length will
share the calibration parameters. In other words, we ignore differences due to
manufacturing tolerances, temperature and so on. This simplification undoubtedly
introduces some errors, but it is fundamental to make use of the imagery available
in Mapillary, as there is rarely enough coverage from a single user to perform
calibration on each user’s camera independently.

To ensure that we have not calibrated the camera using an outlier (that
is, a device whose calibration parameters deviate substantially from the modal
parameters for that camera make and model), we run the calibration process for
10 different sequences for each camera make and model, and visualize the resulting
camera parameters. We then manually confirm that calibrations from different
sequences yield similar results and select one of them as the valid calibration
for all images taken with that make and model, resolution and focal length.6

Through this process we obtained calibrations for 250 camera models.

6 Many action cameras and phones are able to capture under different ’modes’ with
different optics. We use the combination of reported focal length and resolution to
disambiguate these modes.
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2.2 Image Search

After calibrating a large set of camera models, we then mine Mapillary for images
taken using these cameras and use them to perform SfM reconstructions and
multi-view stereo to obtain depth. We start by selecting sampling weights wr

from 6 regions: North America: 20%, South America: 15%, Europe: 20%, Asia:
20%, Oceania: 15%, Africa: 10%. Each region is then partitioned into countries,
assigning to each country a weight wc = wr

#ims country
#ims region

Each country is then partitioned in a regular grid of 156 by 156 km cells
and the budget of images for that country is evenly distributed on this grid. We
sample images randomly within each cell that: 1. Have been taken with one of
the 250 cameras in our calibrated camera set. 2. Have at least 20 neighboring
images in a radius of 10 meters (measured by the images’ GPS tags). Each image
and its neighbors are then used to perform a 3D reconstruction and multi-view
stereo as described in the following section.

Further checks (described below) are performed after reconstructing in order
to accept or reject this group of images into the dataset. If not accepted, another
image from the cell is sampled. Since many cells are empty (rural areas or nature),
we exhaust those and oversample more densely covered cells to satisfy the number
of images allocated for that country. This is done to ensure that all of the images
in underrepresented areas are used, obtaining as much diversity as possible.

2.3 Reconstruction and Multi-view Stereo

We perform structure from motion to obtain reconstructions of each of the
candidate groups of images downloaded from Mapillary as described above. The
reconstructions are performed using the OpenSfM [1] library with its default
configuration settings. We chose OpenSfM due to prior familiarity, but other
software [25,21] could be used to obtain similar results with appropriate settings.

We use the semantic segmentations available for each image in Mapillary
to mask out regions that can negatively affect the reconstruction (pedestrians,
vehicles, ego-vehicle and sky). After reconstructing, we obtain a set of sparse
correspondences as well as relative camera poses.

The reconstruction is aligned to the GPS data associated with each image
during bundle adjustment by adding a cost proportional to the squared distance
between the GPS position and the reconstructed camera position. This fixes
the scale ambiguity and yields metric distances, however, GPS measurements
have noise that can affect this scale. In order to reduce the effect of the GPS
measurement noise on the metric accuracy of the data, we filter out reconstructions
that span a small region: After reconstructing7, we check that the furthest two
images are at least 20 meters apart, otherwise we discard the reconstruction.

In the experimental section of this paper we confirm that training on MPSD
does indeed produce networks able to recover metric depth from single images.

7 This check is performed only after reconstructing since it must be performed on
images that can be registered to the reconstruction (some of the images in the
neighborhood might have failed to reconstruct).



Mapillary Planet-Scale Depth Dataset 7

(a) Input image (b) Covisibility (c) PatchMatch (d) Clean depth

Fig. 5: Initial depth as obtained by multi-view stereo using PatchMatch (c) may
contain spurious values. We clean the estimated depth by checking for consistency
across several neighboring images (b). Only the depth values that are consistent
with at least 3 neighbors are kept (d)

Using the relative poses obtained from SfM, we run a Patch-Match based
multi-view stereo algorithm [26] to obtain dense depth estimates. This is a simple
winner-takes-all stereo algorithm. Different depth and normal values are tested
for each pixel and the one that gives the best normalized cross correlation score
with the neighboring views is kept. The result is a dense but noisy depth map.

Most of the noise in the depth maps is removed in a post-processing step that
checks the consistency between the depth maps of neighboring images. Depth
values that are not consistent with at least 2 neighboring views are removed.
This reduces the number of pixels for which a depth value is produced. We do
not add any smoothness term to produce smoother depth maps nor do we try to
inpaint the missing depth values.

The result is thus a set of ‘clean’ depth values that might be sparse, but that
is reliable as shown in Figure 5. Finally, we discard depth maps in which less
than 5% of the pixels have a depth value.

Opposite to what is done in the SfM step, during depth map estimation we
do not mask out dynamic objects. The rationale is that we do want to have
depth values on dynamic objects for training. While some dynamic objects are
moving during capture and can possibly lead to wrong depth values, there are
also many static-during-capture dynamic objects for which depth estimation will
work. Additionally, when objects move in different directions than the camera,
their motion does not satisfy the epipolar constraint and are easily rejected by
the MVS algorithm. A notable exception are objects moving along the same road
as the camera for which MVS produces scaled depth values. Manual analysis of
our dataset finds very few examples of this, and training on MPSD produces
networks that can predict depth on moving objects such as cars, a fact that we
experimentally determine in Section 4.

3 Training with Multiple Cameras

The relationship between real world dimensions and pixels on the image plane
for undistorted images as defined by the pinhole model is simple: The depth z of
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an object is expressed in terms of its size in pixels the image plane y′, its real
size in meters y and the focal length of the camera f in pixels: z = f y

y′

Since we are dealing with the prediction of per-pixel depth values, we can
simplify this expression for a single pixel (y′ = 1): z = fy. Although single image
depth is usually described as an ill-posed problem, it is solvable if y and f are
known. It can be decomposed into two smaller problems: 1. Finding the focal
length of the camera f , 2. Recalling the real dimensions depicted by pixel y′.

Most single-image depth methods deal with a single camera, simplifying the
task. Learned models will implicitly memorize the value of the focal length f .
This might be sufficient for applications using a single camera, as long as training
data gathered with the same device is available. However, methods trained with
a single camera will not generalize well to images captured by other devices.

Naively training on a dataset containing multiple cameras negatively impacts
performance [9]. We hypothesize that this is because the network must accurately
predict the focal length, a difficult task to perform, even when directly supervised
to do so [14,20]. Focal length normalization alleviates this problem: The network
is trained to predict y = z/f , a magnitude that only depends on the real world
size of the area represented by the pixel of interest. This is quite effective and it
has an intuitive explanation: the real-world size of objects is highly coupled with
semantic segmentation, a task that convolutional neural networks excel at. To
obtain a metric depth value during deployment, the predictions are multiplied
by the focal length.

CAM-Convs [9] explicitly encode camera intrinsics by concatenating a map
of the viewing directions in polar coordinates to each skip-connection in a u-
net architecture. CAM-Convs are more general than just applying focal length
normalization (although the authors found that it is beneficial to use both
techniques in combination as it accelerates convergence), as it can also model
different sensor sizes and aspect ratios explicitly. Images from different sensor
sizes and resolutions can be resized and even squashed if necessary to fit the
aspect ratio of the batch, as the network is explicitly informed about this through
the appended features. It also adequately models the location of the principal
point, enabling training on non-central crops.

In this work we experimentally validate CAM-Convs as a viable option to
train single-image depth networks in datasets containing images taken from
multiple cameras, while proposing a simpler alternative.

Camera Normalization. We suggest an alternative approach: resizing the images
to approximate them being taken by a canonical camera with square pixels, focal
length fc and no radial distortion. With camera normalization, the relationship
between the pixel size and the real size for any given object depends only on the
depth, simplifying the task of depth prediction. For example, if the canonical
focal length is fc = 700px, an object of height y = 2m will have depth that is
inversely proportional to its size in the image z = 700 ∗ 2/y′ pixels. By resizing
the input images to always have the same focal length, the network only needs
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to learn to regress the real-world sizes of objects, as the focal length prediction
isn’t required anymore.

Instead of informing the network about the viewing angles as is done when
using CAM-Convs, these angles are intrinsically learned by the model, as every
input pixel always corresponds to the same viewing angles during training. The
network does not need to produce different responses for similarly-looking patches
as is the case when using CAM-Convs. Moreover, by resizing images to a fixed
focal length, the range of pixel sizes at which objects are represented is reduced.
For example, if the focal length is variable, the smallest objects will look even
smaller on images with small focal lengths, and the larger objects would look
even larger on images with large focal lengths.

Unlike CAM-Convs (that require a u-net like architecture), this approach is
independent of the architecture, as it depends only on scaling the input images
by a factor of fc/f . In other ways, our technique is less flexible than CAM-Convs:
Images are cropped or padded to a common size to form batches during training,
and non-central crops can’t be used. However, we didn’t find these drawbacks to
be of practical relevance on our experiments.

4 Experiments

Architecture We use a single architecture for all of our experiments, except in those
cases where we compare against the implementations offered by other authors.
We do so in order to offer a fair comparison and to focus on the differences in
datasets and techniques for handling training with several cameras. The network
is an encoder-decoder with skip connections (u-net) architecture, with a dilated
resnet-50 pre-trained on ImageNet as the encoder. The dilation rates are 1,1,2
and 4 for each of the four residual modules, producing a feature map 16 times
smaller than the input image. We use in-place activated batch normalization [2]
to reduce the memory footprint during training allowing for large batches. Input
size is always 1216 x 352 pixels, regardless of the scaling and cropping strategy.

After the encoder we append a DeeplabV3 [4] head to aggregate contextual
information. It is formed by a set of dilated convolutions with different dilation
rates (12, 24 and 36) as well as a global pooling of the features whose outputs
are concatenated, batch normalized and convolved together to form an output
feature map of the same dimensionality as the input.

This feature map is then upsampled through bilinear interpolation in three
stages, each stage doubling the resolution. Features from the matching level in
the encoder are concatenated to the upsampled features before being fed to a
‘skip module’ consisting of a convolution and activation. When using CAM-Convs,
the viewing angles and normalized camera coordinates (8 channels) are resized to
the corresponding shape and concatenated to the upsampled features and used
as input to the skip modules. The final output of the u-net is thus at half of
the resolution of the input image. We upsample once more to fit the size of the
ground truth before computing the loss or evaluating.
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Datasets We train on MegaDepth as a baseline and compare with our proposed
MPSD dataset. When training our own models8, we only use the subset of
MegaDepth (≈ 100k out of ≈ 130k images) that contains euclidean depth, as
the rest of the dataset only contains ordinal (foreground/background) depth
relationships).

During training, we use the KITTI validation set to track performance and
perform early stopping. We then evaluate in a range of datasets (without any
fine-tuning): Make3D [24], DIODE [29](outdoor), Cityscapes [5], MegaDepth [17]
and KITTI [11]. We follow the usual practice of filtering out depth values that
are unreliably large, removing values larger than 80 meters for all datasets except
MegaDepth (no metric depth) and Make3D (70 m).

Scaling and cropping strategies We experiment with both CAM-Convs and our
proposed camera normalization. Since CAM-Convs allow training using non-
central crops, we evaluate both central and random crops when training using
CAM-Convs. As a baseline, we also train our architecture on MegaDepth without
any explicit handling of the focal length on the input images or the architecture:
The network is fed with undistorted images that are simply resized so that their
width is 1216 and then center-cropped to a common size of (1216, 352).

Training details We train the network to predict the logarithm of the focal
length-normalized depth and minimize the loss proposed in [7]:

L(z, z∗, f) =
1

n

∑
i

d2i −
λ

n2

(∑
i

di

)2

(1)

where di = log(z)− log(z∗). The loss is only evaluated on those pixels with known
depth, where n is the number of valid depth points in the image. When training
on MegaDepth, we use the fully scale-invariant version with λ = 1. We note that
using a scale-invariant component in the loss leads to faster convergence, even if
the training data is metric depth, thus, when training on MPSD, we set λ = 0.5.

We use stochastic gradient descent with an initial learning rate of 0.015,
Nesterov momentum of 0.9 and weight decay of 10−4 for a maximum of 200k
steps, stopping early if the performance on the KITTI validation set decreases.
The learning rate is decayed on every step following lri = 0.015(1− i/200, 000)0.2.
The batch size is set to 64, distributed over 8 V-100 GPUs.

MPSD vs. MegaDepth Training using our dataset (rows 6-9 in Table 2) yields
better performance across the board when compared to MegaDepth, with the
exception of evaluating on MegaDepth itself (row 5). Although MPSD does not
exclusively contain driving scenarios, the type of imagery available in our dataset
is mostly street-level imagery similar to KITTI and Cityscapes, which could
be an explanation for the large gap. However, networks trained on our dataset
also generalize well to Make3D and DIODE which are not datasets captured in

8 We also compare with the model offered by the authors, trained on their full dataset.
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Table 2: Results obtained by training on MegaDepth or MPSD. MD-Ordinal is the
model trained by the authors of MegaDepth using their full dataset (including
ordinal data, supervised with their ordinal loss). All other entries share the
architecture from Section 4 and are trained with euclidean depth. “mini MPSD”
is the MPSD dataset reduced to the size of the euclidean subset of MegaDepth.
Scaling strategies are Naive: Resize and center crop to a fixed size, CC : CAM-
Convs, FF : camera normalization. Crop strategies are (R)andom and (C)enter.
We only report RMSE on methods trained with MPSD, as the scale is arbitrary
when trained on MegaDepth. The best result is highlighted in bold. Entries
fine-tuned on the target data are marked with *. In those cases, the second-best
is also highlighted with bold text.

Strategy KITTI MegaDepth Cityscapes DIODE (outdoor) Make3D
# Training set Scale Crop SILog rmse SILog SILog rmse SILog rmse SILog rmse
1 MD-Ordinal - - 30.1 - 10.8 35.19 - 47.52 - 38.2 -
2 MegaDepth Naive C 25.61 - 11.86 65.11 - 42.91 - 59.89 -
3 MegaDepth CC R 26.92 - 10.67 62.92 - 50.3 - 54.24 -
4 MegaDepth CC C 23.79 - 11.51 60.08 - 47.28 - 55.9 -
5 MegaDepth FF C 26.79 - 9.96* 36.73 - 48.28 - 41.64 -
6 mini MPSD FF C 14.89 4.87 17.85 22.61 9.05 44.43 8.44 29.55 5.99
7 MPSD FF C 12.77 4.21 14.68 19.77 7.91 42.2 7.78 27.49 5.54
8 MPSD CC C 13.33 4.13 21.5 34.83 12.77 43.04 8.05 54.66 59.45
9 MPSD FF+C C 12.8 4.39 14.04 19.52 8.13 41.69 7.75 28.07 5.67
10 MPSD+KITTI FF C 9.23* 3.04* 32.23 27.11 8.58 45.55 10.69 37.56 6.49

driving scenarios. The size and variety in MPSD allows networks to generalize
much better to all of the datasets we tried on.

It’s not only size that matters We carry out an experiment to ascertain if the
size of the MPSD dataset is crucial for the performance gains obtained when
using it as a training set instead of MegaDepth. To do so, we factor out the size
difference between MPSD and MegaDepth. We randomly sample our dataset to
reduce it to the same size as the MegaDepth euclidean depth subset (around
100,000 images) and train on it. The results can be found on the sixth entry
in Table 2 ‘mini MPSD’: Performance on all the validation sets is only slightly
worse than using the full dataset, while still much better than networks train
on MegaDepth. We hypothesize that this is because the domain of MegaDepth
is quite limited: although it is not a small dataset, the images in it display a
small set of monuments and landmarks (the images were reconstructed into 200
distinct reconstructions). In contrast, the images from our dataset have been
gathered from more than 50, 000 independent reconstructions all over the globe.

Metric accuracy of MPSD Although we obtain state of the art results when
training on MPSD for the scale-dependant RMSE metric, we perform a simple
experiment to determine if there is scale bias in MPSD: Using a network trained
exclusively on MPSD, we produce depth predictions on several metric depth
datasets and compute a scale factor as a least squares solution to align each

http://www.cs.cornell.edu/projects/megadepth
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Fig. 6: Scale factors to align predictions of a MPSD-trained model (Entry #7
in Table 2) to the ground truth depth. Although there is some fixed scale that
clearly improves results on Make3D, it is not the case for KITTI or Cityscapes,
indicating that the depth in MPSD is indeed metric.

predicted depth frame with the ground truth depth. The resulting scale factors are
aggregated on Figure 6, with average scales of 1.03, 1.01, and 0.89 for Cityscapes,
KITTI and Make3D. The fact that we find a consistent underestimation of the
depth on only one of the datasets implies that there is no scale bias in our dataset
(networks trained on MPSD underestimate depth more often on Make3D due to
the domain gap between MPSD and Make3D).

Scaling and cropping strategies Table 2 collects all of our experimental results
for single image depth. We report the scale-invariant SILog [7] score in all cases.
Since the MegaDepth dataset does not provide metric depth, we only report the
root-mean-square error (in meters) for networks trained on MPSD.

We compare naively resizing the images versus using either CAM-Convs or
camera normalization to train on MegaDepth. Our experiments confirm the
observations of Fácil et al [9]: Accounting for the camera intrinsics explicitly
greatly benefits training using datasets collected from more than one camera9.

When comparing the two methods for dealing with multiple cameras, we found
no clear winner. Both produce similar results, with the CAM-Convs producing
the best results for some datasets and camera normalization in others. We also
combined both methods (row #9, Table 2), resulting in the best performance for
some of the evaluations. In this case, the CAM-Convs degenerate into a scaled
version of Coord-Convs [19], a constant mapping of the viewing directions.

When using CAM-Convs, there is reason to believe that random crops may be
used more effectively, as the concatenated viewing directions convey information
about the cropped region. We experimented with using random crops during
training (see rows #2 and #3 in Table 2) and found no conclusive results. We
suspect that this is due to the wide aspect ratio for our crop size, as randomly
cropping using this adspect ratio means in practice that the top and bottom of
images will be sampled more often (usually containing regions with no ground
truth depth like parts of the ego-vehicle or the sky).

9 Refer to [9] for a thorough evaluation about the need of accounting for the focal
length when training on datasets with multiple cameras.
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Fig. 7: MPSD includes valid depth points on dynamic objects such that depth net-
works trained on MPSD are not “dynamic-blind”. These examples are produced
by a network trained exclusively on MPSD and evaluated on KITTI.

Table 3: RMSE(m) on the KITTI validation set, separated in to static (traffic
signs etc.) and dynamic regions (pedestrians, cars, bicycles etc.) regions

Training set(s) Static Dynamic

MegaDepth 93.04 117.98
MPSD 4.16 5.16

MegaDepth+KITTI 3.74 4.29
MPSD+KITTI 3.12 3.52

Dynamic objects In Section 2.3 we described how we include depth from static-
during-capture dynamic objects in MPSD. To demonstrate that the included
depth is valid (that is, that a network trained on MPSD can recover depth on
dynamic objects), we have devised a simple experiment. We trained two versions
of our architecture, one on MegaDepth, and one on MPSD. Each version is then
fine-tuned on KITTI, leading to four different architectures. We then compare
all of them on the KITTI validation set.

For each image, we first run a state-of-the-art segmentation network [23] to
separate each pixel into dynamic or static. We then run the depth prediction
network on the image and align the depth prediction to the ground truth10.
Finally, we calculate the RMSE for dynamic and static regions and gather the
results in Table 3. The small gap between the dynamic and static regions when
training on MPSD indicates the presence of quality annotations on the dynamic
regions.

Competing in the KITTI public benchmark We have reported results after training
on our diverse large scale dataset and evaluating on other smaller scale datasets
that are well-known in the community without performing any fine-tuning.

10 This is so that the MegaDepth-trained network can be included in this comparison.
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Table 4: KITTI leaderboard at the time of submission. Simple supervised pre-
training on MPSD can outperform methods trained with new techniques such as
ordinal regression [10] and planar guidance [16].

Rank Method SILog sqErrorRel absErrorRel iRMSE

1 MPSD 11.12 2.07 % 8.99 % 11.56
2 GSM (Anon.) 11.23 2.13 % 8.88 % 12.65
3 GSM (Anon.) 11.56 2.25 % 8.99 % 12.44
4 LCI (Anon.) 11.63 2.20 % 9.07 % 12.42
5 BTS [16] 11.67 2.21 % 9.04 % 12.23
6 AcED (Anon.) 11.70 2.45 % 9.54 % 12.51
7 DORN [10] 11.77 2.23 % 8.78 % 12.98

However, the best-known benchmark to date is still the KITTI depth dataset.
The authors offer a test server to ensure fair comparison on a test set with
held-out ground truth. Entries in this benchmark use KITTI and (optionally)
other data to train their networks.

To compete in the benchmark, we fine-tuned the network trained on MPSD
and our proposed camera normalization scaling method (entry #7 on Table 2)
on the KITTI training set for 3 epochs, resulting in entry #10 on Table 2. We
evaluated the held-out set using this network and submitted our predictions
to the official benchmark server, obtaining a SILog score of 11.12, surpassing
all other entries at the time of submission. However, it is worth noting that,
after fine-tuning, the network performs worse on all the other benchmarks than
a network trained only on MPSD. This is evidenced by comparing entries #7
and #10 from Table 2: We believe that future research should focus on the
cross-dataset scenario.

5 Conclusion

We have presented the generation procedure of Mapillary Planet-Scale Depth
(MPSD), a depth dataset automatically generated from geo-tagged RGB images.
The dataset has an unprecedented scale, geographical span, variety in appearance,
and range of capturing devices. Additionally, we have addressed the difficulties
that arise when using a dataset taken by a large heterogeneous set of cameras
when training single-image depth estimation, comparing the existing CAM-Convs
with a proposed alternative.

MPSD is larger and more varied than any other publicly available depth
dataset, obtaining state-of-the-art results on several benchmarks in the cross-
dataset scenario, where no fine-tuning is allowed. We also achieves a new state of
the art result on the KITTI single-image depth benchmark by using MPSD to
pre-train a depth network that is then fine-tuned on the benchmark.

http://www.cvlibs.net/datasets/kitti/eval_depth_detail.php?benchmark=depth_prediction&result=7d982ae197cbca117f0ae95b5561984f54a342e1
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