
Algorithm-Aware Neural Network Based Image
Compression for High-Speed Imaging

Reid Pinkham
University of Michigan, Ann Arbor, MI
Facebook Reality Labs, Redmond, WA

pinkhamr@umich.edu

Tanner Schmidt
Facebook Reality Labs, Redmond, WA

tanner.schmidt@fb.com

Andrew Berkovich
Facebook Reality Labs, Redmond, WA

andrew.berkovich@fb.com

Abstract—In wearable AR/VR systems, data transmission
between cameras and central processors can account for a
significant portion of total system power, particularly in high
framerate applications. Thus, it becomes necessary to compress
video streams to reduce the cost of data transmission. In
this paper we present a CNN-based compression scheme for
such vision systems. We demonstrate that, unlike conventional
compression techniques, our method can be tuned for specific
machine vision applications. This enables increased compression
for a given application performance target. We present results for
Detectron2 Keypoint Detection and compare the performance and
computational complexity of our method to existing compression
schemes, such as H.264. We created a new high-framerate dataset
which represents common scenarios for wearable AR/VR devices.

Keywords—Video compression, convolutional neural networks,
high-speed video, keypoint detection

I. INTRODUCTION AND BACKGROUND

Enabling real-time vision systems in power constrained,
mobile systems such as AR/VR devices presents a significant
challenge. This is largely due to the cost of transmitting and
processing high-dimensional image data [1], [2]. Depending
on system architecture and sensor interface, communication
costs (energy/bit) vary greatly. Wired connections such as MIPI
can consume <30 pJ/bit [3] while wireless interface such as
WiFi or Low Energy Bluetooth (BLE) can consume orders
of magnitude more energy (e.g. 407 nJ/bit [4]). Thus, data
transmission for a 1 mega-pixel (MP) sensor running at 30 FPS
can consume anywhere from <10mW for MIPI-like interfaces
to nearly 100W for uncompressed, wireless interfaces.

This problem is compounded when operating image sen-
sors at high frame rates as both datarate and power consump-
tion of transmission scale linearly with frame rate. The benefits
of high-speed image capture, namely reduced computational
complexity and improved tracking performance, have been
demonstrated for various computer vision (CV) applications
in the context of AR/VR [5], [6]. However, leveraging these
benefits in wearable mobile systems remains challenging due
to bandwidth and power limitations. Data compression has
become a widely adopted technique to reduce the cost of
video transmission in both sensor systems and more broadly
in communication systems. While there have been extensive
previous works on video compression [7] and real time video

Work completed during the first author’s internship at Facebook Reality
Labs

compression [8], these algorithms are typically tuned for per-
ceived visual image quality. For machine perception systems
in which humans do not consume images, such image quality
metrics are ill-equipped to drive the optimization of compres-
sion algorithms. We argue that compression algorithms should
be optimized with the full machine perception pipeline in
mind.

Similar to work presented by Mnih, et al. [9], we pose
the problem of image compression as a control task in which
we aim to determine a minimal set of pixels to transmit
for each frame captured by a sensor. The sensor transmits
the set of sparse pixel data to a receiver which builds a
full-frame representation of the compressed image by simply
updating pixel values in a frame buffer. Thus decompression
only requires a simple memory update and no computation.
Our approach leverages a neural network with a large receptive
field to select regions of a scene with relevant information. In
addition, our method enables either end-to-end optimization
of image compression for a variety of loss functions—this
includes performance of a particular task (e.g. tracking ac-
curacy), or more traditional image quality metrics (e.g. mean
squared error).

Our main contributions are as follows:

• We introduce a lightweight CNN-based method to
select and transmit a subset of image data for each
frame based on scene content and dynamics

• We show how our method can be tuned for perfor-
mance of a particular downstream algorithm

• We demonstrate the feasibility of our method com-
pared to a traditional video compression method
(H.264)

• We introduce a new dataset of high-speed videos for
training and benchmarking

II. METHOD

In this section we describe the operation and topology
of our compression network. An hourglass style encoder-
decoder network processes uncompressed frames to produce
a pixel-wise decision map indicating which pixels should be
transmitted over the link and which should not. Only the
transmitted pixels are used to reconstruct an image at the
receiver (or aggregator) as follows: (1) the first image captured
is transmitted as a full frame, (2) subsequent images come in



Fig. 1. Baseline network with three 3x3 convolution layers, and three 3x3 deconvolution layers. The ReLU activation is used after each Conv or DeConv layer.
The final output is a pixel-wise confidence level to transmit each pixel.

the form of pixel updates, (3) new pixel data replaces the old
values in the reconstructed image and pixels which are not
updated remain unchanged. This method provides a continuous
approximation of the full-frame image captured by the sensor.

Our baseline network topology is shown in Figure 1. As
input. the network receives the most recent reconstructed frame
and n previously captured full frames. The most recently
reconstructed frame serves as a feedback mechanism so the
network can identify and correct portions of the image which
are degraded from compression. The final post sigmoid output
of the network is a pixel-wise confidence that each pixel should
be transmitted. These values are then thresholded to create a
binary transmission map.

The baseline version of the network uses n = 2 as the
number of full frames at the input. For a 512x512 input
image, this results in 377 MOps/image, or 1440 ops/pixel. Max
pooling and unpooling are used after each convolutional layer
to reduce or increase the intermediate size, respectively.

During training, the reconstructed images use soft updates
to create a differentiable approximation of the hard pixel
update. Soft updates interpolate pixel values between their old
and new values based on the confidence of the prediction.

In order for the network to understand the reconstructed
input, it is trained on a series of frames we denote as rollouts.
The length of these rollouts are increased throughout training
so the network can learn to recognize and correct for artifacts.
The learning rate was scaled inversely with the rollout length
to reduce the emphasis of progressively longer single rollouts.

The loss function is formed by the sum of two competing
terms: a sparsity penalty which is the average confidence of
all pixels Lspar and the downstream or application loss Lapp.
For the baseline version, this is the mean squared error (MSE)
between the reconstructed image and the ground truth image.
These two losses compete against each other during training
since achieving lower MSE drives the network to transmit more
pixel data at the expense of a larger sparsity penalty. The values
of Wapp,Wspar are treated as hyperparameters and are fixed
at the start of training. The final loss is as follows:

L = Wapp · Lapp +Wspar · Lspar

Our compression method has the flexibility and adaptability
to train on other loss signals such as a backpropagated signal
from a downstream algorithm. To demonstrate the tunability of
our compression method, we use the state of the art Detectron2

[10] R-CNN model with the ResNet-50 back-end trained
for Person Keypoint Detection1. The application loss with
compressed images is computed against the pre-computed,
ground truth, application output and backpropagated through
our compression network. This allows our compression net-
work to be tuned to increase compression while maintaining
application performance.

We primarily focus on the effect of compression on the
downstream algorithm performance and therefore do not con-
sider traditional compression quality metrics. We use a sum
of the relevant loss terms from the Detectron2 loss function
including the bounding box and keypoint predictions.

To the best of our knowledge there is no publicly available
dataset of high-framerate videos relavent to AR/VR systems.
Along with this work we are releasing a representative high-
framerate dataset of 512x512 greyscale video clips collected
at a fixed framerate of 500FPS. Our dataset represents a
diverse set of environments and camera dynamics. In total, our
dataset contains over 378k frames representing 12.6 minutes
of real-time data spread across 34 different scenes. We split it
randomly into a training and test set at the per-clip granularity.

III. ABLATION

In addition to our baseline network topology, we considered
three similar designs and evaluated their performance when
trained on MSE loss. We first introduced pixel age (time since
last update) as input to the network. This helped the network
identify regions which are “stale”, increased total computation
costs by 5%, and resulted in more fine-grained transmission
maps with a slight increase in sparsity.

The other two network variants we considered either dou-
bled the number of filters for each layer (Large) or doubled
the number of filters while reducing the total depth to four
(Shallow). Each of these networks increase the computational
footprint of the compression network and were used to evaluate
if an increased network capacity improved performance.

All networks display similar performance metrics (Table I).
Versions of the network with similar MSE loss were chosen
for comparison. All but the large configuration achieve greater
than 91% sparsity. The shallow network performed the best

1We take Detectron2 as an off-the-shelf algorithm and do not modify or tune
the weights for our application. A co-optimization between the downstream
algorithm and our compression network may be beneficial, but it outside the
scope of this work.



TABLE I. PERFORMANCE OF DIFFERENT NETWORK TOPOLOGIES.

MOps Depth MSE Sparsity
Baseline 377 6 2.05 · 10−4 91.1%
Age 396 6 2.03 · 10−4 91.3%
Shallow 755 4 2.02 · 10−4 91.5%
Large 1359 6 2.06 · 10−4 88.4%

Fig. 2. MSE performance of the baseline network when trained with various
values of Wapp. Each datapoint represents a point in training which forms
the performance frontier.

overall, with 91.5% sparsity and the lowest of the selected
MSE losses.

We also studied the effect of the weighting between Wspar

and Wapp. This proved to be a good way to push the sparsity
towards a particular target level. Figure 2 shows how we can
adjust performance of the baseline network by varying Wapp

from 500 to 5000 with a fixed value of Wspar = 1.0.

IV. PERFORMANCE

Across the dataset, the baseline network consistently
achieves sparsity levels above 90% with minimal degradation
of keypoint tracking performance. Sample transmission maps
and reconstructed frames are shown in Figure 3.

A. Power Analysis

Net energy reduction resulting from video compression
heavily depends on the cost (energy/bit) of transmitting data
from the sensor, and the cost (ops/W) of compute. As an
example, we can assume an efficiency of processing on par
with recent CNN edge-accelerators, such as the edge-TPU,
which have efficiencies around 2 TOPS/Watt [11]. Our com-
pression method begins to save energy when the transmission
cost exceeds 100 pJ/bit, which is approximately the cost of
high-speed wired interconnects such as LVDS/MIPI. Nearly
all wireless interfaces, such as WiFi and BLE, consume orders
of magnitude more energy per bit.

B. DVS-style encoding

We formulate video compression as a control task for
selecting a subset of pixel data to transmit for each frame. One
of the simplest selection mechanisms is based on a pixel-wise
temporal contrast. The decision to transmit a pixel is based
on whether the temporal derivative of a pixel’s output value
exceeds some fixed threshold. Variants of this compression

Fig. 3. Examples of transmission maps (right) and their corresponding recon-
structed frames (left). White regions indicate pixels which were transmitted.
The top/bottom row show scenes with a static/dynamic camera position.

TABLE II. COMPARISON OF JOINT TRACKING PERFORMANCE AT A
SPARSITY OF ≈94%. LOSS: TOTAL DETECTRON2 LOSS [10].

BOX/KEYPOINT: ERROR IN BOUNDING BOX/KEYPOINT PREDICTION.

Loss Box Keypoint MSE Sparsity
Baseline 15.36 0.34 14.36 2.93e−4 94.0%
DVS 15.01 0.34 14.02 1.98e−4 94.2%
Baseline-D2 14.47 0.31 13.55 5.35e−4 94.4%

scheme have been implemented [12] and are generally referred
to as Dynamic Vision Sensors (DVS). In our implementation
of DVS-style compression we compute temporal contrast as
the absolute difference between pixel values in the current
frame and pixel values stored in the reconstructed frame buffer
(generated by pixel updates). We transmit pixel values only
when temporal contrast exceeds a fixed threshold.

C. Optimizing for Keypoint Detection

We optimize the baseline network for use with the Detec-
tron2 keypoint detection network by changing Lapp to include
accuracy of keypoint detection instead of MSE. We refer to
this retrained version of the baseline network as Baseline-D2.
Table II shows performance of the baseline network before and
after being optimized for keypoint detection. By changing our
loss function, the performance for all Detectron2 loss signals
decreased. Interestingly the Detectron2 application performs
noticeably better with the Baseline-D2 network, even though
the DVS-style encoding scheme achieves less than half the
MSE. Similarly, the Baseline-D2 network has the highest MSE
of any method we evaluated with our dataset. This indicates
that optimizing the network for keypoint detection allows it to
identify the most essential pixels for the task and ignore those
in regions not relevant to the detection task.

D. Comparison with H.264 encoding

H.264 encoding is currently the most widespread method
to encode raw video. It supports both variable quality, target
bitrate, and computational complexity. H.264 encoding makes
use of spatial and temporal transforms to compress video to



Fig. 4. H.264 encoding performance with Detectron2. The right side of the
graph corresponds to uncompressed data. 94% sparsity ≈ 60 Mb/s.

very high levels. We encoded our test set using the target bitrate
mode. This allowed us to sweep across multiple performance
points of H.264 encoding and understand how it performs in
terms of MSE as well as Detectron2 loss. The performance
across the simulated range is shown in Figure 4. We estimate
the rough computational cost of H.264 encoding using the
FFMPEG [13] tool by measuring the time to encode a video.
At the same bitrate as our baseline, H.264 encoding took 348
operations per pixel. Compared to our baseline method which
uses 1440 Ops/pixel.

Both our method and H.264 encoding are expected to
use similar amounts of energy for encoding. H.264 requires
high precision operations for its Discrete Cosine Transform
operation which uses 16-bit values [14]. Quantization of neu-
ral networks has been shown to be effective down to 8-bit
precision [15]. Additionally, the decoding process for H.264
is nearly as complex as encoding which effectively doubles the
number of operations required per pixel, while our decoding
method only requires a memory update. Taking both precision
and decoding differences between our method and H.264 into
account, the total energy cost is similar.

V. DISCUSSION AND FUTURE WORK

The compression method presented here uses a very simple
compression mechanism driven by an intelligent per-pixel pre-
diction. Fundamentally, this simple compression mechanism
has its limitation. By only compressing pixel-level information
in the time domain we cannot utilize spatial compression and
can only choose to disregard certain regions of the image
or video. This forms a key difference between conventional
video compression methods such as H.264 and ours. This
fundamental limit manifests itself as the sharp degradation in
performance as our compression method is pushed to very
high levels of sparsity. This limit will be different for all
applications, but will always be at a lower sparsity than a
method which can effectively compress both temporally and
spatially. However, because this compression scheme relies on
simple and highly parallelizable operations, it is uniquely well-
suited for high-speed video applications. We expect that co-
optimization of algorithm and compression will push the per-
formance of our method closer to that of H.264 performance.

Previous efforts to create a CNN based compression

scheme, such as DVC [16], have seen good success and offered
competitive results compared to H.264 encoding. However,
these compression methods require three or more orders of
magnitude more computation than H.264. DVC requires 409k
Ops/pixel, compared to our method requiring 1.4k Ops/pixel.
This difference in computation illustrates the advantage of our
method and makes it practical for low-power AR/VR systems.

VI. CONCLUSION

Both performance and complexity of various real time
AR/VR applications benefit from high framerate video streams.
However, transmitting these video streams across wired and
wireless interfaces consumes a significant amount of energy.
This necessitates video compression prior to transmission.

In this paper, we present a lightweight CNN based method
to perform real time video compression. This new compression
technique can be fine tuned for a particular downstream pro-
cessing algorithm. Using our simple compression network, we
are able to compress high-speed video tenfold to provide a net
energy savings across common wired and wireless interfaces.

ACKNOWLEDGMENT

The authors kindly acknowledge the input and helpful
feedback from Hans Reyserhove, Syed Shakib Sarwar, Chiao
Liu, Richard Webb, and our other colleagues at FRL.

REFERENCES

[1] Liu et al., “Intelligent Vision Systems – Bringing Human-Machine
Interface to AR/VR,” in IEEE IEDM, 2019, pp. 218–221.

[2] Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE ISSCC, Feb 2014, pp. 10–14.

[3] Lee and Jang, “A 6.84 Gbps/lane MIPI C-PHY Transceiver Bridge
Chip with Level-dependent Equalization,” IEEE Trans. on Circuits and
Systems II: Express Briefs, pp. 1–1, 2019.

[4] Siekkinen et al., “How low energy is bluetooth low energy? Compara-
tive measurements with ZigBee/802.15.4,” in IEEE WCNC, April 2012,
pp. 232–237.

[5] Galoogahi et al., “Need for speed: A benchmark for higher frame rate
object tracking,” CoRR, vol. abs/1703.05884, 2017.

[6] Kowdle et al., “The Need 4 Speed in Real-Time Dense Visual Tracking,”
ACM Trans. Graph., vol. 37, no. 6, Dec. 2018.

[7] Tabatabai et al., “Motion Estimation Methods for Video Compres-
sion—A Review,” Journal of the Franklin Institute, vol. 335, no. 8,
pp. 1411 – 1441, 1998.

[8] Westwater and Furht, Real-time video compression: techniques and
algorithms. Springer, 2007, vol. 376.

[9] Mnih et al., “Recurrent models of visual attention,” in Advances in
neural information processing systems, 2014, pp. 2204–2212.

[10] Wu et al., “Detectron2,” https://github.com/facebookresearch/detectron2,
2019.

[11] Edge TPU performance benchmarks. Google LLC. [Online]. Available:
https://coral.ai/docs/edgetpu/benchmarks/

[12] Lichtsteiner et al., “A 128 x 128 120dB 30mW asynchronous vision
sensor that responds to relative intensity change,” in IEEE ISSCC, 2006,
pp. 2060–2069.

[13] ffmpeg Developers. ffmpeg tool. [Online]. Available: https://ffmpeg.org/
[14] Wiegand et al., “Overview of the H.264/AVC video coding standard,”

IEEE TCSVT, vol. 13, no. 7, pp. 560–576, 2003.
[15] Han et al., “Deep compression: Compressing deep neural networks

with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[16] Lu et al., “Dvc: An end-to-end deep video compression framework,” in
IEEE CVPR, 2019, pp. 11 006–11 015.


