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Abstract

Adversarial examples have appeared as a ubiq-
uitous property of machine learning models
where bounded adversarial perturbation could
mislead the models to make arbitrarily in-
correct predictions. Such examples provide
a way to assess the robustness of machine
learning models as well as a proxy for under-
standing the model training process. There
have been extensive studies trying to explain
the existence of adversarial examples and
provide ways to improve model robustness,
e.g., adversarial training. Different from prior
works that mostly focus on models trained on
datasets with predefined labels, we leverage
the teacher-student framework and assume a
teacher model, or oracle, to provide the la-
bels for given instances. In this setting, we
extend Tian (2019) in the case of low-rank in-
put data, and show that student specialization
(the trained student neuron is highly corre-
lated with certain teacher neuron at the same
layer) still happens within the input subspace,
but the teacher and student nodes could dif-
fer wildly out of the data subspace, which
we conjecture leads to adversarial examples.
Extensive experiments show that student spe-
cialization correlates strongly with model ro-
bustness in different scenarios, including stu-
dents trained via standard training, adversar-
ial training, confidence-calibrated adversarial
training, and training with the robust feature
dataset. Our studies could shed light on the
future exploration of adversarial examples,
and potential approaches to enhance model
robustness via principled data augmentation.
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1 Introduction

The existence of adversarial examples is an intriguing
and important phenomenon in deep learning. Under-
standing why such examples exist can lead to (1) more
robust architectures and training algorithms usable in
the real world, and (2) better understanding of network
training and learned representations.

Many previous works on adversarial examples (Good-
fellow et al., 2014; Szegedy et al., 2013) focus on
the standard setting of supervised classification learn-
ing in which a network is trained on a fixed dataset
D = {(xi,yi)}, where xi is a high-dimensional input
feature and yi is its label (continuous or discrete).
While general, the worst-case scenario (i.e., random
label yi) may lead to exponentially many adversarial
examples since every corner of the input space needs
to be covered, which might never happen in practice.

In this paper, we take a novel perspective to study
adversarial examples with the teacher-student formu-
lation. In this setting, we have a teacher network f∗
as an oracle network to provide the true label yi given
the input xi, i.e. yi = f∗(xi). By definition, there is
no adversarial examples for the teacher. For a student
network f , while ‖f(x) − f∗(x)‖ remains small when
x ∈ D, the adversarial samples x′ for f have large
‖f(x′)− f∗(x′)‖ while in the local neighborhood of x.

This teacher-student assumption imposes implicit real-
izable constraints for (xi,yi) pairs. Using the teacher
as the reference network, we open the black-box map-
ping x 7→ y, and more in-depth analysis can be per-
formed. Moreover, such a setting has interesting prop-
erties (Tian, 2019): with full-rank and sufficient input,
student nodes in multi-layer ReLU networks are special-
ized to teacher nodes at the same layer after training
(both networks have the same depth). Also, there exist
unspecialized student nodes in the final trained stu-
dent model. We hypothesize that the existence of such
nodes is the source of the non-robustness of a trained
model, which opens a new way to study robustness and



Understanding Robustness in Teacher-Student Setting: A New Perspective

adversarial samples.

In this work, we extend Tian (2019) to handle the low-
rank dataset and use Normalized Correlation (NC)
between teacher and student nodes as an additional
signal to study adversarial robustness of the student
network. We analyze the cause of adversarial sam-
ples and show positive correlations between NC and
robustness: (1) Theoretically, we show that student
specialization happens in the low-dimensional input,
and specify the conditions for unspecialized nodes. (2)
Empirically, we show that high NC is correlated to
strong adversarial robustness, verified under different
scenarios such as the comparison of student network
with standard training, adversarial training, adversar-
ial training with CCAT strategy (Stutz et al., 2019),
and model trained with robust feature dataset (Ilyas
et al., 2019a).

The teacher-student framework provides a quantita-
tive way to understand the existence of adversarial
examples in low-dimensional subspace, and a quan-
titative measurement (i.e., node specialization) that
indicates model robustness. Our analysis also confirms
several existing observations about adversarial exam-
ples (Ilyas et al., 2019a; Stutz et al., 2019; Khoury
and Hadfield-Menell, 2018) from the teacher-student
framework perspective.

2 Related Works

Adversarial examples. Recent studies have shown
that deep neural networks are vulnerable to adversarial
examples, which are carefully crafted inputs aiming
to mislead well-trained ML models (Goodfellow et al.,
2014; Szegedy et al., 2013). Since adversarial examples
have raised many security concerns for ML models, dif-
ferent studies have been conducted to analyze its prop-
erties, such as the reasons for their existence (Shamir
et al., 2019; Shi and Ding, 2019; Ilyas et al., 2019b;
Gu and Tresp, 2019; Tsipras et al., 2018; Kotyan et al.,
2019), adversarial transferability (Tramèr et al., 2017;
Papernot et al., 2016; Bhagoji et al., 2018), and com-
pactness of adversarial regions (Singh et al., 2018; Chen
et al., 2020; Tabacof and Valle, 2016). Approaches to
generate such adversarial examples have also been pro-
posed using different perturbation measurement met-
rics and generative models, including both Lp bounded
and unrestricted attacks (Wong et al., 2019; Bhattad
et al., 2019; Xiao et al., 2018a,b; Athalye et al., 2018;
Vargas and Su, 2019). However, given these rich studies
on adversarial examples, it remains an open question
on why a small magnitude of perturbation is enough to
fool a DNN model effectively and what roles the model
architecture and intermediate representation play in
these attacks given the complexity of a human-labeled

“natural” dataset. We make the first attempt to investi-
gate such questions from a different perspective, using
the teacher-student framework to provide controllable
constraints for the ground-truth dataset labels.

Several defense approaches have been proposed against
adversarial attacks, and one of the most effective meth-
ods is adversarial training (Madry et al., 2017). Differ-
ent variations for adversarial training have been studied
to improve its efficiency and scalability (Shafahi et al.,
2019; Xie et al., 2020), as well as understand its lim-
itations (Zhang et al., 2019; Kang et al., 2019). As
adversarial training has achieved promising empirical
performance by improving ML robustness, we aim to
leverage the teacher-student framework to provide theo-
retical observations on why adversarial training defends
against adversarial attacks and how the intermediate
representation changes after adversarial training.

Teacher-student setting. The teacher-student set-
ting is an old topic (Engel and Van den Broeck, 2001;
Saad and Solla, 1996; Mace and Coolen, 1998; Free-
man and Saad, 1997; Gardner and Derrida, 1989).
Recent work has analyzed the specialization of the
student nodes towards that of the teacher for 2-layer
networks (Goldt et al., 2019; Aubin et al., 2018), and
Allen-Zhu et al. (2019) has shown the analysis for 2 and
3 layer networks with modified SGD, batch size 1, and
heavy over-parameterization. Later Tian (2019) shows
that the student neuron specialization happens around
SGD critical points in the lowest layer for deep ReLU
networks without parametric assumption, and provides
polynomial sample complexity for 2 layer ReLU net-
works. In this work, we use the teacher as an “oracle”
to provide an in-depth understanding of adversarial
examples generated against the corresponding student
model due to the fact that some student nodes fail to
specialize fully to the teacher.

3 Teacher-Student Setting in
Low-Dimensional Input

3.1 Teacher network assumptions
Let f∗ be the teacher and f be the student. The label
yi of each xi from a finite dataset (xi,yi) is given by
the teacher network f∗:

yi = f∗(xi), i = 1 . . . N (1)
As an example of how teacher-student setting connects
adversarial samples and robustness, in the theoretical
analysis, we consider both f∗ and f to be two-layer
networks with ReLU activation and L2 loss function.

Note that our setting is different from network distil-
lation (Hinton et al., 2015), where both teacher and
student are trainable networks given the data. In this
paper, the teacher network represents an oracle that
gives the ground truth labels. Therefore, by definition,



Zhuolin Yang∗, Zhaoxi Chen, Tiffany (Tianhui) Cai, Xinyun Chen, Bo Li, Yuandong Tian∗

Input Data Subspace𝒳

Student node

Projection 𝒰𝟏

Input Data Subspace𝒳

Pr
oje

cti
on

 𝒰 𝟐

Teacher node

(a) (c1) (c2) 𝒰𝟐

𝒰𝟏 = 𝒳

Adversarial 
samples

(b)

𝒰𝟏 ∩ 𝑅
𝑅

𝑅

𝒰𝟏

𝒰𝟐

𝒰𝟐 ∩ 𝑅

𝒳

𝒳

Figure 1: Student Specialization in Low-rank dataset. (a) Setting of two-layered network (Sec. 3.2) and notations. g1 is
the backpropagated gradient through the hidden layer. For a node/neuron j, its input weight is wj and fan-out weight vj .
(b) Radius of inscribed ball (1-dimension) of the intersection of a subspace U and input data region R. The radius is large
if U aligns with the high-rank direction of data region. (c1) Within the data subspace X , the student and teacher node
has small projected angle (i.e., angle between projected weights); (c2) If we project the weights to subspace U2 ⊥ X , then
the projected angle between student and teacher weight vectors remain large, due to limited data outside X . In this case,
student response of data out of X can be very different from the teacher, yielding adversarial samples.

no adversarial examples exist for the teacher network.

3.2 Two-layer student specialization in
low-rank setting

Notation. For each hidden node j in the student
network, let wj be its incoming weight and vj ∈ RC
its fan-out weights, where C is the output dimension of
both teacher and student (Figure 1(a)). Note that for d-
dimensional input, wj := [w̃j ; b] ∈ Rd+1 includes both
the weight and the bias. Correspondingly, the input
x = [x̃; 1] ∈ Rd+1, where x̃ ∈ Rd is the actual sample.
For teacher node, we have w∗j and v∗j respectively.
Let g1 be the backpropagated gradient at the student
hidden layer and K be the total number of hidden
nodes (neurons) for teacher and student.

We consider the situation where the training has
already been done, characterized by the the condi-
tion ‖g1‖∞ < ε. Note that for mathematical conve-
nience, the condition is stronger than usual conver-
gence: ‖g1‖∞ < ε means that the gradient is small at
every data point in the data region R that has infinite
samples. This ideal setting facilitates our analysis.

One interesting phenomenon given the condition
‖g1‖∞ < ε, or in the extreme case g1 = 0, is student
specialization (Tian, 2019); that is, when the input
data distribution is full-rank, for each teacher node
j, there exists at least one student k whose weight is
co-linear with the teacher: for some λ > 0, w∗j = λwk.
(c.f., Theorem.1 in Tian (2019)). This means that
the student completely recovers the teacher’s internal
information upon convergence through training.

A more interesting and realistic situation is when the
input data R lie in a low-dimensional space X . In this
case, a perfect recovery is impossible, since there could
exist multiple teachers satisfying Eqn. 1. For example,
if f∗ is such a teacher, then for any weight w∗j in the
lowest layer of f∗, there exists another teacher f∗

′
with

w∗
′

j = w∗j + δw, where δw ⊥ X , and f∗′ also satisfies
Eqn. 1. Hence, we do not expect a full-specialization,

but a partial one in the input space X . Note that we
use the concept of observation between two nodes j
and k, which is a technical condition in (Tian, 2019) 1.

Theorem 1 (Partial Specialization for Infinite Low-Di-
mensional Input). If the input dataset R ⊆ X , then
when the gradient g1 = 0, for each teacher node j ob-
served by any student node, there exists a student node
k so that ProjX [wk] = λProjX [w∗j ] for some λ > 0.

See Appendix A.2 for the proof. Theorem 1 means
that the weight wk of a specialized student node
can be decomposed into two components: wk =
λProjX [w∗j ] + we

k, where the first term is the useful
(specialized) component of wk. The second term we

k

is the component that is orthogonal to the subspace
X . Note that we

k is affected by initialization and ‖we
k‖

can be arbitrarily large while not affecting the output
of f , given its input is within X .

For the realistic case when the gradient is small but non-
zero and the input data R is “almost” low-rank, what
would happen? To characterize the low-rank structure,
we consider the radius of the largest inscribed ball in
U ∩ R, r(U ∩ R), with an arbitrary subspace U . If
U is aligned with the high-rank structure of R, then
r(U ∩R) is large, otherwise small (Figure 1(b)). Here
αjk := v∗ᵀj vk is the inner product between the teacher
and the student fan-out weights:

Theorem 2 (Specialization of Projected Weights in
Low-Dimensional Input). When ‖g1‖∞ ≤ ε, for each
teacher node j observed by a student k, there exists
a student node k′ so that for projected weight p̃k′ :=
ProjU [w̃k′ ] and p̃∗j := ProjU [w̃∗j ], their angle θUjk′ :=

arccos(p̃ᵀ
k′ p̃
∗
j ) satisfies sin(θUjk′) ≤ Mj(U)Kε/αjk,

where Mj(U) := O(r−1(U ∩R ∩ ∂Ej)).

Please check Appendix A.6 for the proof. From The-

1A node j is observed by a node k, if the boundary
of j is in the active region of k: ∂Ej ∩ Ek 6= ∅. Here
Ej := {x : wᵀ

jx ≥ 0} is the activation region and ∂Ej :=

{x : wᵀ
jx = 0} is its boundary.
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orem 2, we can see that large radius r(U ∩ R) and
large ‖v∗j‖ (and thus large αjk) yield tighter bound of
specialization error. When the subspace U aligns with
the main direction of R (or X ), the inscribed radius r is
large, the projected angles θUjk′ between weight vectors
are small and the alignment is good (Figure 1(c1)).
On the other hand, if U ⊥ X , the radius becomes tiny
(Figure 1(b)) and the projected angle has a much looser
bound (Figure 1(c2)). Empirically, the projected angle
often remains large even after many epochs of training.

In addition, Tian (2019) pointed out that there are
unspecialized nodes, i.e., neurons that are not aligned
with any teacher or student node, and their fan-out
weights are zero and thus prunable. It happens in the
low-dimensional input and small gradient case as well:

Corollary 1 (Unspecialized nodes in Low-Dimen-
sional Input). If ‖g1‖∞ ≤ ε, a student node k′ is ob-
served by other student nodes with fan-out weights Q =
[vk1 ,vk2 , . . . ,vkC ], and has projected angle sin(θUjk′) ≥
c0 with other teacher/student node j, then its fan-out
weight is small: ‖vk′‖2 ≤ ‖Q−1‖1Mk′(U)Kε/c0.

4 Adversarial Training in the
Teacher-Student Setting

As the main contribution, we now use our teacher-
student framework to analyze various adversarial phe-
nomena. To see why adversarial training is related to
the teacher-student setting, one example is the experi-
ments in Ilyas et al. (2019a) that show an intriguing
property of adversarial examples: using the adversarial
examples x′ and their “wrong” labels f∗(x′) (i.e., non-
robust dataset in their Sec 3.2), we can train a student
model f that performs well in the original test set.

While this sounds like “garbage-in signal-out”, our
teacher-student setting explains it naturally. The label
f∗(x′) is from the output of the teacher f∗ on an adver-
sarial sample x′. While this label is regarded as “wrong”
from the dataset point of view (since ‖f∗(x′)− f∗(x)‖
is large, where x is the data point before adversarial
perturbation), from our teacher-student perspective,
the input-output pair (x′, f∗(x′)) preserves the correct
mapping of the teacher, regardless of the nature of the
input data. No wonder the trained student does well
on the original test set, if the teacher does well.

With the teacher-student framework, we revise the con-
cept of adversarial examples and analyze its properties.

4.1 An empirical model for learned students
Theorems in Sec. 3.2 tell that a learned student model
on low-rank data has two properties:

(1) The student weight wk has large discrepancy from
teacher weights along directions d ⊥ X (Theorem 2);

(2) If the student weight wk deviates from all teachers
and student nodes within the data region R, then the
magnitude of its fan-out weight is small (Corollary 1).2

Note that for convenience, we omit technical conditions
(e.g., the boundary needs to be observed). In the over-
realization scenario, we assume that any boundary is
always observed by many student nodes.

Based on these two properties, we could come up with
an empirical model to relate a learned student network
with the teacher (here wk and w∗j are normalized):

wk = w∗j + εinu
in
k + εoutu

out
k (2)

where uin
k ∈ X and uout

k ⊥ X are unit vectors. εin =
εout = 0 means perfect student specialization.

Here the magnitudes of εin and εout are related to
different factors. εout is related to the degree of low-
rankness of the data. The more the data are rank-
deficient, the smaller the supporting radius r(U , R) for
out-of-plane subspace U , and the bound becomes looser
according to Theorem 2. This leads to larger εout that
perturbs student node away from the teacher along the
direction of out-of-distribution.

On the other hand, εin depends on the magnitude
of the fan-out weights. When the student node k is
unspecialized, i.e., it strays away from teacher and other
students’ directions (large εin), Corollary 1 tells that
its fan-out weight is small and therefore its influence to
the output of the network is limited and/or negligible.

The two unit-vectors uin
k and uout

k could be dependent
on the network initialization and the training process.

Checking specialization of nodes. There are two
different ways for checking student specialization.

Weight-check. One method is to directly check whether
w∗j = λwk for some λ > 0. While straightforward, an
issue is that for intermediate layers of deep models, the
input dimension of a node can be different between the
teacher and an over-parameterized student.

Activation-check. Alternatively, we could use activation
fj ∈ RN computed on a given dataset of size N , as
in Tian (2019). By checking the Normalized Correlation
between f∗j from the teacher and fk from the student,
we could measure the degree of specialization.

One short-coming for activation-check is that a perfect
alignment with a low-dimensional input only tells that
ProjX [w∗j ] = λProjX [wk], which means that εin = 0.
On the other hand, to check εout, we would need to use
data that are out of the subspace of X (e.g., adversarial
samples, adding noise to the input, etc).

2We leave one case for future work: two student nodes
are both away from all other teacher/student nodes, and
they both have strong fan-out weights.
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4.2 Adversarial examples in the
teacher-student setting

Eqn. 2 serves as an empirical model of the possible
vulnerability of a learned student model compared to
its teacher, due to εin and εout. First, for a sam-
ple x′ out of the plane X , a high εout leads to large
activation difference between the teacher and the stu-
dent. This aligns with the existing hypothesis and
understanding (Khoury and Hadfield-Menell, 2018; Ma
et al., 2018) that directions off the data manifold can
be used to construct adversarial examples. Second,
we might also have in-plane adversarial samples that
attack through uin.

We use adversarial samples as a probe to verify our
empirical model and the induced vulnerability. Since
we now have a teacher network that provides the ground
truth label (in addition to the data label), there are
two different ways to obtain an adversarial sample.

Oracle-adversarial. We define oracle-adversarial ex-
amples as follows:

x′ = arg max
x′∈B(x,ε)

L[f(x′), f∗(x′)], (3)

where L[·] is a loss function (e.g., L2, cross-entropy, etc).
x′ can be obtained by back-propagating through both
f and f∗. We call x′ the oracle-adversarial example
and f∗(x′) the oracle label.

Data-adversarial. The conventional formulation of
(untargeted) adversarial examples is

x′ = arg max
x′∈B(x,ε)

L[f(x′),y], (4)

where y is the ground truth label from the dataset, and
L is commonly cross-entropy for classification. Here,
we only obtain samples against the teacher network
f∗ for the training set D, and assume that f∗ is a
constant function in B(xi, ε), where xi is a sample in
the training set. Since f∗ is constant in B(xi, ε), we
use the label yi = f∗(xi) of the original data point
xi when optimizing Eqn. 4, and only backpropagte
through the student model f . In this paper, we call
such an adversarial examples x′ data-adversarial.

In the presence of the teacher network, there are two
ways to do adversarial training. Let x′ be the per-
turbed sample. For label-target, we simply use the
label y of the original sample x to update: θt+1 ←
θt − α∇θL[fθt(x

′),y]. Alternatively, we could also use
teacher output f∗(x′) as the label of x′ and update:
θt+1 ← θt − α∇θL[fθt(x

′), f(x′)]. We call it teacher-
target. It incorporates the deviation of x′ from x and
thus is more accurate than label-target.

4.3 Why adversarial training helps model
robustness?

Given all the previous analysis, it is now clear that by
adding adversarial samples during training, we implic-
itly augment data region R along its “weak” directions
and thus improve student specialization (Theorem 2
and Corollary 1). Similar effects can also be achieved by
data augmentation and/or adding noise. In the next
section, we will verify these findings with extensive
experiments.

5 Experiments

In this section, we aim to verify the strong positive
correlation between the student specialization and the
robustness of the student model with respect to the
oracle (i.e., the teacher) in various scenarios.

We control the degree of specialization by training
the student model with different epochs, as well as
using adversarial training adapted for the teacher-
student framework. In addition, we conduct stud-
ies on Confidence-Calibrated Adversarial Training
(CCAT) (Stutz et al., 2019) to further verify the rela-
tionship between neuron specialization and model ro-
bustness. We also discussed the robust feature (Madry
et al., 2017) in our teacher-student setting and left the
details to Appendix A.11.

5.1 Experimental setup

We use CIFAR-10 (Krizhevsky et al., 2009) as our
dataset in experiments, and consider both the teacher
and student model to be the 4-layer Conv ReLU
networks. We train the teacher with channel size
64 − 64 − 64 − 64 at first, and then reduce it to be
45− 32− 32− 20 by pruning the inactivated channels3.
For the student model, we set it to be 1.1x scale to the
pruned teacher model (i.e. channel size 50−35−35−22).
We also investigate deeper Conv network structure by
adding one more Conv layer with channel size as 64
to further solidify our conclusion. We set each Conv
layers’ kernel size s = 3 for both teacher and student
models.

In our experiments, we consider two Standard Train-
ing (ST) strategies. Logit training: minimize the `2
distance between the teacher and student’ output logits.
Label training: minimize the cross-entropy between
the student’s logit and the teacher’s prediction. We
also considerAdversarial Training (AT) by training
the student with oracle-adversarial examples generated
with Eq.(3), where we apply the 40-iteration l∞ PGD
attack with perturbation scale ε = 10/255 and step

3We define the channel k to be inactivated by considering
the norm of the fan-out weights.
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size α = 0.01.

5.2 Evaluation metrics
We use the Normalized Correlation (NC) (Tian
et al., 2019) and its variants to measure the neuron
specialization of the student to the teacher. Basically,
we define fi to be the activations of node i. For student’s
node k and teacher’s node j, ρkj is defined as the
cosine similarity between the normalized activations:
ρkj = f̃>k f̃∗j , where f̃k = (fk −mean(fk))/std(fk). Then
we define the variants of the NC as follows:

Best Normalized Correlation (BNC) ρ̂j : For each
teacher node j in layer l, we find the highest NC among
student’s l-th layer nodes (ls): ρ̂j = maxk∈ls ρkj .

Mean of the Best Normalized Correlation
(MBNC) ρ̄l: We compute the mean of the BNC ρ̂
over teacher’s l-th layer nodes (lt): ρ̄l = meanj∈lt ρ̂j .

We also show the Sorted BNC Curve by sorting the
BNC ρ̂ of the teacher’s nodes and concatenating the
adjacents. Then we can compare students’ alignment
to one teacher by visualizing the curves for each layer.

5.3 Warm-up: strong correlation between εin,
εout and normalized correlation

First, we report εin and εout in Eqn. 2 between the stu-
dent and teacher nodes in the lowest (first Conv) layer,
and study its correlation with Normalized Correlation.
This is to validate our empirical model (Sec. 4.1) and
lay the foundation of our next analysis.

With the lowest layer’s kernel size s = 3, each input
with shape (3, 32, 32) can be decomposed into 30× 30
patches, and each patch has 3× 3× 3 = 27 dimensions.
To show the inputs’ low-rank property, we perform
PCA(Pearson, 1901) on the 27-dimensional inputs, and
the fast-decaying eigenvalues (Figure 2) show their low-
rank structure. We choose the eigenvectors with 17
largest eigenvalues to form the basis U of the input dis-
tribution X , and compute εin and εout between student
node k and teacher node j as follows. Note that here
we define ∆wjk := wk/‖wk‖2 −w∗j/‖w∗j‖2 (Following
Sec. 4.1, both wk and w∗j need to be normalized):

εin[k, j] = ‖UU>∆wjk‖2,
εout[k, j] = ‖(I−UU>)∆wjk‖2

To show the correlation between εin and NC, we use
standard training and plot (ρkj , εin[k, j]) for every pair
of k and j in Figure 2. We show strong negative correla-
tion trends interpreted by Pearson score: small εin[k, j]
indicates large NC . We draw the εin and εout curve by
sorting the εin[k, j], εout value between every teacher
node j and the student node k with the highest NC.
εin, εout curves show how well the student is specialized
to the teacher from the in/out-plane direction.
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Figure 3: Sorted BNC curve for Adversarial Training (AT)
and Standard Training (ST) with logit for 300 epochs.

5.4 Adversarial training

In this subsection, we analyze how the Adversarial
Training (AT) affects the model robustness and student
specialization, measured by normalized correlation.

We run AT for different training epochs T ∈
{50, 100, 150, 200, 300}, and compare them to Standard
Training (ST) with logit for 300 epochs. We check
Robust Accuracy, defined as the ratio of success-
ful predictions of the argmax labels of the adversarial
examples, which are generated by increasing the `2 dis-
tance between the student and the teacher’s output
logits. We also show Sorted BNC and εin, εout curves
for each setting to check the node specialization.

We conduct various types of attacks to generate adver-
sarial examples: {`1, `2, `∞} optimization based PGD
attack (Madry et al., 2017), FGSM attack (Goodfellow
et al., 2014), CW attack (Carlini and Wagner, 2017)
and Blackbox-transfer attack using a surrogate model
trained independently. We run robustness evaluation
multiple times to compute statistical confident robust
accuracy with mean µ and variance σ2. From Table 1,
we can see AT model’s robustness increases with epochs
and surpasses the 300 epochs ST (logit) model’s even
at 50 epochs. Figure 3 and 4 show the neuron special-
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Table 1: Robust evaluation of student models trained for different epochs (numbers in the parentheses) under Adversarial
Training (AT) and Standard Training (ST). Results are reported by the mean µ and variance σ2 of model robust accuracy
(%) against various attacks.

Attacks AT (50) AT (100) AT (150) AT (200) AT (300) ST (300)
µ σ2 µ σ2 µ σ2 µ σ2 µ σ2 µ σ2

`∞ PGD 78.79 1.1e-4 84.02 4.2e-5 87.57 2.8e-5 88.01 8.2e-6 88.20 2.9e-5 74.39 4.2e-5
`2 PGD 91.85 7.3e-6 95.98 7.0e-6 96.21 4.7e-6 95.95 4.8e-6 96.31 5.4e-6 94.01 1.0e-5
`1 PGD 92.30 9.9e-6 96.18 6.5e-6 96.56 3.1e-6 96.36 3.0e-6 96.59 3.7e-6 94.51 4.8e-6
FGSM 90.65 7.7e-6 95.18 4.7e-6 95.55 6.8e-6 94.87 5.3e-6 95.28 4.9e-6 91.12 2.1e-5
CW 78.89 1.0e-4 91.50 4.9e-5 91.96 4.3e-5 94.52 2.2e-5 92.63 1.3e-5 86.19 2.7e-5

Blackbox-transfer 43.14 2.6e-5 45.31 4.7e-5 46.06 4.2e-5 46.68 3.7e-5 46.99 2.1e-5 43.48 3.2e-5

Table 2: Robust Accuracy (%) of {In-plane, Out-plane,
Standard} AT models trained for 150 epochs against {In-
plane, Out-plane, Standard} adversarial attacks.

Attacks In-plane Out-plane Standard
AT (In-plane) 88.86 89.18 89.28
AT (Out-plane) 83.11 83.54 83.60
AT (Standard) 86.87 87.28 87.18
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Figure 4: (εin, εout) curve (lower curve means better spe-
cialization) for Adversarial Training (AT) and Standard
Training (ST) with logit for 300 epochs. AT leads to much
stronger student specialization and higher robust accuracy.

ization of the student by plotting εin, εout and Sorted
BNC curve, where AT models achieve much better spe-
cialization than ST models by reducing εin and εout
drastically in the first few epochs. For 5-layer deeper
Conv network, we also observe similar results as shown
in Figure 5.

We also evaluate how in-plane AT and out-plane AT
affect student’s specialization separately. To disentan-
gle them, for each instance x, we apply the standard
`∞ PGD attack twice with different initialization to
obtain x′in and x′out, while x′in has a smaller distance
to the input subspace. We use x′in to train the in-plane
AT model and x′out for out-plane AT model, and we
evaluate each model’s Robust Accuracy against the
in-plane attack, out-plane attack, or both (i.e., the
standard attack). From Table 2, we find the in-plane
attack can be more severe causing model’s vulnerability,
so in-plane AT models achieve better robustness. In
Figure 7, the plots for εin and εout indicate that the
in-plane AT model leads to better specialization from
both in-plane and out-plane directions.

We evaluate the Mean of the Best Normal-

ized Correlation (MBNC) and the unspecial-
ized/specialized ratio4 of AT and ST models trained
for 300 epochs in Figure 6. We observe that AT model
could achieve higher MBNC value by forcing more
student nodes to be specialized to teacher nodes, and
the traditional Data Augmentation method (Random-
Crop, HorizontalFlip, Rotation) could improve neuron
specialization as well.

5.5 Standard training

In this subsection, we continue to study the correla-
tion between model robustness and specialization to
the teacher in Standard Training (ST) with logit or la-
bel’s supervision. Our analyis is performed at different
training epochs T ∈ {50, 100, 150, 200, 300}.

Table 3: Robust Accuracy (%) of student models trained
for different epochs (numbers in the parentheses) under
Standard Training (ST) with logit or label supervision.

Robust Acc ST (50) ST (100) ST (150) ST (200) ST (300)
Logit training 23.12 30.72 36.72 48.52 62.77
Label training 19.08 20.81 22.34 23.42 25.79

From Table 3 and Figure 8, we can observe both robust-
ness and specialization of ST models improved with
training. However, when training with the same epochs,
ST (label) model is worse than ST (logit) model from
both robustness and specialization perspectives.

Moreover, in Figure 9, we show the specialization of
ST (logit) model and ST (label) model from the in-
plane and out-plane directions. Interestingly, ST with
label does not improve the in-plane specialization. In
contrast, ST with logit leads to specialization on both
in-plane and out-plane aspects.

To check the low-rank property of input distribu-
tion X , we add the d-dimensional Gaussian noise
ε ∼ N (0, σ2Id), σ = 0.1 on the input instances dur-
ing the ST with logit, and we present εin, εout curves
in Figure 10. From Figure 10, we can observe that
by training with the high-rank input instances, the

4We consider the node to be unspecialized if NC is smaller
than 0.8, and specialized if NC is larger than 0.9.
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Figure 5: {Left: Sorted BNC curve on Layer 0, 2, 4; Right: εin and εout curve} using a deeper Conv network architecture.
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Figure 6: Comparison between Adversarial Training (AT)
and Standard Training (ST) with/without data augmen-
tation. Left: The MBNC value ρ̂ for every layer. Right:
The ratio of the number of the unspecialized nodes divided
by the number of the specialized nodes in every layer.
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Figure 7: (εin, εout) curve for {in-plane, out-plane, stan-
dard} Adversarial Training (AT) with 150 epochs.

student can be more specialized to the teacher from
both in-plane and out-plane directions. Meanwhile, the
low-rank property brings the risk facing the out-plane
adversarial examples.

Remarks. We suggest the existence of adversarial ex-
amples is due to student’s unspecialized neurons (large
εin). During training, ST decreases student nodes’ εin,
improves neuron specialization and therefore leads to
better robustness. Also, comparing to ST with label,
ST with logit can leverage the additional direction in-
formation from the teacher output, and achieve better
neuron specialization and robustness, which verifies our
claim about the strong correlation between robustness
and specialization.

5.6 Analysis of Confidence-Calibrated
Adversarial Training

We also extend our analysis to other training tech-
niques that improve the robustness of the model.
Confidence-Calibrated Adversarial Training
(CCAT) (Stutz et al., 2019) proposes to gener-
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Figure 8: Sorted BNC curves (the higher means better
specialization) for Standard Training (ST) with logit or
label for different epochs on CIFAR-10. Logit training
leads to much stronger specialization across all layers. Solid
Blue curves refer to the logit training and dashed Red
curves to the label training. Color changed from light to
dark with more training epochs.
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Figure 9: (εin, εout) curves for Standard Training (ST) with
logit or label for different epochs on CIFAR-10. Solid Blue
curves refer to the logit training and dashed Red curves
to the label training (which reduces εout more). Colors are
changed from light to dark with more training epochs.
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Figure 10: (εin, εout) curves for ST (logit) with or without
Gaussian augmentation for different epochs on CIFAR-10.
Solid Blue curves refer to ST (logit) without Gaussian
and dashed Red curves refer to ST (logit) with Gaussian.
Adding Gaussian leads to better specialization. Colors are
changed from light to dark with more training epochs.
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Figure 11: Sorted BNC curve of student trained by CCAT.
Specialization correlates with robust accuracy (Table 4).
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Figure 12: (εin, εout) curve of student models trained by
CCAT with different ρ. Here “AT” means that we use
vanilla Adversarial Training with oracle-adversarial samples
(Eqn. 3), which leads to much better specialization.

ate high confidence adversarial examples with cali-
brated soft labels. Specifically, for an input (x,y),
adversarial example x + δ is generated as: δ =
arg max||δ||∞≤ε maxk 6=y f

C
k (x + δ), where fCk (x) de-

notes model f ’s output confidence on label k, and
ε denotes the tolerance of `∞ perturbation scale.
The confidence parameter λ(δ) is decided by the
`∞ norm of δ and the hyper-parameter ρ: λ(δ) =
(1 −min(1, ||δ||∞/ε))ρ, and the confidence-calibrated
soft label ỹ is obtained by mixing the one-hot vector of
the label y with the confidence: ỹ = λ(δ)one_hot(y) +
(1− λ(δ)) 1

K , where K refers to the number of labels.

In the teacher-student setting, we consider the con-
fidence to be the `∞ distance between student and
teacher’s logit. We generate the high-confidence ad-
versarial example by: δ = arg max||δ||∞≤ε maxk |sk(x+
δ)− tk(x + δ))|, where sk(x), tk(x) refer to the output
logit of student and teacher on label k respectively.
We apply the confidence-calibrated soft label ỹ to the
adversarial examples and evaluate the robustness and
specialization of CCAT models trained for 150 epochs,
with ρ = 5, 10, 20.

Figure 11 and Table 4 show the neuron specialization

Table 4: Robust Accuracy (%) of student models trained
for 150 epochs, with CCAT given different ρ and AT.

Model CCAT (ρ = 5) CCAT (ρ = 10) CCAT (ρ = 20) AT
Robust Acc 47.25 52.04 49.33 84.07

and robustness of CCAT models respectively. We find
that CCAT with ρ = 10 achieves the best robustness
and neuron specialization among all CCAT models.
Again, we notice that there is a strong correlation
between specialization and robustness (e.g., ρ = 10
achieves the highest degree of specialization and ro-
bustness, ρ = 20 achieves the second highest on both,
and similarly for ρ = 5).

Figure 12 shows the εin, εout curves, and indicates AT
can improve specialization for both in-plane and out-
plane directions.

Remarks. Comparing different CCAT models with AT
models, the results consistently show that the neuron
specialization of student models is highly correlated
with the robustness, which is aligned with our obser-
vation in Sec 5.5. In addition, AT models with better
robustness may be due to the information loss during
the confidence calibration: while the confidence cali-
bration captures the balanced adversarial distribution,
it will provide inconsistent confidence to the teacher’s
output. To align the confidence distribution with the
teacher’s output would be an interesting future work.

6 Conclusion and Future Work

In this paper, we leverage the teacher-student frame-
work to study the model robustness and explain the
origin of adversarial samples in a trained network. In
our setting, we assume the labels to be the output of
an oracle teacher and student learns from the teacher
through the teacher’s output. In this setting, model
vulnerability (and adversarial samples) naturally arise
when the nodes (neurons) in a learned student do not
fully reconstruct (or “specialized into”) teacher’s nodes
when the input data are low-dimensional. Specifically,
we theoretically show that, when training converges,
student nodes are specialized in the low-dimensional
input subspace, but may not be specialized out of such
a subspace, leaving space for adversarial examples. Ex-
tensive experiments show a clear correlation between
model robustness and degree of student specialization
measured by normalized correlation between activa-
tions of teacher and student, in standard training, ad-
versarial training (AT) and Confidence-Calibrated Ad-
versarial Training (CCAT). Based on this new perspec-
tive, future work includes regularization of unspecial-
ized student nodes during training, label-extrapolation
of adversarial samples in AT, etc.
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A Proofs

A.1 Lemma

Lemma 1. If x̃ = U ỹ + x̃0, where U ∈ Rd×d′ , then the inner product wᵀx in the original space can be written
as the inner product in the reduced space wᵀ

yy with

wᵀx = wᵀ
yy, for wy :=

[
w̃y

by

]
=

[
Uᵀw̃

w̃ᵀx0 + b

]
(5)

Proof. Since the augmented vector x := [x̃; 1] ∈ Rd+1, the inner product wᵀx can be written as:

wᵀx := w̃ᵀx̃ + b = w̃ᵀU︸ ︷︷ ︸
w̃ᵀ

y

ỹ + w̃ᵀx0 + b︸ ︷︷ ︸
by

(6)

and the conclusion follows.

A.2 Theorem 1

Proof. For low-dimensional input space X , we could always find a set of orthonormal bases U = [u1,u2, . . . ,ud′ ]
so that for any point x̃ ∈ X, we have x̃ = U ỹ + x̃0. Therefore, by Lemma 1, the inner product wᵀx can be
written as

wᵀx = wᵀ
yy, for wy :=

[
w̃y

by

]
=

[
Uᵀw̃

w̃ᵀx0 + b

]
(7)

Then y is full-rank in X and we can apply Lemma 3 in Tian (2019) for the reduced space of y to draw the
conclusion that for each teacher node j whose boundary is observed by a student node k with αjk 6= 0, there
exists at least one student node k′ so that w∗y,j = λwy,k with λ > 0. Taking its first d′ components, we have
Uᵀw̃∗j = λUᵀw̃k. Notice that ProjX [w̃∗j ] = UUᵀw̃∗j , we have ProjX [w̃∗j ] = λProjX [w̃k].

A.3 Lemma 2

Lemma 2 (Relation between Hyperplanes (Lemma 5 in Tian (2019))). Let wj and wj′ be two distinct hyperplanes
with ‖w̃j‖ = ‖w̃j′‖ = 1. Denote θjj′ as the angle between the two vectors wj and wj′ . Then there exists ũj′ ⊥ w̃j

and wᵀ
j′ ũj′ = sin θjj′ .

A.4 Lemma 3

Lemma 3 (Evidence of Data points on Misalignment). Let R ⊂ Rd be an open set. Consider K ReLU nodes
fj(x) = σ(wᵀ

j x), j = 1, . . . ,K. ‖w̃j‖ = 1, wj are not co-linear. Then for a node j with ∂Ej ∩R 6= ∅, either of
the conditions holds:

(1) There exists node j′ 6= j so that sin θjj′ ≤MKε/|cj | and |bj′ − bj | ≤M2ε/|cj |.

(2) There exists xj ∈ ∂Ej ∩R so that for any j′ 6= j, |wᵀ
j′xj | > 5ε/|cj |.
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where:

• θjj′ is the angle between w̃j and w̃j′ ,

• r is the radius of a d− 1 dimensional ball contained in ∂Ej ∩R,

• M = 10
r

√
d
2π , M0 = maxx∈∂Ej∩R ‖x‖ and M2 = 2M0MK + 5.

Proof. Define qj = 5ε/|cj |. For each j′ 6= j, define Ij′ = {x : |wᵀ
j′x| ≤ qj , x ∈ ∂Ej}. We prove by contradiction.

Suppose for any j′ 6= j, sin θjj′ > KMε/|cj | or |bj′ − bj | > M2ε/|cj |. Otherwise the theorem already holds.

Case 1. When sin θjj′ > KMε/|cj | holds.

From Lemma 2, we know that for any x ∈ ∂Ej , if wᵀ
j′x = −qj , with aj′ ≤ 2qj |cj |

MKε = 10
MK , we have x′ = x+aj′uj′ ∈

∂Ej and wᵀ
j′x
′ = +qj .

Consider a d− 1-dimensional sphere B ⊆ Ωj and its intersection of Ij′ ∩B for j′ 6= j. Suppose the sphere has
radius r. For each Ij′ ∩B, its d− 1-dimensional volume is upper bounded by:

V (Ij′ ∩B) ≤ aj′Vd−2(r) ≤ 10

MK
Vd−2(r) (8)

where Vd−2(r) is the d − 2-dimensional volume of a sphere of radius r. Intuitively, the intersection between
wᵀ
j′x = −qj and B is at most a d− 2-dimensional sphere of radius r, and the “height” is at most aj′ .

Case 2. When sin θjj′ ≤ KMε/|cj | but |bj′ − bj | > M2ε/|cj | holds.

In this case, we want to show that for any x ∈ Ωj , |wᵀ
j′x| > qj and thus Ij′ ∩B = ∅. If this is not the case, then

there exists x ∈ Ωj so that |wᵀ
j′x| ≤ qj . Then since x ∈ ∂Ej , we have:

|wᵀ
j′x| = |(wj′ −wj)

ᵀx| = |(w̃j′ − w̃j)
ᵀx̃ + (b′j − bj)| ≤ qj (9)

Therefore, from Cauchy inequality and triangle inequality, we have:

‖w̃j′ − w̃j‖‖x̃‖ ≥ |(w̃j′ − w̃j)
ᵀx̃| ≥ |b′j − bj | − |w

ᵀ
j′x| (10)

From the condition, we have ‖w̃j′ − w̃j‖ = 2 sin
θjj′

2 ≤ 2 sin θjj′ ≤ 2KMε/|cj |. Then

2M0MKε/|cj | ≥ |(w̃j′ − w̃j)
ᵀx̃| ≥ |bj′ − bj | − qj > M2ε/|cj | − 5ε/|cj | (11)

which is equivalent to:
2M0MK > M2 − 5 (12)

which means that
M2 < 2M0MK + 5 (13)

This is a contradiction. Therefore, Ij′ ∩B = ∅ and thus V (Ij′ ∩B) = 0.

Volume argument. Therefore, from the definition ofM , we have V (B) = Vd−1(r) ≥ r
√

2π
d Vd−2(r) = 10

M Vd−2(r),
then we have:

V (B) ≥ 10

M
Vd−2(r) > (K − 1) · 10

MK
Vd−2(r) ≥

∑
j′ 6=j,j′ in case 1

V (Ij′ ∩B) (14)

This means that there exists xj ∈ B ⊆ Ωj so that xj /∈ Ij′ ∩B for any j′ 6= j and j′ in case 1. That is,

|wᵀ
j′xj | > qj (15)

On the other hand, for j′ in case 2, the above condition holds for entire Ωj , and thus hold for the chosen xj .
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(a) (b)

Figure 13: (a) Lemma 3. (b) Lemma 4.

A.5 Lemma 4

Lemma 4 (Local ReLU Independence, Noisy case). Let R be an open set. Consider K ReLU nodes fj(x) =
σ(wᵀ

j x), j = 1, . . . ,K. ‖w̃j‖ = 1, wj are not co-linear. If there exists c1, . . . , cK , c• and ε so that the following is
true: ∣∣∣∣∑

j

cjfj(x) + c•wᵀ
• x

∣∣∣∣ ≤ ε, ∀x ∈ R (16)

and for a node j, ∂Ej ∩R 6= ∅. Then there exists node j′ 6= j so that sin θjj′ ≤MKε/|cj | and |bj′−bj | ≤M2ε/|cj |,
where r,M,M2 are defined in Lemma 3 but with r′ = r − 5ε/|cj |.

Proof. Let qj = 5ε/|cj | and Ωj = {x : x ∈ ∂Ej ∩R, B(x, qj) ⊆ R}. If situation (1) in Lemma 3 happens then
the theorem holds. Otherwise, applying Lemma 3 with R′ = {x : x ∈ R, B(x, qj) ⊆ R} and there exists xj ∈ Ωj
so that

|wᵀ
j′xj | ≥ qj = 5ε/|cj | (17)

Let two points x±j = xj ± qjw̃j ∈ R. In the following we show that the three points xj and x±j are on the same
side of ∂Ej′ for any j′ 6= j. This can be achieved by checking whether (wᵀ

j′xj)(w
ᵀ
j′x
±
j ) ≥ 0 (Figure 13):

(wᵀ
j′xj)(w

ᵀ
j′x
±
j ) = (wᵀ

j′xj)
[
wᵀ

j′(xj ± qjw̃j)
]

(18)

= (wᵀ
j′xj)

2 ± qj(wᵀ
j′xj)w

ᵀ
j′w̃j (19)

= |wᵀ
j′xj |(|wᵀ

j′xj | ± qjwᵀ
j′w̃j) (20)

Since |wᵀ
j′w̃j | ≤ 1, it is clear that (wᵀ

j′xj)(w
ᵀ
j′x
±
j ) ≥ 0. Therefore the three points xj and x±j are on the same

side of ∂Ej′ for any j′ 6= j.

Let h(x) =
∑
j cjfj(x) + c•wᵀ

• x, then |h(x)| ≤ ε for x ∈ R. Since x+
j + x−j = 2xj , we know that all terms related

to w• and wj′ with j 6= j will cancel out (they are in the same side of the boundary ∂Ej′) and thus:

4ε ≥ |h(x+
j ) + h(x−j )− 2h(xj)| = |cjqjwᵀ

jwj | = |cj |qj = 5ε (21)

which is a contradiction.
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A.6 Theorem 2

Proof. Note that from Theorem 1, any input x ∈ U ∩R can be written as x̃ = U ỹ + x̃0, where U ∈ Rd×d′ is a
column-orthogonal matrix (i.e, UᵀU = Id′×d′). Also from Lemma 1, any inner-product wᵀx can be written as
wᵀ
yy, with wy := [w̃y; w̃ᵀx0 + b] and w̃y := Uᵀw̃, and the inner product of two projected weights is:

p̃ᵀ
j p̃k := ProjU [w̃j ]

ᵀProjU [w̃k] = w̃jUU
ᵀUUᵀw̃k = w̃jUU

ᵀw̃k = w̃ᵀ
y,jw̃y,k (22)

Therefore, all the ReLU activations can be written in the reduced space, and the projected angle θUjk := arccos p̃ᵀ
j p̃k

we are aiming for is also defined in the reduced space y. Applying Lemma 4 on the reduced space y with
r = r(U ∩R ∩ ∂Ej), and the conclusion follows.

A.7 Corollary 1

Proof. By Theorem 2, we know that for a node k0, if it is observed by another student node k, then there exists
a node j (can be either a teacher or another student node) so that their projected angle sin θUjk0 has the following
upper bound:

sin θUjk0 ≤MKε/|αkk0 | (23)

where αkk0 := vᵀ
kvk0 , vk ∈ RC is the fan-out weights, and C is the number of output for the two-layer network.

On the other hand, by the condition, we have sin θUjk0 ≥ c0 for any other teacher and student nodes, including j.
Therefore, we have:

c0 ≤ sin θUjk0 ≤MKε/|αkk0 | (24)

which leads to
|vᵀ
kvk0 | = |αkk0 | ≤MKε/c0 (25)

If the student node k0 is observed by C independent observers k1, k2, . . . , kC , then we have:

|vᵀ
km

vk0 | = |αk0km | ≤MKε/c0, m = 1, . . . , C (26)

Let Q := [vk1 ,vk2 , . . . ,vkC ] ∈ RC×C , then we have ‖Qᵀvk0‖∞ ≤MKε/c0 and:

‖vk0‖∞ ≤ ‖Q−ᵀ‖∞‖Qᵀvk0‖∞ ≤ ‖Q−1‖1MKε/c0 (27)

where ‖ · ‖1 is the 1-norm of a matrix (or maximum absolute row sum).

A.8 Theorem 3

Proof. Note that according to Lemma 1 in Tian (2019) (Appendix B.1), for any teacher f∗m and any student f
of the same depth, we have at layer l = 1:

g1(x) = D1(x)V
ᵀ
1 (x) [V ∗m1 (x)f∗m1 (x)− V1(x)f1(x)] (28)

= D1(x)V
ᵀ
1 (x)(y∗m(x)− y(x)) (29)

since for two-layer network, we have y(x) = V1(x)f1(x) is the output. Therefore, if the gradient computed between
teacher f∗ and student f has ‖g1‖∞ ≤ ε, then

‖gm
1 ‖∞ = ‖D1V

ᵀ
1 (y∗m(x)− y(x))‖∞ (30)

≤ ‖D1V
ᵀ
1 (y∗m(x)− y∗(x))‖∞ + ‖D1V

ᵀ
1 (y∗(x)− y(x))‖∞ (31)

≤ ‖D1V
ᵀ
1 (y∗m(x)− y∗(x))‖∞ + ‖g1‖∞ (32)

≤ ‖V1‖1ε0 + ε (33)

where ‖V1‖1 = maxj ‖vj‖1 is the 1-norm (or the maximum absolute row sum) of matrix V1. Then we apply
Theorem 2 between the student f and teacher f∗m and the conclusion follows.
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Figure 14: Specialized frequency of each teacher node by different student networks among different layers (We
consider the node to be specialized if the NC is larger than 0.9). Figures in different columns refer to specialized
evaluation with student network trained from different random initialization, while in different rows refer to
evaluation on different layers. Here we can see 1) Teacher nodes are specialized uniformly by student nodes. 2)
Different random initialization will lead to similar observations.

A.9 Unidentifiable teachers and Student Bias
We might wonder what would happen if there exist two teachers f∗1 6= f∗2 so that yi = f∗1(xi)+ξ1i = f∗2(xi)+ξ2i
with different bias: ‖ξ1i ‖ ≤ ε0 and ‖ξ2i ‖ ≤ ε0. In this case, which teacher the student would converge into? We
could use the same framework to analyze it:

Theorem 3. For any two-layered network f∗l of the same architecture as f∗ and ‖f∗(x)− f∗l(x)‖ ≤ ε0 for all
x ∈ R, when ‖g1‖∞ ≤ ε, for a teacher node j in f∗l observed by a student k, there exists a student k′ so that
sin θUjk′ ≤MK(ε+ ε0 maxj ‖vj‖1)/αljk.

Note that this theorem can be applied to any teacher f∗l to yield a separate bound for the alignment. Some
bounds are strong while others are loose. The larger αljk, the tighter the bound. Therefore, there are two phases
in the training: (1) at the early stage of training, ε is fairly large, the norm of the fan-out weights ‖vj‖1 is small,
and many candidate teachers (as well as their hidden nodes) with reasonable ε0 can stand out as long as their
αljk is large. Therefore, the student moves to salient (large αljk) but potentially biased (large ε0) explanation. (2)
When the training converges and ε is small, some ‖vj‖1 becomes large, the “real” teacher with small bias ε0 gives
the tightest bound, and the student converges to it.

The case (1) is interesting since it shows that the student node doesn’t go straight to the ground truth teacher
node from the beginning, but has a bias towards simple models that could roughly explain data (with reasonable
ε0). This is a fixed bias for student nodes that only dependent on the dataset and regardless of the model
initialization. This could be used to explain the adversarial transferability (Goodfellow et al., 2014). In this
paper, we focus on the specialization of student nodes on a specific teacher network and leave the case of “one
student multiple teachers” (i.e., Theorem 3) for future empirical study.

A.10 Ablation study on specialization distribution among teacher nodes

To investigate how well one teacher node could be specialized by student nodes and the existence of special teacher
nodes which are easy to be specialized by student nodes, we conduct the ablation study by training three student
networks with different random initialization and check the number of student nodes specialized to each teacher
node as shown in Figure 14. We found that teacher nodes are specialized almost uniformly by different student
nodes, showing that there may not be special “robust" teacher nodes, which could be an interesting finding.
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Figure 15: Sorted BNC curve of student models trained
with Robust Feature Training (RFT), Standard Training
(ST), and Adversarial Training (AT) trained for different
epochs.
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Figure 16: (εin, εout) curve of student models trained
with Robust Feature Training (RFT), Standard Training
(ST), and Adversarial Training (AT) trained for different
epochs.

A.11 Analysis on Robust feature dataset

Robust feature disentanglement, proposed by Ilyas et al. (2019b), is a general method to generate a robust
feature dataset from a robustly trained model. Specifically, the robust feature dataset D = {xr} is generated by
minimizing the feature representation distance as below:

xr = arg minxr
||fM (x)− fM (xr)||2 (34)

while fM represents the representation output of model f and x is drawn from the raw dataset. For every x as
the target image, the robust feature image xr is optimized from a randomly selected image or random noise.

In teacher-student setting, we define f to be a robust student model if its prediction can be consistent with
the teacher’s prediction against oracle-adversarial or data-adversarial. Different from the standard setting,
the generated xr may lie in different categories with x from the teacher’s perspective. In order to avoid the
inconsistency, we add another term into robust feature generation’s goal to minimize the logit difference between
robust feature image xr and target image x given by the teacher model:

xr = arg minxr α||Lt(xr)− Lt(x)||2 + ||fM (x)− fM (xr)||2 (35)

where α is the balancing hyperparameter. We choose α = 0.5 for the default setting.

We choose the AT model trained with 150 epochs and generate the corresponding robust feature dataset D. Based
on D, we train the robust feature model for 150 epochs via fine-tuning on top of a 150 epochs trained ST model.
In order to make a fair comparison, we compare the 150 epochs Robust Feature Training (RFT) model to 150, 300
epochs trained ST models and 150 epochs AT model. All models are trained with the teacher’s logit feedback.

Table 5: Robustness of student models trained with Robust Feature Training (RFT), Standard Training (ST), and
Adversarial Training (AT) for different epochs.

Model AT (150 epochs) ST (150 epochs) ST (300 epochs) RFT (150 epochs)
Robust Accuracy 83.27% 35.88% 61.73% 45.39%

Table 5 and Figure 15 show the robustness and neuron specialization of student models with RFT, ST, and AT.
We can see 1) AT model achieves the best robustness as well as the best neuron specialization; 2) RFT model
(150 epochs) fine-tuned from ST model (150 epochs) achieves better model robustness and specialization than ST
model (150 epochs); 3) The neuron specialization of RFT model (150 epochs) and ST model (300 epochs) is close
but ST model (150 epochs) achieves better robustness. Figure 16 shows the εin, εout curve and we can see the 150
epochs RFT model shows the similar εin curve but slightly better εout curve to 300 epochs ST model. We analyze
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this phenomenon by considering the robust feature dataset mainly captures the out-plane vulnerability. As we
discussed in Section 5.3, the in-plane vulnerability could be more severe to the model’s robustness and that could
be the reason why the 150 epochs RFT model achieves slightly worse robustness than the 300 epochs ST model.

Remarks. Based on the comparison between RFT, AT, ST models, we can conclude again that the neuron
specialization of student models highly indicates their robustness. On the other hand, when the neuron
specialization is close, the robustness comparison between them is less informative since other factors such as
data distribution may have an impact on it. In addition, the teacher-student provides an in-depth explanation of
why the robust feature dataset exists from the neuron specialization perspective. The robust feature dataset can
help model capture the in-plane data projection and out-plane vulnerability therefore improve the correlation
between student and teacher, which leads to better model robustness.
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