
Open Source Evolutionary Structured Optimization
Jeremy Rapin

Facebook AI Research
Paris, France
jrapin@fb.com

Pauline Bennet
Université Clermont Auvergne, CNRS,
SIGMA Clermont, Institut Pascal

Clermont-Ferrand, France

Emmanuel Centeno
Université Clermont Auvergne, CNRS,
SIGMA Clermont, Institut Pascal

Clermont-Ferrand, France

Daniel Haziza
Facebook AI Research

Paris, France

Antoine Moreau
Université Clermont Auvergne, CNRS,
SIGMA Clermont, Institut Pascal

Clermont-Ferrand, France

Olivier Teytaud
Facebook AI Research

Paris, France

ABSTRACT
Nevergrad is a derivative-free optimization platform gathering both
a wide range of optimization methods and a wide range of test
functions to evaluate them upon. Some of these functions have very
particular structures which standard methods are not able to use.
The most recent feature of Nevergrad is the ability to conveniently
define a search domain, so that many algorithms in Nevergrad
can automatically rescale variables and/or take into account their
possibly logarithmic nature or their discrete nature, but also take
into account any user-defined mutation or recombination operator.
Since many problems are efficiently solved using specific operators,
Nevergrad therefore now enables using specific operators within
generic algorithms: the underlying structure of the problem is user-
defined information that several families of optimization methods
can use and benefit upon. We explain how this API can help analyze
optimization methods and how to use it for the optimization of
a structured Photonics physical testbed, and show that this can
produce significant improvements.

CCS CONCEPTS
•Computingmethodologies→ Searchmethodologies; • Soft-
ware and its engineering→ Software libraries and reposito-
ries;

KEYWORDS
Optimization, Derivative-free, Python, Structured

ACM Reference Format:
Jeremy Rapin, Pauline Bennet, Emmanuel Centeno, Daniel Haziza, Antoine
Moreau, and Olivier Teytaud. 2020. Open Source Evolutionary Structured
Optimization. In Genetic and Evolutionary Computation Conference Compan-
ion (GECCO ’20 Companion), July 8–12, 2020, Cancún, Mexico. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3377929.3398091

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3398091

1 INTRODUCTION
Nevergrad [26] is a derivative-free optimization platform for Python
3.6+. It provides a wide range of optimization methods from Particle
Swarm Optimization to Evolution Strategies, Differential Evolution
and many others. The platform is designed for both research and
applications. On the research side, it requires minimum knowledge
and coding skills to implement new optimization methods and
provides applications in games, power systems, optimization of
nanometric devices as well as the MLDA [11] testbed, the YABBOB
testbed and others for evaluating them, with reproducibility in
mind. It is heavily tested, maintained and provides a flexible unified
API for using a large range of optimizers and test cases as well as
powerful analysis tools.

Beginning in version 0.4.0, the framework has been updated
to handle structural information about the underlying function
landscape. Indeed, using problem specific operators can help in
solving them more efficiently [18]. The following section will de-
scribe how this API can be used to express problems, to facilitate
their fast solving by taking into account their structure, and analyze
the behavior of optimizers.

2 USING NEVERGRAD
Minimization with Nevergrad is straightforward: see Snippet 1
for an example using the (1 + 1) evolution strategy [9, 27] on a
2-dimensional sphere function 𝑥 ↦→ ||𝑥 − 0.5| |22 . Users interact with
two core objects:

• Optimizer: the object implementing a minimization method
/ algorithm. The optimizer can be for instance DE (differential
evolution[28]), PSO (Particle Swarm Optimization [21]), the
OnePlusOne evolution strategy [5, 9] or many others.

• Parameter: an object describing the structure of the function
space (each of their arguments and their type, like scalar or
array or a categorical variable) and an associated value. In
the example above, the parametrization isR2, expressed with
parametrization=2 as a shortcut.

Both are described in more details below.

2.1 Optimizer
From a user perspective, the main methods of an optimizer are ask,
tell and recommend: The askmethod provides a new candidate/set

of parameters to evaluate. Once evaluated, the user returns the
candidate and the corresponding loss through the tell method.

https://doi.org/10.1145/3377929.3398091
https://doi.org/10.1145/3377929.3398091

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico J. Rapin et al.

Snippet 1: Basic optimization example.
import neverg rad as ng

def squa re (x) : # O b j e c t i v e f u n c t i o n
return sum ((x − . 5) ∗ ∗ 2)

o p t im i z e r = ng . o p t im i z e r s . OnePlusOne (
2− d imen s i o na l , r e a l − s p a c e
p a r ame t r i z a t i o n =2 ,
e v a l u a t e up t o 100 c a n d i d a t e s
budget =100

)

recommendation = op t im i z e r . minimize (squa re)
print (recommendation)
>>> Array { (2 ,) } : [0 . 4 9 9 7 1 1 1 2 0 . 5 0 0 2 9 4 4]

Snippet 2: Optimizer interface
c l a s s Opt im i ze r :

def _ _ i n i t _ _ (
s e l f ,
p a r ame t r i z a t i o n : Parameter ,
budget : Op t i ona l [in t] = None
num_workers : in t = 1

) −> None :
. . .

def ask (s e l f) −> Parameter :
. . .

def t e l l (
s e l f ,
c a n d i d a t e : Parameter ,
l o s s : f l o a t

) −> None :
. . .

def recommend (s e l f) −> Parameter :
. . .

Users can ask several times in a row if they want to run evaluations
in parallel. The recommend method provides the optimized set of
parameters at the end of the optimization.

As a shortcut, there is also a minimize method that takes a func-
tion and runs the evaluation (see the initial example in Snippet 1
and the method signature in Snippet 3). By default the evaluations
in this method are performed sequentially, but this behavior can
be modified by providing an executor-like object, such as Python
standard library’s concurrent.futures.ProcessPoolExecutor.

Snippet 3: Minimize method
def minimize (

s e l f ,
func : C a l l a b l e [. . . , f l o a t] ,
e x e cu t o r : Op t i ona l [Exe cu t o rL i k e] = None ,
. . .

) −> Parameter :

2.2 Parameter: defining the search space & its
operators

Parameter instances are the interface between users and their
function to optimize on one side, and the optimizers on the other
side. It defines the search space, but also possibly the mutation or
recombination operators.

On the user side, this means creating an instance defining the
inputs of the function to optimize (their range, initial value etc.),
and using the value attribute for getting the actual values of the
function inputs to test.

From the point of view of the optimization algorithms, Parame-
ter classes provide two interfaces:

• one for converting the values in the search space to a stan-
dardized space, in which the data is linearized and reduced
so that the initial prior for the solution in this space is a
Gaussian of mean 0 and standard deviation 1,

• the other providing mutation and recombination methods.
Both interfaces can be used to implement new generic optimiza-

tion methods, in a rather problem-independent manner: the same
mutation operator can be used by arbitrary optimization algorithms.

2.2.1 Defining the search space. Several different types of Pa-
rameter can be used to define the input variables of the function
to optimize. There are three groups of classes deriving from Pa-
rameter, depending on if we want to define continuous variables,
categorical variables, or a container for other variables.

• data parameters: data classes contain the value of param-
eters such as arrays, with Array(init), and scalars, using
either Scalar, or Log for log-distributed scalars which are
common inmachine learning applications (Eg.: learning rate).
These parameters support defining bounds, standard devia-
tion and more.

• choice parameters: Categorical parameters can be expressed
with a Choice(choices) when they are unordered, and
through TransitionChoice(choices) if they are ordered.
These parameters select one of the options as a value.

• container parameters: multiple parameters can be aggre-
gated in a tuple-like structure with Tuple(*parameters)
or a dictionary-like structure with Dict(**parameters).
These containers can contain both other Parameter instances,
or other types, in which case they are considered as constants.
A special container, Instrumentation(*args, **kwargs)
can help to define the inputs of a function with both po-
sitional and keyword arguments, which will be available
through args and kwargs attributes of the parameter.
Eg.: func(*param.args, **param.kwargs)

Open Source Evolutionary Structured Optimization GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

Snippet 4: Basic parametrization example
param = D i c t (

a l o g a r i t hm i c a l l y − d i s t r i b u t e d
pa rame t e r r ang i ng from 10 e−4 t o 1 .
l o g =Log (lower = 0 . 0 0 0 1 , upper = 1 . 0) ,
a one−d im en s i o n a l a r r ay o f l e n g t h 2
a r r ay =Array (shape = (2 ,)) ,
a c h a r a c t e r , e i t h e r a o r b o r c .
char =Choice ([" a " , " b " , " c "])

)
param . va l u e
>>> { ' l o g ' : 0 . 0 1 ,

' a r r ay ' : a r r ay ([0 . , 0 .]) ,
' char ' : ' a ' }

For instance, stating that the optimization should be performed on
a log-distributed scalar named log, a 2-element array named array
and a character named char taking either a, b or c as value can be
done with Snippet 4, and the current value of the Parameter can
be obtained through the value attribute. This parametrization is

the link between the user’s function input space and the optimizer.
Through the created Parameter the optimizer has full knowledge
of the underlying space to optimize. Some optimizer implemen-
tations adapt to this parametrization: NGO/Shiwa Optimizers in
Nevergrad for instance implement different optimization methods
depending on whether the optimization space (the parametrization)
contains unordered categorical choices, or discontinuous parame-
ters like integers.

2.2.2 Converting to centered and reduced space. Many algo-
rithms such as PSO [20] for instance are easy to express while
working on R𝑛 , hence Parameter classes can implement a bijective
mapping between there state and R𝑛 . Currently all implemented
Parameter classes implement this mapping, but it is not strictly
required since some of the optimizer implementations do not use
this interface. Snippet 5 provides an example of conversion from
a set of parameters to this space with respect to its parent which
serves as reference: we build a new instance, update it’s value and
recover the corresponding data in the standardized space with re-
spect to its parent. Notice that the output of this function in the
example lives in R6: the first 2 variables correspond to the 2D array,
the following three correspond to the weights used for selecting
one of the 3 char options, and the last variable corresponds to the
log parameter, once linearized. This command is useful only for
users willing to implement or modify optimization methods.

2.2.3 Specifying mutation and crossover operators for generic
genetic algorithms. Some evolutionary algorithms can be expressed
as a sequence of mutations and recombinations such as Evolution
Strategy [5]. To this end, Parameter classes also support mutation
and recombination interfaces as demonstrated in Snippet 6. The
mutation can be tuned through each Parameter initialization. In
this case for instance array undergoes a Gaussian mutation with
standard-deviation 1, while log undergoes a log-normal mutation.
In practice, algorithms can use a combination of both standardized

Snippet 5: Example of standardization, starting from Snip-
pet 4
spawn a new Pa rame t e r i n s t a n c e
c h i l d = param . spawn_ch i ld ()

upda t e i t s v a l u e
c h i l d . v a l u e = { ' l o g ' : 0 . 0 2 ,

' a r r ay ' : a r r ay ([1 2 . , 1 3 .]) ,
' char ' : ' c ' }

r e c o v e r t h e s t a n d a r d i z e d da ta
c h i l d . g e t _ s t a n d a r d i z e d _ d a t a (r e f e r e n c e =param)
>>> a r r ay ([1 2 . , 1 3 . , 0 . , 0 . , 0 . 6 9 , − 2 . 1 0])

Snippet 6: Example of mutation of parameter defined in
Snippet 4
param . mutate ()

param . va l u e
>>> {

l og −normal muta t i on
' l o g ' : 0 . 0 4 1 2 8 ,
Gaus s i an muta t i on
' a r r ay ' : a r r ay ([0 . 2 9 4 9 , 1 . 1 9 1]) ,
Gaus s i an muta t i on o f w e i g h t s
+ samp l ing
' char ' : ' b '

}

space interface and evolution interface, like Differential Evolution
(DE) [29] which requires computing linear combinations of parents,
and recombinations/crossovers. Such mutations and recombina-

tions can be problem dependent: a particular problem may be better
solved using well-adapted mutation and recombination operators
[18]. Mutations and recombinations of data Parameter classes, and
especially Array, have therefore been made easy to customize, and
can also be parametrized by other Parameter instances if needed
(more on this in Snippet 9). It is also possible to design other Param-
eter classes which support only this interface when mapping to
the standardized real space is not possible, dropping compatibility
with part of the optimizer implementations.

2.3 Graphical export of optimization runs
Parameter instances allow the tracking of ancestors of new sets of
function inputs for analysis, through interfacing HiPlot [16] for
instance. This libary provides interactive parallel coordinate plots
enabling visualization of multi-dimensional data. Fig. 1 was for
instance created using this tool and shows the different behaviors
of five different algorithms on a simple test case. In this example,
optimizers need to find the minimum at (100, 100) of a simple
absolute norm function, starting with an erroneous prior that the
minimum should be at a distance of approximately 1 from (0, 0).
We observe the inertia of PSO [20] (Fig. 1a) through the curves

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico J. Rapin et al.

leading to the solution, the angular shape of the DE optimization
due to crossovers, i.e. a new point created from part of a point (its
value for 𝑥 for instance) and part of another (its value for 𝑦), TBPSA
[17] (Fig. 1c) where the population adapts to the landscape, and
(1+1)-ES (Fig. 1d) which always mutates the best point so far and
has an automatic step size adaptation which is very efficient for
this simple problem instance. Finally the (10,100)-ES algorithm (Fig.
1e) explores mores widely and in this case more slowly than other
algorithms because for this simple problem instance, such a large
population is not efficient.

Integration with HiPlot also allows for effective observation of
the inner parameters of the algorithms, like the mutation standard-
deviation in TBPSA (Fig. 2b) and (1+1)-ES (Fig. 2a) and the muta-
tion standard-deviations in ES (Fig. 2c). In (1+1)-ES, the standard-
deviation is set by a heuristic which automatically adapts to the
landscape: the standard deviation increases when a better point
is found, and decreases otherwise. TBPSA and ES on the other
side adapt their standard-deviation by averaging (in log-scale) the
standard-deviation of the best indiviudals of a population. In this
example, all the optimizers show the same trend with respect to the
standard deviation: it increases in the beginning to explore points
farther and farther from the initial points, then reduces to converge
to the optimum. However, be mindful of the different scales, be-
cause of the size of the poplations, ES is for instance much slower
to adapt.

3 APPLICATION - PHOTONICS
3.1 Problem description
We test this framework on photonics problems [4]. These problems
aim at designingmultilayered structures which have particular char-
acteristics with respect to light, such as reflecting light at specific
frequencies or ranges of frequencies. These problems have numer-
ous local minima, which make gradient-based algorithms uncertain
for finding good solutions. On the other hand, such structures have
naturally emerged on the back or wings of insects.

Bragg mirrors in particular are multilayered structures known
to reflect light very efficiently for a given wavelength, even though
each layer is transparent. Each layer is characterized by its thickness
and its permittivity. The input space of the function is therefore
a matrix of size 2 × 𝑛 where 𝑛 is the number of layers. The first
row corresponds to each permittivity ranging from 2 to 3, and the
second to each thickness, from 30 to 180nm. In these settings, it has
been shown that Bragg mirrors are the optimal way to reflect light
at a given wavelength [4].

3.2 Optimization requirements
Minimization in Nevergrad only requires a function returning floats
and a parametrization defining the inputs of the function. Bragg
function is directly implemented in Nevergrad (see Snippet 7).

Since the function takes an array as input, its parametrization
is an Array with the appropriate 2 × 𝑛𝑢𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 shape, the first
row encoding the first row encoding permittivities and the second
thicknesses (See Snippet 8).

This parametrization can be further specified to define the initial
value of the optimization, the bounds and possibly the mutation

(a) PSO

(b) DE

(c) TBPSA

(d) (1+1)-ES

(e) (10,100)-ES (recombination rate 0.1, ` = 10, _ = 100, non-elitist
strategy.)

Figure 1: Trajectory of optimizers starting from (0, 0) and
std=1 on the objective function 𝑥 ↦→ ||𝑥 − (100, 100) | |. Color
is related to the index of iterations. Maximum number of
iteration is 1000.

Open Source Evolutionary Structured Optimization GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

(a) (1+1)-ES automatic mutation standard-deviation

(b) TBPSA mutation standard-deviation

(c) ES mutation standard-deviations

Figure 2: Mutation standard deviations with respect to the iteration

Snippet 7: Instantiating Bragg function
from neverg rad . f u n c t i o n s import pho t on i c s
num_layers = 2
func = pho t on i c s . Pho ton i c s (

" bragg " ,
2 ∗ num_layers

)
d a t a = [[3 , 2] ,

[8 6 , 1 0 6]]
func (da t a)
>>> 0 . 8 0 2 7 5 3 3 2 3 9 6 2 5 9 8 8

and recombination operators. The Photonics function already im-
plements a default parametrization which can be accessed through

Snippet 8: Bragg function parametrization
param = ng . p . Array (shape = (2 , num_layers))

func.parametrization. In the benchmark below, we specialize
the mutation and recombination operators (see Snippet 9) to ob-
serve their impact on the minimization for different optimizers.

3.3 Benchmark setup
We run the optimization of this Bragg test case with 40-layers (each
with 2 variables, hence the total dimension is 80) using standard
derivative-free algorithms included in the library, namely CMA-
ES and Diagonal-CMA-ES [14], PSO [20], TBPSA [17], DE [29],

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico J. Rapin et al.

2-points-DE, (1 + 1)-ES [9, 27]. These optimizers only use the map-
ping API of Parameter and therefore do not use the mutation and
recombination APIs.

We also run two optimizers which use the mutation and/or
recombination operators attached to the parametrization object
param:

• Param-DE: this variant of DE uses the provided parametriza-
tion for the recombinations (more details below on the used
parametrizations).

• Pairwise-ES: this is an ES-like algorithm, which maintains
a population, creates children through mutation (in all cases)
and recombination (with a probability of 10%). The selection
is pairwise like in DE or PSO: a child replaces its parent in the
population if its evaluation is better. We experimented with
several variations of ES and this one was consistently better,
which we analyzed as a consequence of keeping separate
trajectories (excepts for some crossovers), hence keeping a
wide diversity.

We provide three different cases in term of mutation and recom-
bination operators attached to the parametrization used for the
optimization:

• 2pt: the recombination is here similar to the crossover used
in 2-points-DE, which is structured in that it preserves con-
tinuity, but which does not take into account the layer struc-
ture of the test case. This processes the whole array as a
vector, as in a DNA sequence, with
– a first part is made of all permittivities;
– a second part of all thicknesses.
The recombination might therefore take only the permittiv-
ity of one parent on some samples, or only the thickness, or
unrelated parts of both. Fig. 3 shows such 2-point crossover
patterns which do not preserve the layer-wise structure and
works on this two-dimensional data as if it were a monodi-
mensional array.

• layer: given this structure of the test case, we define a re-
combination as a layer-wise 2-point crossover, meaning that
it merges 2 individuals by taking the initial and final layers
(with both permittivity and thickness) of one of them, and
the middle layers of the other. Fig. 4 shows such a 2-point
crossover pattern preserving the layer-wise structure.

• mix: this implements both randommutations among a Gauss-
ian noise, a Cauchy noise, a localized Gaussian noise, a layer-
wise translation, a jump of up to 5 layers to another location,
as well as random recombination among the structured and
non-structured cases. Note that only Pairwise-ESwill make
use of the custom mutations. Also, in Pairwise-ES, the ran-
dom choice of permutation and mutations is controlled by
weights that mutate as well.

Snippet 9 shows how registering customized mutation and re-
combination operators to the Array Parameter param is easily per-
formed with the Nevergrad parametrization API. The Crossover
class corresponds to the layer-wise crossover (Fig 4) and Ravel-
Crossover the standard 2-points case, as though the data was
monodimensional (Fig 3). Creating a brand new mutation or recom-

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

Figure 3: Two examples of crossover on twelve layers of
two variables (permittivities 𝑝 and thicknesses 𝑡 per layer),
breaking the layer structure. Each color corresponds to a dif-
ferent parent. Top: a parent (in grey) provided 4 variables
and another one provided all the rest (in white). Bottom:
a parent provided 10 variables (in grey) and another one
provided all the rest (in white). The two-dimensional layer
structure is ignored and individuals are combined as if the
data were 1-dimensional.

𝑝0 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝10 𝑝11

𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10 𝑡11

Figure 4: Example of crossover on twelve layers of two vari-
ables keeping the layer structure. Each color corresponds
to a different parent. Each layer of the child comes entirely
from one parent or the other, not a mixture of both.

bination is also easy, see for instance Snippet 10 for a simplified
version of the Translation mutation used above. Fig. 5 shows the

obtained loss with respect to the budget, averaged over 32 repeti-
tions. This figure can be reproduced with the following command
line in version 0.4.1 of Nevergrad:

python −m neverg rad . benchmark \
b r a g g _ s t r u c t u r e \
−−seed =12 \
−− r e p e t i t i o n s =32

As a reminder, the only algorithms which take into account the cus-
tom parametrization are Param-DE and Pairwise-ES. Their name is
appended with 2pt, layer, mix depending on the used parametriza-
tion. The lower the loss the better, hence Pairwise-ES,mix per-
forms significantly better than all other algorithms at the largest
budget, the second best having a loss twice as large as Pairwise-
ES,mix.

3.4 Observations
The experiment is instructive in multiple aspects:

• structure is helpful: as can be expected on this structured prob-
lem, standard DE performs very significantly poorer than all
its other variants. In this standard version, the crossover is
performed element-wise, randomly choosing one element
from one parent of the other. On the other hand, other ver-
sions perform either a standard or a "layer-wise" 2-point

Open Source Evolutionary Structured Optimization GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

Figure 5: Loss on 40-layers Bragg Photonics function (dimension=80) with respect to the budget, averaged over 32 repetitions
(standard deviation estimates are provided in transparency)

crossover, which cross over chunks of data, hence preserv-
ing the continuous structure and yielding massive improve-
ments.

• adapted recombinations are helpful: Pairwise-ES performs
much better with the layer-wise structured recombination.
Indeed the loss at iteration 1𝑒6 is 4.0𝑒−3 for Pairwise-ES,2pt
while it is close to twice lower and therefore better for
Pairwise-ES,layer

• best adapted recombination depends on the optimizer : while
the layer-wise recombination is helpful for Pairwise-ES, it
seems to be harmful for Param-DE. Indeed Param-DE,2pt
is the second best optimizer on this testbed, while Param-
DE,layer loss is more than 4 times higher. The type of re-
combination seems to sway the optimizer in unpredictable
ways.

• mixing mutations/recombinations can alleviate the above is-
sue: while being slightly slower to improve, Param-DE,mix
performs nearly as well as Param-DE,2pt, which highlights
that choosing a recombination option randomly is close to
choosing the best option. For Pairwise-ES,mix, which also
has random mutation, and adaptive weights for choosing
both mutation and recombination, the convergence is slower
but outperforms all other variants in the end. On a side note,
it can be expected that the best mutation/recombination is
not the same during the first iterations and the last itera-
tions, but this would require more investigations. In any case,
providing several options seems to be very effective.

4 RELATED PLATFORMS
Nevergrad includes both multiple optimizers and testbeds to evalu-
ate them upon, which make it distinctive to other frameworks. It
now includes a structure for specifying search spaces, including
mutations and recombination operators that can be used by many
distinct algorithms.

4.1 Optimization algorithms platforms
Many specific libraries of algorithms are available open source [3,
13, 19, 23, 30]. Several of these existing libraries are interfaced
within Nevergrad, and other optimizers are natively implemented
in the package, so that it includes optimizers from all families of
algorithms: mathematical programming techniques such as Cobyla
[25] and sequential quadratic programming [2], Nelder-Mead [24],
Differential Evolution [28], Particle Swarm Optimization [21], vari-
ous evolution strategies [5], Population control [17], Fast genetic
algorithms [10] and Uniform mixing of mutation rate [8]. It also in-
cludes helpers formultiobjective optimization and basic constrained
optimization. The framework can be used both in a minimize for-
mat for simplicity, or in the ask and tell modern form [7], and users
can adjust the number of workers. Finally, as the focus of this paper
shows, Nevergrad now has an API to provide custom mutations
and recombinations, so has to handle structured problems in ways
none of these libraries are currently able to.

4.2 Test platforms
Related test platforms include BBOB [15], Cutest [12], MLDA [11],
competitions at GECCO [2] and CEC [22]. Contrarily to simplifying

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico J. Rapin et al.

Snippet 9: Registering custom mutations/recombinations:
mix

cus tom r e c omb i n a t i o n mix
randomly c h o o s i n g be tween :
recomb = ng . p . Choice ([

C r o s s o v e r p e r v e r t i c a l band
ng . p . muta t ion . Cros sove r (a x i s = 1) ,
C r o s s o v e r a s i f t h e da ta
were 1− d im en s i o n a l
ng . p . muta t ion . Rave lC ro s sove r ()

])
param . s e t _ r e c omb i n a t i o n (recomb)

cus tom muta t i on mix , randomly c h o o s i n g :
muts = ng . p . Choice ([

s t a n d a r d Gaus s i an muta t i on
" g au s s i an " ,
More f r e q u e n t l a r g e mu t a t i o n s
" cauchy " ,
Jumping l a y e r s around :
e . g . l a y e r s 2 and 3 c o u l d be removed
and i n s e r t e d a f t e r l a y e r 6
ng . p . muta t ion . Jumping (a x i s = 1) ,
A l l t h e l a y e r s a r e t r a n s l a t e d
ng . p . muta t ion . T r a n s l a t i o n (a x i s =1)
Only 10 l a y e r s mutate wi th
a Gaus s i an muta t i on
ng . p . muta t ion . Lo ca lGaus s i an (axes =1 ,

s i z e =10)
])
param . s e t _mu t a t i on (custom=muts)

assumptions made in some existing frameworks, noise is not nec-
essarily considered negligible around the optimum in Nevergrad,
and hence the distinction between exploration (through the ask
method) and recommendation (through the recommend method).

Compared to Cutest, Nevergrad takes care of easy interfacing
and includes noise handling, but does not include constraints except
simple ones. Nevergrad includes separable and rotated functions
as BBOB, but also partially rotated function as in [22] and critical
variables as discussed in [6]. Nevergrad includes various real-world
objective functions Gallagher and Saleem [11], as well as the Photon-
ics problems mentioned above, some traveling salesman problems,
some unit commitment (i.e. power systems) challenges.

5 CONCLUSION
Nevergrad is a flexible framework, making it easy to define custom
optimizers, and application-specific mutations and recombinations
which can be used by existing or new optimizers. Using mixture
of such mutations and recombinations is also made easy, and has
proven effective for adapting to different settings.

In the future, we are interested in including more structured
testbeds to evaluate optimization methods as well as newmutations
and recombinations. This will also help improving the design of the

Snippet 10: Definition of the translation mutation
c l a s s T r a n s l a t i o n (Mutat ion) :

" " " Given an array , r o l l t h e da ta a l ong
one a x i s f o r a random number o f s amp l e s .

P a r ame t e r s
−−−−−−−−−−
a x i s : i n t

t h e a x i s a l ong which t h e
t r a n s l a t i o n / r o l l must happen

" " "

def _ _ i n i t _ _ (
s e l f ,
a x i s : in t = 0

) −> None :
super () . _ _ i n i t _ _ (a x i s = a x i s)

def _app l y_a r r ay (
s e l f ,
a r r a y s : Sequence [np . ndar ray]

) −> np . ndar ray :
" " " Apply t h e t r a n s l a t i o n on an a r r ay
" " "
ch e c k v a r i a b l e s
and draw t h e random s h i f t
a s s e r t len (a r r a y s) == 1
a x i s = s e l f . p a r ame te r s [" a x i s "] . v a l u e
da t a = a r r a y s [0]
rng = s e l f . r andom_s ta t e
s h i f t = rng . r a n d i n t (d a t a . shape [a x i s])
app ly t h e r o l l / t r a n s l a t i o n
out = np . r o l l (

data ,
s h i f t ,
a x i s = a x i s

)
return out

framework and make it more robust and more flexible. For example,
the experiments in [1] suggest that using structured operators for
images is relevant - it makes sense to work on images using their
two-dimensional structure.

REFERENCES
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias

Hein. 2019. Square Attack: a query-efficient black-box adversarial attack via
random search. arXiv:cs.LG/1912.00049

[2] SME Artelys. 2015. https://www.artelys.com/news/159/16/
KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition

[3] Maximilian Balandat, Brian Karrer, Daniel R Jiang, Samuel Daulton, Benjamin
Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2019. BoTorch: Pro-
grammable Bayesian Optimization in PyTorch. arXiv preprint arXiv:1910.06403
(2019).

[4] Mamadou Aliou Barry, Vincent Berthier, Marie-Claire Cambourieux, Rémi Pollès,
Bodo D. Wilts, Olivier Teytaud, Emmanuel Centeno, Nicolas Biais, and Antoine
Moreau. 2018. Evolutionary Algorithms Converge towards Evolved Biological
Photonic Structures. (Aug. 2018).

http://arxiv.org/abs/cs.LG/1912.00049
https://www.artelys.com/news/159/16/KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition
https://www.artelys.com/news/159/16/KNITRO-wins-the-GECCO-2015-Black-Box-Optimization-Competition

Open Source Evolutionary Structured Optimization GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

[5] Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution Strategies - A
Comprehensive Introduction. Natural Computing 1, 1 (May 2002), 3–52. https:
//doi.org/10.1023/A:1015059928466

[6] Olivier Bousquet, Sylvain Gelly, Kurach Karol, Olivier Teytaud, and Damien Vin-
cent. 2017. Critical Hyper-Parameters: No Random, No Cry. CoRR abs/1706.03200
(2017).

[7] Yann Collette, Nikolaus Hansen, Gilles Pujol, Daniel Salazar, and Rodolphe
Le Riche. 2010. On Object-Oriented Programming of Optimizers - Examples in
Scilab. (01 2010). https://doi.org/10.1002/9781118600153.ch14

[8] Duc-Cuong Dang and Per Kristian Lehre. 2016. Self-adaptation of Mutation Rates
in Non-elitist Populations. In Parallel Problem Solving from Nature - PPSN XIV -
14th International Conference. 803–813.

[9] L. Devroye. 1972. The compound random search. In Proceedings of the Interna-
tional Symposium on Systems Engineering and Analysis. 195–210.

[10] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. 2017. Fast
Genetic Algorithms. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ’17). ACM, 777–784.

[11] Marcus Gallagher and Sobia Saleem. 2018. Exploratory Landscape Analysis of
the MLDA Problem Set. In PPSN’18 workshop.

[12] Nicholas Gould, Dominique Orban, and Philippe Toint. 2015. CUTEst: a Con-
strained and Unconstrained Testing Environment with safe threads for mathe-
matical optimization. Computational Optimization and Applications 60, 3 (2015),
545–557.

[13] NikolausHansen. 2016. The CMAEvolution Strategy: A Tutorial. arXiv:1604.00772
[cs, stat] (April 2016). arXiv:cs, stat/1604.00772

[14] Nikolaus Hansen and Andreas Ostermeier. 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. Evolutionary Computation 9, 2 (June
2001), 159–195. https://doi.org/10.1162/106365601750190398

[15] Nikolaus Hansen, Raymond Ros, Nikolas Mauny, Marc Schoenauer, and Anne
Auger. 2011. Impacts of Invariance in Search: When CMA-ES and PSO Face
Ill-Conditioned and Non-Separable Problems. Applied Soft Computing 11 (2011),
5755–5769.

[16] Daniel Haziza. 2020. HiPlot - High Dimensional Interactive Plotting.
https://github.com/facebookresearch/hiplot.

[17] Michael Hellwig and Hans-Georg Beyer. 2016. Evolution Under Strong Noise:
A Self-Adaptive Evolution Strategy Can Reach the Lower Performance Bound
- The pcCMSA-ES. In Parallel Problem Solving from Nature – PPSN XIV, Julia
Handl, Emma Hart, Peter R. Lewis, Manuel López-Ibáñez, Gabriela Ochoa, and
Ben Paechter (Eds.). Vol. 9921. Springer International Publishing, Cham, 26–
36. https://doi.org/10.1007/978-3-319-45823-6_3 Series Title: Lecture Notes in
Computer Science.

[18] Abid Hussain, Yousaf shad Muhammad, Nauman Sajid, Ijaz Hussain, Alaa
Shoukry, and Showkat Gani. 2017. Genetic Algorithm for Traveling Salesman
Problem with Modified Cycle Crossover Operator. Computational Intelligence
and Neuroscience 2017 (08 2017). https://doi.org/10.1155/2017/7430125

[19] M. Keijzer, J. J. Merelo, G. Romero, and Marc Schoenauer. 2002. "Evolving Objects:
A General Purpose Evolutionary Computation Library". In Artificial Evolution,
Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, and Marc Schoenauer
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 231–242.

[20] J. Kennedy and R. Eberhart. 1995. Particle Swarm Optimization. In Proceedings of
ICNN’95 - International Conference on Neural Networks, Vol. 4. IEEE, Perth, WA,
Australia, Australia, 1942–1948 vol.4. https://doi.org/10.1109/ICNN.1995.488968

[21] James Kennedy and Russell C. Eberhart. 1995. Particle swarm optimization. In
Proceedings of the IEEE International Conference on Neural Networks. 1942–1948.

[22] Xiaodong Li, Ke Tang, Mohammad N. Omidvar, Zhenyu Yang, and Kai Qin. 2013.
Benchmark Functions for the CEC’2013 Special Session and Competition on
Large-Scale Global Optimization.

[23] Ruben Martinez-Cantin. 2014. BayesOpt: A Bayesian Optimization Library
for Nonlinear Optimization, Experimental Design and Bandits. Journal of Ma-
chine Learning Research 15, 115 (2014), 3915–3919. http://jmlr.org/papers/v15/
martinezcantin14a.html

[24] John A. Nelder and Roger Mead. 1965. A simplex method for function minimiza-
tion. Computer Journal 7 (1965), 308–313.

[25] M. J. D. Powell. 1994. A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation. Springer Netherlands,
Dordrecht, 51–67.

[26] Jérémy Rapin and Olivier Teytaud. 2018. Nevergrad - A Gradient-Free Optimiza-
tion Platform. https://GitHub.com/FacebookResearch/Nevergrad.

[27] M. Schumer and K. Steiglitz. 1968. Adaptive step size random search. IEEE Trans.
Automat. Control 13, 2 (1968), 270–276.

[28] Rainer Storn and Kenneth Price. 1997. Differential Evolution &Ndash; A Simple
and Efficient Heuristic for Global Optimization over Continuous Spaces. J. of
Global Optimization 11, 4 (Dec. 1997), 341–359.

[29] Rainer Storn and Kenneth Price. 1997. Differential Evolution – A Simple and
Efficient Heuristic for Global Optimization over Continuous Spaces. Journal
of Global Optimization 11, 4 (Dec. 1997), 341–359. https://doi.org/10.1023/A:
1008202821328

[30] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K.
Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand
erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, and year = "2019" month = "Jul" eid = arXiv:1907.10121 pages =
arXiv:1907.10121 archivePrefix = arXiv eprint = 1907.10121 primaryClass =
cs.MS adsurl = https://ui.adsabs.harvard.edu/abs/2019arXiv190710121V adsnote
= Provided by the SAO/NASA Astrophysics Data System title = "SciPy 1.0–
Fundamental Algorithms for Scientific Computing in Python", journal = arXiv
e-prints. [n.d.]. ([n. d.]).

https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1002/9781118600153.ch14
http://arxiv.org/abs/cs, stat/1604.00772
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/978-3-319-45823-6_3
https://doi.org/10.1155/2017/7430125
https://doi.org/10.1109/ICNN.1995.488968
http://jmlr.org/papers/v15/martinezcantin14a.html
http://jmlr.org/papers/v15/martinezcantin14a.html
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328

	Abstract
	1 Introduction
	2 Using Nevergrad
	2.1 Optimizer
	2.2 Parameter: defining the search space & its operators
	2.3 Graphical export of optimization runs

	3 Application - Photonics
	3.1 Problem description
	3.2 Optimization requirements
	3.3 Benchmark setup
	3.4 Observations

	4 Related platforms
	4.1 Optimization algorithms platforms
	4.2 Test platforms

	5 Conclusion
	References

