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Fig. 1. DeepFocus is a unified rendering and optimization framework, based on convolutional neural networks, that enables real-time operation of
accommodation-supporting head-mounted displays. (Top row) For varifocal displays, DeepFocus produces physically plausible defocus blur from a single
RGB-D input, as shown in the simulated retinal images on the right. (Middle row) For multifocal displays, the network outputs a multilayer decomposition
from a single RGB-D input. (Bottom row) For light field displays, DeepFocus generates dense multiview imagery from a sparse set of RGB-D images.

Addressing vergence-accommodation conflict in head-mounted displays
(HMDs) requires resolving two interrelated problems. First, the hardware
must support viewing sharp imagery over the full accommodation range of
the user. Second, HMDs should accurately reproduce retinal defocus blur to
correctly drive accommodation. A multitude of accommodation-supporting
HMDs have been proposed, with three architectures receiving particular
attention: varifocal, multifocal, and light field displays. These designs all
extend depth of focus, but rely on computationally expensive rendering
and optimization algorithms to reproduce accurate defocus blur (often lim-
iting content complexity and interactive applications). To date, no unified
framework has been proposed to support driving these emerging HMDs
using commodity content. In this paper, we introduce DeepFocus, a generic,
end-to-end convolutional neural network designed to efficiently solve the
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full range of computational tasks for accommodation-supporting HMDs.
This network is demonstrated to accurately synthesize defocus blur, focal
stacks, multilayer decompositions, and multiview imagery using only com-
monly available RGB-D images, enabling real-time, near-correct depictions
of retinal blur with a broad set of accommodation-supporting HMDs.
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1 INTRODUCTION
Computational displays are aimed at bridging the gap between
synthesized images and physical reality through the joint design of
optics and rendering algorithms, as informed by our ever-expanding
knowledge of the human visual system [Masia et al. 2013]. Today’s
head-mounted displays (HMDs) present a means to more closely
approach this goal than prior direct-view displays, depicting accu-
rate perspective, shading, binocular, and motion parallax depth cues.
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However, existing HMDs rely on a fixed optical focus and do not
accurately reproduce retinal blur throughout an extended scene, re-
sulting in vergence-accommodation conflict (VAC). Sustained VAC
has been associated with biased depth perception [Watt et al. 2012]
and visual fatigue [Hoffman et al. 2008; Shibata et al. 2011].
Accommodation-supporting HMDs [Kramida 2016] have been

proposed to mitigate VAC, not only with novel optical elements,
but also with the joint design of rendering and optimization algo-
rithms. These displays must solve two interrelated problems. First,
they must create an extended focus range, i.e., an extended depth
of focus (EDoF), such that the viewer can sharply perceive virtual
objects from within arm’s reach out to the horizon. Second, they
must depict perceptually accurate retinal defocus blur. The varifocal
and multifocal displays, shown in Figure 1, are two examples of
such EDoF HMDs. Varifocal HMDs continuously adjust the virtual
image distance [Dunn et al. 2017], whereas multifocal HMDs create
a volumetric depiction using multiple focal planes, further requiring
a decomposition algorithm to partition the image across these lay-
ers [Narain et al. 2015]. While differing in construction, both designs
partially rely on synthetically rendered blur, rather than the blur cre-
ated optically due to the natural accommodative response of the
viewer. Without rendered blur, these displays create incorrect cues,
which have been linked to diminished depth perception [Held et al.
2010; Zannoli et al. 2016b]. Moreover, recent work by Cholewiak et
al. [2017] provides additional evidence that rendered blur may more
effectively drive accommodation. While promising, synthesizing
perceptually accurate retinal defocus blur is computationally taxing
and requires modifications to existing rendering engines.

HMDs that rely on rendered blur often require accurate eye track-
ing. Near-eye light field displays (Figure 1) circumvent this require-
ment [Huang et al. 2015; Lanman and Luebke 2013]. Such HMDs
approximate retinal blur by presenting the optical superposition of
many viewpoints. However, these displays introduce another daunt-
ing computational challenge: requiring the scene to be rendered
from tens (or even hundreds) of viewpoints.

In this paper, we present a unified framework for efficient render-
ing into these accommodation-supporting HMDs that employs re-
cent advances in machine learning. Specifically, we introduce Deep-
Focus, a generic, end-to-end convolutional neural network (CNN)
designed to efficiently solve the full range of computational tasks
for emerging near-eye displays. This network synthesizes defo-
cus blur, focal stacks, multilayer decompositions, and multiview
imagery—the critical inputs required for all major variants of vari-
focal, multifocal, and light field displays. Moreover, DeepFocus uses
modest inputs we can realistically expect from today’s real-time
rendering systems: in-focus color image(s) and depth map(s).

1.1 Contributions
• We introduce a novel deep network architecture, tailored to
support real-time image synthesis. This network includes
volume-preserving interleaving layers, related to the pixel
shuffling layer introduced by Shi et al. [2016], to reduce the
spatial dimensions of the input, while fully preserving image
details, allowing for significantly improved run times.

• We synthesize physically plausible defocus blur in real-time
from a single RGB-D image, supporting both conventional
and varifocal displays.

• We generalize this network to output a focal stack, with de-
focus blur inferred for a discrete set of focal distances, sup-
porting optimal rendering for multifocal displays.

• We demonstrate real-time multilayer decompositions for mul-
tifocal displays, taking either complete focal stacks or a single
RGB-D image as input to directly solve this computationally
expensive inverse optimization problem. By accepting direct
RGB-D inputs, we further avoid the computational overhead
introduced by focal stack generation.

• Finally, we extend our network to the task of generating a
dense light field from a sparse set of RGB-D images, support-
ing near-eye light field displays.

For all of these rendering problems, we achieve high accuracy
and efficiency while using a single network architecture (differing
only in the number of layers and interleaving/de-interleaving rates),
suggesting that these results generalize across applications.

2 RELATED WORK

2.1 Retinal Defocus Blur and Accommodation
DeepFocus is inspired by increasing evidence of the important role
retinal defocus blur plays in driving accommodative responses,
as well as the perception of depth and physical realism. Smith-
line [1974] identified retinal defocus blur, chromatic aberration, and
looming as potentially involved in accommodative control. Burge
and Geisler [2011] reported reliable depth estimates solely from de-
focus blur. Synthesizing accurate defocus blur has also been shown
to result in the correct perception of depth and scale [Held et al.
2012, 2010]. Using a multifocal display, Zannoli et al. [2016a] found
retinal defocus blur is sufficient to recover depth ordering. Moreover,
Mauderer et al. [2014] and Cholewiak et al. [2017] demonstrated
that accurate retinal defocus blur increases perceived realism. We
emphasize that DeepFocus is designed to be generalizable: as our
understanding of the necessary qualities of retinal blur advances,
so can the depictions learned to be synthesized by the network.

2.2 Accommodation-Supporting Displays
2.2.1 Varifocal and EDoF Displays. Most HMDs have a simple con-
struction: a display is positioned within the focal length of an eye-
piece to create a virtual image at a fixed distance. Shiwa et al. [1996]
first proposed a varifocal configuration, translating the lens to al-
ter the image distance. When coupled with eye tracking, varifo-
cal HMDs extend the depth of focus, as demonstrated by Dunn et
al. [2017], Padmanaban et al. [2017] and Koulieris et al. [2017]. Alter-
natives to lens movement include electronically tunable lenses [Kon-
rad et al. 2016; Liu and Hua 2010], deformable mirrors [Dunn et al.
2017], and translated mirrors [Akşit et al. 2017].
Varifocal HMDs are not the only means to extend depth of fo-

cus. Von Waldkirch [2005] and Konrad et al. [2017] demonstrate
accommodation-invariant HMDs, using pinhole apertures and elec-
tronically tunable lenses to minimize variation of the point spread
function as the user accommodates.
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Varifocal and other EDoF HMDs must rely on rendered defocus
blur, as points in the virtual scene will not project with perceptually
correct retinal blur. As a result, delivering correct accommodation
cues with such HMDs requires not only hardware innovation, but
also the development of real-time rendering of defocus blur.

2.2.2 Rendering Defocus Blur. Synthetically generated defocus blur
can be produced by simulating a virtual camera with a finite aper-
ture. Conventionally, the aperture is sampled via stochastic ray
tracing [Cook et al. 1984], with the accumulation buffer [Haeberli
and Akeley 1990] being a well-known variant. While such methods
produce physically accurate blur, they require many samples and,
thus, are not suitable for real-time applications. Two classes of real-
time algorithms have emerged. Methods from the first class apply
defocus effects before compositing the final image [Křivánek et al.
2003; Lee et al. 2009, 2008; Selgrad et al. 2015]. Such approaches
achieve high visual quality, but come at the cost of resolving visibil-
ity. The second class comprises methods that filter in image space.
Shinya [1994] was the first to propose such post-processing for
approximating defocus blur from a single image with color and
depth (RGB-D), and this approach remains widely used in real-time
applications [Demers 2004; Yang et al. 2016]. We refer the reader
to Barsky [2008] for extended discussion. DeepFocus falls into the
latter class: effectively applying post-processing so that existing
rendering engines can apply it to create physically plausible blur.

2.2.3 Multifocal Displays. Neil at al. [1997] introduced multifocal
HMDs to eliminate the need for eye tracking by creating multiple
virtual images. Such displays often rely on temporal multiplexing:
refreshing the display as the eyepiece focal length is rapidly mod-
ulated [Hu and Hua 2014; Love et al. 2009; Wu et al. 2016]. As the
viewer accommodates, differently defocused images superimpose
on the retina. Thus, a multilayer decomposition must partition the
scene across these images. Akeley et al. [2004] introduced “linear
blending” for this task, depicting each point in the RGB-D input on
the two nearest layers. More recently, Narain et al. [2015] introduced
“optimized blending” to address visual artifacts produced by this
method, which occur at depth discontinuities and with translucent
or reflective materials. These benefits come at a high computational
cost, with a reported runtime on the order of minutes. Mercier et
al. [2017] recently accelerated this algorithm to near-interactive
frame rates. To our knowledge, we are the first to produce high-
resolution optimized multilayer decompositions, in real-time, using
learned image synthesis. Furthermore, we are the first to do so by
optimizing directly from RGB-D inputs, further reducing computa-
tional overhead by eliminating focal stack rendering.

2.2.4 Light Field Displays. Light field HMDs contain an array of
miniaturized projectors, often constructed by placing a microlens
array over a single display. Lanman and Luebke [2013] and Hua
and Javidi [2014] describe virtual and augmented reality configura-
tions, respectively. As a user accommodates, the image created by
each projector shifts on the retina, with the resulting superposition
approximating natural defocus blur without eye tracking.

As shown in Figure 1, light field HMDs require synthesizing dense
multiview imagery. Prior works have evaluated these views directly
by ray tracing and rasterization, limiting content to simplified scenes

for real-time interaction. More recently, Sun et al. [2017] introduced
foveated light field rendering. While reducing the computational
overhead, this approach continues to rely on ray tracing, limiting
performance, and reintroduces the requirement for eye tracking.
Multiview image synthesis is also required for direct-view auto-

multiscopic displays. Didyk et al. [2013] and Kellnhofer et al. [2017]
synthesize views from stereoscopic content. Widmer et al. [2015]
apply screen-space ray tracing to synthesize light fields from stereo-
scopic RGB-D inputs. Other methods taking only RGB inputs have
been proposed [Chaurasia et al. 2013; Shi et al. 2014; Wanner and
Goldluecke 2014; Zhang et al. 2015]. To our knowledge, we are the
first to tailor image synthesis networks for view generation from
sparse RGB-D inputs for real-time HMD applications.

2.3 Deep Learning for Image Synthesis
2.3.1 Common Network Architectures. Encoder-decoder neural net-
works have a “U-Net” [Ronneberger et al. 2015] shape, with succes-
sive downsampling (pooling) followed by upsampling (unpooling)
to produce the final image. Applications span denoising [Chaitanya
et al. 2017], inpainting [Pathak et al. 2016], and screen-space ren-
dering [Nalbach et al. 2017], the latter of which includes defocus
blur rendering. The encoder-decoder architecture gives the output
neurons a large receptive field, although to preserve detail in the
final output, skip connections from the encoder layers to corre-
sponding decoder layers are necessary. Alternatively, the network
can maintain full resolution at all layers, without any pooling. The
receptive field of the output neurons can be increased with dilated-
convolution network (“Dilated-Net”) [Yu and Koltun 2016].

Residual networks [He et al. 2016], developed to ease training of
very deep networks, have proven effective for image processing. A
residual block adds its input layer to the output of its second layer
through a residual connection. With all weights set to zero, the
residual block is the identity function — small variations near zero
allow the residual block to learn to refine its input. This refinement
is relevant to our applications, where the desired output is close to
the input but with added blur or moderately shifted viewpoints.

2.3.2 CNNs for Defocus and Multiview Synthesis. The use of deep
networks for depth of field rendering was considered by Nalbach et
al. [2017], who address multiple screen-space shading tasks. Their
network is an encoder-decoder architecture. We compare directly
with this method in Section 5. DeepFocus achieves better perfor-
mance, both in PSNR and perceptual metrics like SSIM and HDR-
VDP-2, despite their network being trained to maximize SSIM.

For light field synthesis, Flynn et al. [2016] use deep networks
to synthesize novel views from images with wide baselines. Wu et
al. [2017] take advantage of the texture structure of the epipolar
plane image for light field view synthesis. Both methods take several
minutes to run. Kalantari et al. [2016] demonstrate view reconstruc-
tion in a light field camera using only the four corner views, with
follow up work [Srinivasan et al. 2017] using only the central image.
This method uses two sequential networks in a pipelined approach:
the first network predicts disparity, per pixel, and a second network
predicts color images from this disparity and pre-warped versions
of the input images. Reported runtimes are seconds per frame. For
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Fig. 2. The DeepFocus network architecture. The network includes a pair of novel interleaving and de-interleaving layers that reduce spatial resolution of
input features while preserving their volume, as well as convolutional layers composed of residual blocks and skip connections that operate on the interleaved
layer. The reshaping that interleaving performs is depicted here by the movement of color-coded pixels between the RGB-D input and the interleaved layer. In
this example, the interleaving rate r = 2, but this hyperparameter can be tailored for specific applications. See Section 3 for a full explanation of the network.

display applications, we do not need a separate network to predict
disparity, as it is provided as part of the RGB-D input.
DeepFocus leverages learnings from the evolving literature in

image synthesis networks, introducing a new architecture designed
to enable efficient HMD rendering and optimization.

3 METHOD

3.1 Network Architecture
In this section, we describe our network architecture and the re-
quired inputs and training procedures to support rendering for var-
ifocal (Section 3.2), multifocal (Section 3.3), and light field displays
(Section 3.4). Our framework provides a unified design to efficiently
solve these problems with high quality and real-time performance.
We illustrate our network architecture in Figure 2. At a high

level, the network contains a volume-preserving interleaving layer,
a number of fully convolutional layers with residual blocks [He et al.
2016] andwith a long-distance skip connection, and finally a volume-
preserving de-interleaving layer. We explain each component in the
following subsections.

3.1.1 Volume-Preserving Interleaving and De-interleaving Layers.
Time complexity of convolutional networks is linearly proportional
to the spatial resolution of input features. To improve runtime per-
formance, previous work [Chaitanya et al. 2017; Nalbach et al. 2017;
Ronneberger et al. 2015] apply (max or mean) pooling to reduce
the spatial resolution of features. These pooling techniques were
initially used for high-level vision tasks, to aggregate information
across large receptive fields, but for image synthesis applications
the information loss from pooling may degrade image details.
To overcome this problem, we introduce a pair of new “pool-

ing” and “unpooling” operators, which we call volume-preserving
interleaving and de-interleaving layers. The interleaving layer fully
preserves input pixel information while reducing the spatial resolu-
tion, by correspondingly increasing the number of channels of the
reduced-resolution output. Specifically, given input features with a
resolution of (H ,W ,C) pixels, we divide each channel of the features
to non-overlapping blocks of r × r pixels, and then flatten and stack
the r × r pixels of each block into the channel dimension, resulting
in output features with resolution (Hr ,

W
r ,C × r2).

The paired volume-preserving de-interleaving layer is the trans-
pose of the interleaving layer, which reshapes the input features
with resolution of (Hr ,

W
r ,C

′ × r2) to be (H ,W ,C ′) for the final
full-resolution output of the network.

The hyper-parameter r is a positive integer, chosen to balance the
quality and inference time for the applications. Note that although

this interleaving layer increases the number of channels in its output,
as we vary r we have chosen to keep the number of channels in
subsequent layers of the network fixed. So, for example, the next
layer after interleaving will reduce the channels fromC ×r2 to some
constant number of channels. Thus, the additional computation
from the increased number of channels after interleaving affects
only the next convolution layer, while reducing resolution at all
other layers. Analysis of varying r is given in Section 5.1 — we
generally find that performance slightly degrades with increased r ,
while computation time is substantially reduced.

We observe that the de-interleaving layer is equivalent to the
pixel shuffling layer in [Shi et al. 2016]. While the pixel shuffling
layer was originally only designed for upscaling images (e.g., for su-
perresolution problems where the input images are low resolution),
we introduce the interleaving layer to intentionally downscale the
input high-resolution images before feeding them into convolutional
layers. As our contribution, we show that the paired interleaving
and de-interleaving layers are effective, real-time alternatives to
the classic pooling and unpooling layers. We report comparisons to
several classic network architectures in Section 5.1.

3.1.2 Residual Blocks and Skip Connection. The convolutional lay-
ers with residual blocks run at the downsized spatial resolution due
to the previous interleaving layer. The number of residual blocks
and the number of filters in each layer are selected to balance the
quality and the inference time for the applications.
In addition to the residual blocks, the network concatenates its

next-to-last layer with the input layer through a skip connection
immediately before the last layer. This long-distance skip connection
preserves high-frequency details in the imagery by allowing the
original image to directly feed into the output layer.
In the following subsections, we demonstrate that our network

can be trained and applied to various imagery tasks for compu-
tational displays, by only changing the input and output of the
network. The different configurations of our network, with inputs,
outputs, and loss functions, are summarized in Configurations 1-5.

3.2 Defocus Blur Rendering from RGB-D
As discussed in Section 2.1, rendering accurate defocus blur is re-
quired for properly driving accommodation in near eye displays.
Existing methods (Section 2.2.2) for faithfully rendering defocus
blur are either prohibitively computationally expensive or fail to
approximate the blur effects at partially occluded regions.

Our method takes a single, all-in-focus RGB-D image as an input,
which is typically available at no additional cost in any real-time
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rendering engine, and generates a high-quality defocus blur image
as an output. The method is summarized in Configuration 1.

Throughout the paper, we present depth values in units of inverse
meters (diopters), abbreviated “D”. In addition to the color and depth
maps, (x, d), we assist the network by also providing a circle of
confusion (CoC) map c. The circle of confusion is the shape of
the blur on the retina, with diameter (roughly) proportional to the
absolute difference (in diopters) between the image depth and the
plane of focus. As a result, the CoC map also encodes the desired
focus plane of the output. We give details on this CoC calculation
below (Section 3.2.1). This feature is, in principle, learnable by the
network, but by applying a simple per-pixel preprocessing, we can
reduce the complexity of the network.

The output of the network is the defocus blur image at the focal
distance provided by the input CoC image. The training loss is a
weighted sum of the errors in the output intensity y and the image
gradients ∇y, as given in Configuration 1. The target defocus image
is represented by y. The network is trained to support focal distances
ranging between 0D and 4D.

3.2.1 Circle of Confusion. To compute c, we adopt the human eye
model used in previous work [Matsuda et al. 2017; Mercier et al.
2017; Narain et al. 2015], which assumes a thin lens camera model
with aperture diameter A = 4mm, distance between lens and film s
= 17mm, and pixel size around 0.68 milliradian. The camera’s focal
length f (depending on the focal distance q) and the CoC image c
calculated per pixel are given by:

c = A

���� f − d
f − q

− 1
���� , s .t . f = q +

1
s
. (1)

Configuration 1: Synthesize a defocus blur image from RGB-D.
Input: In-focus image x, depth map d, CoC map c
Output: Defocus blur image y
y = DeepFocus(x, d, c)
Training loss = log10( | |y − y | |1) + 0.5 · log10( | |∇y − ∇y | |1)

3.3 Rendering for Multifocal Display
Multifocal displays represent 3D scenes by producing images with
correct defocus blur effect on the retina when the viewer accom-
modates to different focal distances. Figure 3 illustrates an example
multifocal system used in this paper following Narain et al. [2015],
where four display planes are located at 0.2D, 0.8D, 1.4D and 2.0D,
and the supported focal distances of viewers ranges from 0.1D to
2.2D continuously.

For multifocal displays, existing decomposition methods [Mercier
et al. 2017; Narain et al. 2015] require a focal stack as input, i.e.,
a sequence of images focused at a range of depths. Assume the
multifocal display has M display panels, where yi is the image
(display parameters) shown on the display panel located at depth
pi for i = 1, . . . ,M . We aim to match a focal stack with N depths
where ki j is the point spread function of a pixel from display i on
the focal plane qj , and zj the retinal image when the eye focuses at
depth qj for j = 1, . . . ,N . The retinal image zj is given by

zj =
M∑
i=1

ki j ∗ yi , s .t . ki j = circ
(
A

����qjpi − 1
����) , (2)

Near-focus Far-focus
(0.2D)

(0.8D)

(1.4D)
(2.0D)d4

d3

d2

d1

Fig. 3. Viewing a multifocal display. The eye is depicted when focused near
(left) and far (right). The images from the four display layers combine on
the viewer’s retina to reproduce “near-correct” defocus blur, even when the
viewer focuses between two layers.

where circ is the circular averaging kernel of the given diameter,
and ∗ is 2D discrete convolution.

3.3.1 Decomposition from Focal Stacks. The key problem of multi-
focal display algorithms is to solve for the display parameters {yi }
given a target focal stack {zj }. State-of-the-art methods [Mercier
et al. 2017; Narain et al. 2015] optimize {yi } by solving the following
minimization problem:

yi = argmin
yi

N∑
j=1

| |zj −
M∑
i=1

ki j ∗ yi | |22 ,

s .t . 0 ≤ yi ≤ 1, i = 1, 2, ...,M

(3)

Instead of using computationally expensive iterative optimiza-
tion to solve (3), we employ our network to directly produce the
decomposition. Configuration 2 summarizes our method. We train
the network to produce display images {yi } from the input focal
stack {zj }. The range constraint is strictly satisfied by the use of
the TanH activation function and rescaling at the last convolutional
layer of the network as described in Section 4.

Note that unlike the loss function in Section 3.2 which penalized
the network output directly, we penalize the recovered focal stack
images instead (since this is what the user sees). We find that this
penalization results in significantly higher quality results than pe-
nalizing the network output (the decomposition images) yi directly,
and importantly, it eliminates the need for generating ground truth
decomposition images for training. Since the focal stack images zj
are linear in the display parameters yi (via Equation (2)), we can
still backpropagate through this loss function during training.

Configuration 2: Multilayer decomposition from a focal stack.
Input: Target focal stack {z1, z2, ..., zN }

Output: Display parameters {y1, y2, ..., yM }

{y1, y2, ..., yM } = DeepFocus(z1, z2, ..., zN )

Recovered focal stack zj =
∑M
i=1 ki j ∗ yi

Training loss =
∑N
j=1

(
log10( | |zj − zj | |22 )+0.5 · log10( | |∇zj − ∇zj | |22 )

)
3.3.2 Focal Stack Rendering from RGB-D. Efficiently rendering the
input focal stack involves not just the computational cost of pro-
ducing an accurate defocus blur, but is multiplied by the number
of images in the focal stack. For a focal stack of N depths, a naive
approach would apply the network of Section 3.2 N times.
Instead, we are able to generate the entire focal stack using our

network from RGB-D in a single pass. Configuration 3 summarizes
our method. We extend the last layer of our network to have N
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Input RGB

PSNR: 25.3dB
SSIM: 0.887

Unity (0.1D)

PSNR: 40.1dB
SSIM: 0.993

Nuke (0.1D)

PSNR: 37.0dB
SSIM: 0.989

Nalbach et al. (0.1D)

PSNR: 45.6dB
SSIM: 0.999

DeepFocus (0.1D) Reference (0.1D)

Input depth

PSNR: 27.3dB
SSIM: 0.926

Unity (3.0D)

PSNR: 40.4dB
SSIM: 0.994

Nuke (3.0D)

PSNR: 31.9dB
SSIM: 0.980

Nalbach et al. (3.0D)

PSNR: 46.1dB
SSIM: 0.998

DeepFocus (3.0D) Reference (3.0D)
Fig. 4. Comparison of defocus blur rendering using RGB-D input only. We compare DeepFocus to prior methods that synthesize defocus blur from a single
RGB-D input, including Unity game engine [2018], Nuke off-line renderer [The Foundry 2018] and Nalbach et al. [2017], with focal distance 0.1D (top
row) and 3.0D (bottom row). The top-right corner of each image shows the PSNR and structural similarity index (SSIM). DeepFocus (PSNR=45.6dB/46.1dB,
SSIM=0.999/0.998) produces significantly more physically accurate blur than Unity (PSNR=25.3dB/27.3dB, SSIM=0.887/0.926), Nuke (PSNR=40.1dB/40.4dB,
SSIM=0.993/0.994) and Nalbach et al. (PSNR=37.0dB/31.9dB, SSIM=0.989/0.980). Results with focal distance 0.1D and 3.0D are separated with a slash symbol.
The reference defocus blur images are rendered with physically accurate, but off-line, accumulation buffering. The pixel-wise SSIMs are shown in Figure 5 for
comparison. Additional results with more focal distances are included in the supplemental material.

Unity Nuke Nalbach et al.

1.0

0.6

DeepFocus
Fig. 5. Pixel-wise structure similarity index (SSIM) of the defocus blur ren-
dering methods compared in Figure 4. The top and bottom row show the
results with 0.1D and 3.0D focal distance, respectively. DeepFocus signifi-
cantly outperforms prior methods.

output images, each producing an image with fixed focal distance
for each of the N equally spaced depths ranging between 0.1D and
2.2D. We no longer require the input CoC map, since the focal
distances are fixed and the network learns separate mappings from
depth to blur for each of the output channels.

3.3.3 Decomposition Directly from RGB-D. While existing multi-
focal decomposition methods require focal stacks as input, we can
train our network to generate display parameters yi directly from a
single RGB-D image, combining both steps of focal stack rendering

Configuration 3: Synthesize focal stack from RGB-D.
Input: In-focus image x, depth map d
Output: Focal stack {z1, z2, ..., zN }

{z1, z2, ..., zN } = DeepFocus(x, d)
Training loss =

∑N
j=1

(
log10( | |zj − zj | |22 )+0.5 · log10( | |∇zj − ∇zj | |22 )

)
Configuration 4: Synthesize multifocal decomposition from RGB-D.
Input: In-focus image x, depth d
Output: Display parameters {y1, y2, ..., yM }

{y1, y2, ..., yM } = DeepFocus(x, d)
recovered focal stack zj =

∑M
i=1 ki j ∗ yi

Training loss =
∑N
j=1

(
log10( | |zj − zj | |22 ) + 0.5 · log10( | |∇zj − zj | |22 )

)
and multifocal decomposition. Surprisingly, this does not require
increasing the network capacity, which can be explained by the
similar nature of the image decomposition process required in both
tasks. Configuration 4 summarizes our inputs and outputs for this
method.

3.4 Light Field Rendering from RGB-D
Light field displays require, as input, a large numberM of elemental
images, each of which is rendered from a distinct viewpoint. Render-
ing tens or even hundreds of views interactively is computationally
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Layer 1 Layer 2 Layer 3 Layer 4 Retinal image (far-focus) Retinal image (near-focus)

PSNR: 31.4dB
SSIM: 0.941

PSNR: 29.1dB
SSIM: 0.909

PSNR: 44.9dB
SSIM: 0.998

PSNR: 43.0dB
SSIM: 0.996

PSNR: 45.6dB
SSIM: 0.999
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SSIM: 0.997
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Fig. 6. Rendering and optimization for multifocal displays. The first four columns show optimized multilayer decompositions, from the furthest to the nearest
display plane (see Figure 3 for the display construction). Simulated retinal images are reproduced in the right-most columns. DeepFocus (PSNR=45.6dB/43.4dB,
SSIM=0.999/0.997) produces fewer errors than prior optimized blending [Narain et al. 2015] (PSNR=44.9dB/43.0dB, SSIM=0.998/0.996) and linear blending [Akeley
et al. 2004] (PSNR=31.4dB/29.1dB, SSIM=0.941/0.909). Results with focal distance 0.8D (far) and 1.7D (near) are separated with a slash symbol.

Lens arrayDisplay panel

(a) Near-eye light �eld system (c) Display image(b) Input views

5 inputs

9 inputs

Fig. 7. Synthesizing multiview imagery for near-eye light field displays. (a)
A near-eye light field display based on Lanman and Luebke [2013]. (b) The
input view positions (dark squares) for light field synthesis methods in Con-
figuration 5. (c) The final image shown on the display panel generated by
resampling the light field synthesized by DeepFocus. Additional explanation
of the display setup is given in the supplementary video.

Configuration 5: Synthesize light field from sparse RGB-D inputs.
Input: Image xi and depth map di at input views, i = 1, 2, ..., N
Output: Elemental images yj at novel views, j = 1, 2, ..., M
{y1, y2, ..., yM } = DeepFocus(x1, d1, x2, d2, ..., xN , dN )

Training loss =
∑M
j=1

(
log10( | |yj −yj | |22 )+0.5 · log10( | |∇yj −∇yj | |

2
2 )
)

expensive. We use our network to significantly reduce the number
of rendered views and synthesize the rest. In this section, we demon-
strate that our network can efficiently synthesize all novel views,
simultaneously, from a sparse set of RGB-D images.

The near-eye light field display setup is illustrated in Figure 7. The
high resolution 2D images shown on the display panel are generated
from the 4D light field. The image perceived by a viewer adapts
with the viewer’s focal distance by superposing multiple images
from the microlens array to approximate the desired blur.

As illustrated in Configuration 5, our method takes, as input, the
RGB-D images rendered at a sparse set of views. We experiment
with two circumstances: using the 5 views at the corners and cen-
ter, and 9 views at the corners, center, and sides. The output layer
produces theM elemental images directly. For the loss function, we
penalize the error of the elemental images compared to the ground
truth rendering of the scene from that viewpoint, which is a more
demanding constraint than penalizing the final retinal images as
perceived by the user.

4 DATASET AND IMPLEMENTATION
Each of the networks described in Section 3 is trained on large
datasets generated by a physically based renderer. We create a pro-
cedural scene generator in Houdini [Side Effects 2018], which builds
scenes with randomized object geometries and with randomized
scales, textures, and materials. The objects are stochastically placed
in the camera’s field of view to create a complex set of occlusions.

For the networks synthesizing defocus blur in Section 3.2, we ren-
dered 4,900 focal stacks, each of which contains 40 defocus images
with focal distances ranging between 0.1D and 4.0D, resulting in
196,000 pairs of RGB-D and ground truth defocus blur image sam-
ples. For the network synthesizing multilayer decompositions in
Section 3.3, we rendered 5,390 focal stacks and RGB-D images, each
of which contains 22 defocus images with focal distances ranging
between 0.1D and 2.2D. For the network synthesizing light fields in
Section 3.4, we rendered 4,165 light fields, each of which contains
81 RGB-D images at 9 × 9 views. Each frame has spatial resolution
of 128× 128 pixels. Approximately 80%, 10% and 10% of each dataset
are used for training, validation and testing respectively.
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Each convolutional layer of the network sequentially performs 2D
convolutions with 3×3 filters, followed by batch normalization [Ioffe
and Szegedy 2015], and then applies the exponential linear unit
(ELU) activation function [Clevert et al. 2015], with the exception
of the last convolutional layer. The last convolutional layer uses the
hyperbolic tangent (TanH) activation function followed by a scaling
by f (x) = (x + 1)/2 to bring the output within the range [0, 1].

We train our networks with TensorFlow [Abadi et al. 2015]. The
network weights are initialized following Glorot and Bengio [2010].
The Adammethod [Kingma and Ba 2014] with recommended hyper-
parameters is used for optimization. Each network uses batch size
of 16 with 400 epochs of training on the corresponding dataset, and
takes 1-2 days on a GPU. After training, we optimize each network
inference with 16-bit precision using the Nvidia TensorRT [2018]
toolbox and evaluate its performance on a Nvidia Titan V GPU.

5 RESULTS
In this section, we analyze our method and compare to state-of-the-
art approaches in three applications: varifocal, multifocal, and light
field displays. For quantitative comparisons, we evaluate PSNR for
pixel-wise accuracy, and structural similarity index (SSIM) [Wang
et al. 2004] (as well as HDR-VDP-2 [Mantiuk et al. 2011] in the sup-
plementary video) for perceptual image quality. Our work enables
experiencing real-time rendered blur in the three major classes of
near-eye displays for the first time. We leave thorough perceptual
user studies for future work.

5.1 Network Complexity and Performance
In Table 1, we summarize the image quality and runtime of Deep-
Focus networks for each application. For synthesizing defocus blur
(Configuration 1) and multilayer decomposition from RGB-D (Con-
figuration 4), we train two versions of DeepFocus networks: a net-
work with 12 layers that processes each color channel in a separate
pass, and a faster network with 8 layers that takes all color channels
as input and outputs color image results in a single pass, both with
interleaving rate r = 2. The number of output channels of each con-
volutional layer is 128, with the exception of the last layer. Although
the fast versions produce slightly degraded quality compared to
the 12-layer versions (0.6-1.2dB drop in PSNR, 0.001-0.005 drop in
SSIM), they are about 5 times faster to evaluate. For synthesizing
dense light fields from RGB-D (Configuration 5), we train two net-
works with 12 and 8 layers respectively, both with interleaving rate
r = 2 and processing color channels independently. The DeepFocus
results reported in all other comparisons in the paper are from the
12-layer networks unless specified otherwise.

In our preliminary search for network architectures, we compared
with encoder-decoder networks (“U-Net”) [Ronneberger et al. 2015]
and dilated-convolution networks (“Dilated-Net”) [Yu and Koltun
2015; Zhang et al. 2017]. We set the network hyperparameters to
have comparable or higher runtime than our DeepFocus networks,
and then compare the result quality, taking the defocus blur render-
ing application (Configuration 1) as an example. The U-Net contains
3 scales and each scale contains 2 convolutional layers, resulting in
10 layers in total. The second layer at each scale, from fine to coarse,
contains 128, 256 and 512 output channels respectively (except for

42.7 42.1 41.4 41.0 39.1
35.2

45.7

15.0

8.0
4.7 3.0 2.9

r = 1 r = 2 r = 3 r = 4 r=8 r=16

PSNR (dB)

Run�me (ms)

Fig. 8. PSNR (dB) and runtime (milliseconds) comparison of DeepFocus
networks (12 layers) for defocus blur rendering, with varying interleaving
rate r . In this experiment, the test image resolution is 5122. As r increases
from 1 to 4, the network runtime reduces significantly (3-10 times), while
the result PSNR drops only slightly (0.6-1.7dB).

Table 1. Average PSNR (dB), SSIM and runtime (milliseconds) for each
network configuration, denoted by Cn, tested with 10-15 random scenes.
Runtimes measured at image resolution 5122 and 10242 are separated with
a slash symbol.

Configuration and application PSNR SSIM Runtime
C1: Defocus blur 42.1 0.992 15.0 / 45.9
C1: Defocus blur (fast) 41.5 0.991 3.23 / 9.82
C2: Multifocal from Focal Stack 43.3 0.996 15.4 / 50.3
C3: Focal stack from RGB-D 41.9 0.992 16.1 / 52.1
C4: Multifocal from RGB-D 40.2 0.988 14.6 / 46.2
C4: Multifocal from RGB-D (fast) 39.0 0.983 3.23 / 10.0
C5: Light field 33.7 0.956 19.7 / 65.4
C5: Light field (fast) 33.0 0.950 14.4 / 48.6

Table 2. Quantitative comparison with alternative network architectures for
defocus blur rendering on 15 random scenes at image resolution 5122. Each
scene contains 40 defocus images with focal distances between 0.1D and
4.0D. Average PSNR (dB), SSIM and runtime (milliseconds) are reported.

U-Net Dilated-Net DeepFocus Dilated-Net
(fast)

DeepFocus
(fast)

PSNR 41.7 41.5 42.1 38.8 41.5
SSIM 0.9910 0.9906 0.9920 0.9794 0.9906
Runtime 58.2 15.1 15.0 3.7 3.2

Table 3. Average PSNR (dB) and SSIM results of defocus blur rendering
methods on 15 random scenes. Each scene contains 40 defocus images with
focal distances between 0.1D and 4.0D.

Nuke Nalbach et al. DeepFocus
PSNR 33.9 30.5 42.1
SSIM 0.970 0.955 0.992

the last layer of the network). In addition, the corresponding en-
coder and decoder layers are concatenated with a skip connection
at each scale. This U-Net processes each color channel in a separate
pass. For Dilated-Net, we train two versions which have close run-
times to the two versions of the DeepFocus network explained in
the previous paragraph: a network with 5 layers that processes each
color channel in a separate pass, and a faster network with 4 layers
that takes all color channels as input and outputs color images in
a single pass, both with 128 output channels at each layer (except
for the last one). We choose the dilation rates of the two Dilated-
Nets as 1,2,3,2,1 and 1,2,2,1 respectively, following the strategy by
Zhang et al. [2017]. All other settings are selected to be the same as
DeepFocus, including the activation function, training loss, training
and test datasets, and inference optimization with TensorRT. The
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Input RGB-D DeepFocus (0.1D) DeepFocus (3.0D)

Input RGB-D Unity Nuke Nalbach et al. DeepFocus Reference

PSNR: 51.3dB
SSIM: 0.999

PSNR: 50.5dB
SSIM: 0.999

Fig. 9. Defocus blur rendering using RGB-D input only. The top row,
from left to right, shows the input RGB-D and DeepFocus results
with focal distance 0.1D and 3.0D, respectively. The bottom rows show
cropped regions from the input RGB-D, Unity (PSNR=35.8dB/35.9dB,
SSIM=0.973/0.972), Nuke (PSNR=45.0dB/41.6dB, SSIM=0.997/0.994), Nal-
bach et al. (PSNR=40.1dB/37.9dB, SSIM=0.995/0.995) and DeepFocus
(PSNR=51.3dB/50.5dB, SSIM=0.999/0.999). Results with focal distance 0.1D
and 3.0D are separated with a slash symbol. Additional results with more
focal distances are included in the supplemental material.
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Fig. 10. Average PSNRs of DeepFocus results on 15 random scenes, for
defocus blur (with and without MSAA) and rendering focal stacks (Configu-
ration 1 and 3, respectively), with the same network complexity. Each scene
contains 40 defocus images with focal distances between 0.1D and 4.0D.

test results are reported in Table 2, which shows that DeepFocus
outperforms U-Net and Dilated-Net in both quality and runtime.

In Figure 8 we report the performance of DeepFocus with varying
interleaving rate r (Section 3.1.1), taking the defocus blur rendering
application (Configuration 1) as an example. As r increases, the
network runtime is reduced substantially (by a factor of 3 to 10, as r
is increased from 1 to 4), while the resulting PSNR decreases slightly
(by 0.6-1.7dB). This demonstrates the flexibility of our method: by
adjusting the single hyperparameter r , the method can be tuned to
support a varying trade-off between the quality and runtime.

5.2 Defocus blur
In Figure 4 and 9, we test the DeepFocus network on scenes from
Unity, and compare to the built-in depth-of-field (DoF) rendering
engine in Unity [2018], Nuke [The Foundry 2018] (a state-of-the-
art off-line DoF renderer taking RGB-D as input), and the recent
learning-based method by Nalbach et al. [2017]. The high-quality
reference images are generated by the off-line accumulation buffer
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Fig. 11. Average PSNRs of images generated by multilayer decomposition
methods on 15 random scenes with focal distances between 0.1D and 2.2D.

Table 4. Quantitative comparisons of multilayer decomposition methods
on 15 random scenes with average PSNR (dB) and SSIM values on all focal
distances. Results without cropping image boundaries are in parentheses.
Both Narain et al. and Mercier et al. are run with 100 iterations.

Akeley et al. Narain et al. Mercier et al. DeepFocus
PSNR 28.81 (28.39) 42.93 (38.04) 41.32 (37.33) 43.45 (43.31)
SSIM 0.8680 0.9956 0.9932 0.9963

Table 5. Runtime comparisons (seconds) of multilayer decomposition meth-
ods. Both Narain et al. and Mercier et al. are run with 100 iterations, using
the GPU implementation of Mercier et al. [2017].

Resolution Narain et al. Mercier et al. DeepFocus
5122 13.3 7.5 0.0154
10242 62.0 25.0 0.0503

Table 6. Equal-time comparisons of multilayer decomposition methods on
15 scenes with average PSNR (dB) and SSIM values on all focal distances. For
Narain et al. and Mercier et al., the results of a single iteration are reported.

Akeley et al. Narain et al. Mercier et al. DeepFocus
PSNR 28.81 35.20 27.56 43.45
SSIM 0.8680 0.9791 0.9296 0.9963

method implemented in Unity. In Figure 5, we compare the pixel-
wise SSIM of each method. Our method produces more physically
accurate blur and fewer visual artifacts from the same input, leading
to better quantitative results. In Table 3, we further report quantita-
tive comparisons on 15 random scenes with high depth complexity
at focal distances uniformly sampled between 0.1D and 4.0D.
In Figure 10, we report the PSNR of DeepFocus at each focal

distance, averaged over the 15 random scenes that are tested in
Table 3. Our method achieves 41-43dB at all focal distances. Note
that the PSNR decreases at far focus because missing regions in the
RGB-D input (which occur near occlusion boundaries) become both
disoccluded and in-focus, resulting in lower synthesis quality.

In addition, in Figure 10, we report our results takingmulti-sample
anti-aliasing (MSAA) depth input, i.e., the input depth map has 3× 3
sub-pixel samples for each pixel color. Our network, specifically the
volume-preserving interleaving layer, naturally supports such input
by flattening and stacking the sub-pixel samples into the channel
dimension as described in Section 3.1.1.

Finally, we evaluate DeepFocus on animation sequences rendered
from Unity. Our methods produce high-quality results with no no-
table temporal artifacts. Comparisons to previous methods are in-
cluded in the supplemental video, including for PSNR, SSIM, and
HDR-VDP-2 metrics.
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5.3 Multifocal
In Figure 10, we evaluate our method for focal stack rendering from
RGB-D by reporting the PSNR values at varying focal distances
on 15 random scenes, and compare to our previous network (with
the same model complexity) synthesizing a single defocus image
from RGB-D. The results are similar (less than 0.5dB difference),
even though this network synthesizes all images in the focal stack
simultaneously.

In Figure 6, we show the multilayer decomposition by our method
and compare to Akeley et al. [2004] and Narain et al. [2015] for
a scene with complex occlusions. Our learned decomposition is
visually close to Narain et al. that is based on iterative optimization.

In Figure 11 and Table 4, we include quantitative comparisons
withAkeley et al. [2004], Narain et al. [2015], andMercier et al. [2017]
at varying focal distances over 15 random scenes. We run both
Narain et al. and Mercier et al. methods for 100 iterations as rec-
ommended in their original papers. Our method achieves higher
quality at most focal distances. Since Narain et al. and Mercier et al.
solve a deconvolution problem, boundary artifacts are introduced
in their result images, while our networks learn to reduce errors
at image boundaries. The results reported in Figure 11 exclude the
boundary artifacts, and the results reported in Table 4 include cases
with and without boundaries.

In Table 5, we compare the runtime of each method, on the GPU,
with the implementation provided by Mercier et al. Our method
is nearly 500× faster than Mercier et al., and around 1, 000× faster
than Narain et al. Note that the multifocal display setup adopted in
this paper follows [Narain et al. 2015]. In order to support a larger
focal range, it has higher system complexity than that of Mercier
et al. [2017] in the number of display planes and input images, as
well as the size of point spread functions ki j in Equation (2).

Narain et al. and Mercier et al. require more time to finish a single
iteration than the time for our network to process the entire frame.
Therefore, in Table 6, we report equal runtime comparisons to their
results, both run with a single iteration.
In Figure 12, we show results of our network generating mul-

tilayer decompositions directly from RGB-D. Our method outper-
forms Akeley et al., which is the only existing method that takes
RGB-D as input. The results and comparisons for animated se-
quences are included in the supplemental video.

5.4 Near-eye light field
As illustrated in Figure 7, we assume a near-eye light field display
with a 35-degree field of view, a lenslet pitch of 1.25mm, and a display
image resolution of 25602 pixels. The target light field contains 9× 9
views of elemental images with pixel size of 0.68 milliradian, whose
view centers are uniformly distributed in a 1cm×1cm area.

We compare our method to Kalantari et al. [2016] and Wu et
al. [2017], both taking sparse view RGB as input and interpolating
novel views. In the original paper, Kalantari et al. synthesize each
novel view individually from a sparse set of RGB images, by first
estimating the depth (disparity) map at the novel view by a CNN,
then warping all the input RGB images to the novel view, and finally
feeding the warped images together with the estimated disparity
map and view position to a second CNN to generate the novel view

(a) Multilayer decomposition by DeepFocus

(b) DeepFocus (far-focus)

(d) DeepFocus (near-focus)

(c) Comparison (far-focus)

(e) Comparison (near-focus)

Akeley et al.

RGB

DeepFocus

Reference

1.0

Akeley et al.

RGB

DeepFocus

Reference

PSNR: 42.7dB
SSIM: 0.994

PSNR: 44.8dB
SSIM: 0.997

(g) SSIM of Akeley et al. (f ) SSIM of DeepFocus 
0.6Far-focus Near-focus Far-focus Near-focus

Fig. 12. Real-time multilayer decomposition from RGB-D. DeepFocus
(PSNR=42.7dB/44.8dB, SSIM=0.994/0.997) significantly outperforms Akeley
et al. (PSNR=39.1dB/37.8dB, SSIM=0.984/0.988). Results with focal distance
0.1D and 2.2D are separated with a slash symbol.

image. Their CNNs were trained on a light field dataset captured by
Lytro cameras. To make a fair comparison for Kalantari et al., we
facilitate their method by warping the input RGB images according
to the rendered ground truth disparity map at either input views (i.e.,
forward warping) or novel views (i.e., backward warping), as well
as feeding the ground truth disparity map of each novel view to the
second CNN, which is then retrained on the same dataset as our
method. Note that the backward warping requires rendering depth
maps for 72 novel views (81 views minus 9 inputs), which is im-
practical for real-time display applications. Consequently, we adopt
forward warping in most comparisons with Kalantari et al., unless
specified. To compare with Wu et al., we run the code provided by
the authors and generate the results with tuned parameters.
In Figure 13, we compare the novel view images synthesized by

each method with 9 input views on a test scene rendered in Unity.
The maximum disparity between adjacent views in the reference
light field is above 5 pixels. DeepFocus produces significantly better
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Reference Wu et al. Kalantari et al. (forward) Kalantari et al. (backward) DeepFocus

PSNR: 22.5dB
SSIM: 0.873

PSNR: 34.7dB
SSIM: 0.985

PSNR: 34.2dB
SSIM: 0.984

PSNR: 36.0dB
SSIM: 0.983

Fig. 13. Comparison of synthesized novel view images at view (5,6) (see view grid in Figure 7). DeepFocus (PSNR=36.0dB, SSIM=0.983) produces comparable
results to Kalantari et al. with forward pre-warp (PSNR=34.7, SSIM=0.985) and Kalantari et al. with backward pre-warp (PSNR=34.2, SSIM=0.984), both
trained on the same dataset as DeepFocus and with additional accurate depth at novel views. Wu et al. produces inferior results (PSNR=22.5dB, SSIM=0.873).
Additional results with more views are included in the supplemental material.

(Far-focus)

(Near-focus)

PSNR: 45.0dB
SSIM: 0.997

PSNR: 42.3dB
SSIM: 0.996

PSNR: 48.3dB
SSIM: 0.997

PSNR: 45.9dB
SSIM: 0.997

Reference Kalantari et al. DeepFocus

(Far-focus)

(Near-focus)

(Far-focus)

(Near-focus)

Fig. 14. Comparison of estimated retinal images at focal distance 0.5D
(far-focus, top row) and 2.2D (near-focus, middle row) from the reference
light field, and synthesized light field by Kalantari et al. and DeepFocus
respectively. The artifacts in Kalantari et al. are highlighted by the orange
arrows. Pixel-wise SSIM comparisons are given in Figure 15.

results than Wu et al., and comparable results to the augmented
versions of Kalantari et al., as explained in previous paragraph, while
the latter contain large-scale patch artifacts at object edges. The
average PSNR and SSIM of all 72 novel views are reported in Table 7.
In Table 8, we report quantitative results of novel view synthe-

sis on 10 random scenes from the Houdini scene generator. Note
that DeepFocus generates the whole light field in a single network
evaluation pass, and is about 18 times faster than Kalantari et al.,
which estimates each novel view in a separate pass. Both network
inferences are optimized in TensorRT for this runtime comparison,
and the warping process required in Kalantari et al. is excluded from
its runtime measure. Note that Kalantari et al. requires 9 × 72 and

 Kalantari et al. DeepFocus Kalantari et al. DeepFocus

1.0

0.8

(9 inputs) (5 inputs)(9 inputs) (5 inputs)

Fig. 15. Pixel-wise SSIM comparison of estimated retinal images at focal
distance 0.5D (far-focus, top row) and 2.2D (near-focus, bottom row), by
Kalantari et al. and DeepFocus using 9 and 5 input views respectively. The
relatively high errors at the eye regions are due to the high sensitivity of
the SSIM metric at black pixels, by definition.

Table 7. Average PSNR (dB) and SSIM by light field synthesis methods on
all 72 novel views of the scene shown in Figure 13.

Wu et al. Kalantari et al.
(forward)

Kalantari et al.
(backward) DeepFocus

PSNR 19.4 34.3 34.3 34.9
SSIM 0.806 0.981 0.983 0.978

Table 8. Quantitative comparisons of light field synthesis methods on 10
random scenes with average PSNR (dB), SSIM and runtime (milliseconds).

Kalantari et al.
(9 inputs)

Kalantari et al.
(5 inputs)

DeepFocus
(9 inputs)

DeepFocus
(5 inputs)

PSNR 32.63 31.31 33.71 32.99
SSIM 0.960 0.951 0.956 0.950
Runtime 337.7 353.4 19.7 18.9

5 × 76 warps for the results with 9 and 5 inputs respectively, which
could cause non-negligible runtime overhead.
In Figure 14 and 15, we compare the retinal images perceived

through the near-eye light field display (Figure 7), computed from
the light fields synthesized by DeepFocus and Kalantari et al. The
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results demonstrate that DeepFocus outperforms Kalantari et al.
both quantitatively and visually. Kalantari et al. produces patch
artifacts at object edges (highlighted by the orange arrows), while
DeepFocus produces a subtle noise that can be averaged out when
the display image is perceived through the lens array. The results
of animation sequences are included in the supplementary video.
In this paper, we focus on high-fidelity view interpolation from

multi-view RGB-D inputs for real-time display applications. A re-
lated thread of view synthesis work, including that of Srinivasan
et al. [2017], aims for (typically offline) view extrapolation from a
single RGB image for light field photography applications. While the
application topic and inputs differ, we have conducted a preliminary
experiment comparing with these approaches. Specifically, we mod-
ify our DeepFocus network to take a single RGB image as input and
retrain it with the dataset provided by Srinivasan et al. [2017]. Our
retrained network produces inferior results to Srinivasan et al. This
experiment suggests that, for light field photography applications,
where multi-view images and accurate depth are unavailable, it may
be helpful to further tailor the network design, e.g., to estimate the
depth first and generate novel views guided by the estimated depth.

5.5 Limitations and Future Work
As a regression system, a neural network tends to gracefully de-
grade in quality outside of the known (trained) domain. We have
highlighted typical artifacts and quality degradation throughout
the paper by using error maps. With RGB-D input, specific fail-
ure cases include extrapolations with large disocclusions, and with
semi-transparent and mirror objects where no single correct depth
values exist. While such objects appear in the figures throughout
the paper and supplementary video with plausible results, in Fig-
ure 16, we highlight a challenging case with semi-transparent glass.
These failure cases require richer input information for physically
accurate estimation and we leave this for future work. Other future
work includes extending our framework to support chromatic eye
aberration [Cholewiak et al. 2017], attenuation-based light field dis-
plays [Wetzstein et al. 2012], and holographic displays [Maimone
et al. 2017].

6 CONCLUSION
In this paper, we have proposed a unified and flexible computational
framework that is capable of producing imagery for a wide variety
of accommodation-supporting displays. We have focused our inves-
tigations to three of the most well-researched variants: varifocal,
multifocal, and light field displays. Together, these systems establish
a commonality of rendering and optimization tasks, including syn-
thesizing retinal defocus blur, multilayer decompositions, and novel
views from sparse RGB-D light fields. Our resulting framework is
based on a single convolutional architecture that allows reconfigur-
ing inputs and outputs based on the needs of each particular display.
The output image quality has been quantitatively shown to exceed
existing methods that have been tailored for closely related tasks.
By accepting common RGB-D inputs, our framework should present
few barriers to adoption within existing rendering pipelines.
As computational displays, enabling practical applications of

accommodation-supporting HMDs requires innovation beyond just

Input RGB Input depth DeepFocus Reference
Fig. 16. An example failure case for defocus blur synthesis, where a statue
is partially occluded by a piece of semi-transparent glass. At the overlapped
region, there are no single correct depth values and only the foreground
depths are returned by the rendering engine. With this limited RGB-D
input, DeepFocus produces incorrect defocus blur at the overlapped region
compared to the ground truth, for focal distance 2.0D.

the optical hardware. Algorithmic progress will be necessary to ex-
perience visually compelling interactive content. DeepFocus shows
that these computational needs can be met in a generalizable man-
ner, providing a foundation to overcome practical rendering and
optimization limitations for future novel display systems.
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