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ABSTRACT

We explore various methods for computing sentence representations from pre-
trained word embeddings without any training, i.e., using nothing but random
parameterizations. Our aim is to put sentence embeddings on more solid foot-
ing by 1) looking at how much modern sentence embeddings gain over random
methods—as it turns out, surprisingly little; and by 2) providing the field with
more appropriate baselines going forward—which are, as it turns out, quite strong.
We also make important observations about proper experimental protocol for sen-
tence classification evaluation, together with recommendations for future research.

1 INTRODUCTION

A sentence embedding is a vector representation of the meaning of a sentence, often created by a
transformation of word embeddings through a composition function. This function is often non-
linear and recurrent in nature, and usually the word embeddings are initialized with pre-trained em-
beddings. Well-known examples of sentence embeddings include SkipThought (Kiros et al., 2015)
and InferSent (Conneau et al., 2017). The purpose of sentence embeddings is to have the meaning
of a sentence encoded into a compact representation where it is readily available for downstream ap-
plications. For instance it could provide features for training a classifier or a distant metric could be
applied to two representations to compute the semantic similarity of their corresponding sentences.
Sentence embeddings can be trained with either an unsupervised or supervised objective, and they
are often evaluated using transfer tasks, where a ahallow classifier is trained on top of the learned
sentence encoder (which is kept fixed). There has been a lot of recent interest in trying to understand
better what these sentence embeddings learn (Adi et al., 2016; Linzen et al., 2016; Conneau et al.,
2018; Zhu et al., 2018).

The natural language processing community does not yet have a clear grasp on the relationship be-
tween word and sentence embeddings: it is unclear how much trained sentence-encoding architec-
tures improve over the raw word embeddings, and what aspect of such architectures is responsible
for any improvement. Indeed, state-of-the-art word embeddings on their own perform quite well
with simple pooling mechanisms, as reported by Wieting et al. (2015); Arora et al. (2017) and Shen
et al. (2018). Given the tremendous pace of research on sentence representations, it is important to
establish solid baselines for others to build on.

It has been observed that bidirectional LSTMs with max-pooling perform surprisingly well even
without any training whatsoever (Conneau et al., 2017; 2018), leading to claims that such architec-
tures “encode priors that are intrinsically good for sentence representations” (Conneau et al., 2018),
similar to convolutional networks for images (Ulyanov et al., 2017). Inspired by these observations,
we propose to examine the following question: given a set of word embeddings, how can we max-
imize classification accuracy on the transfer tasks without any training, i.e. without updating any
parameters except for those in the transfer task-specific linear classifier trained on top of the rep-
resentation. SkipThought famously took around one month to train, while InferSent requires large
amounts of annotated data—we examine to what extent we can match the performance of these
systems by exploring different ways for combining nothing but the pre-trained word embeddings.1

∗Work done as an intern at Facebook AI Research.
1Code available at https://github.com/facebookresearch/randsent.
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We go down a well-paved avenue of exploration in the machine learning research community, and
exploit an insight originally due to Cover (1965): “A complex pattern-classification problem, cast
in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-
dimensional space, provided that the space is not densely populated.” That is, we examine three
types of models for obtaining randomly computed sentence representations from pre-trained word
embeddings: bag of random embedding projections, randomly initialized recurrent networks and
echo state networks.

Our goal is not to obtain a new state of the art, but to put current state of the art methods on more
solid footing by 1) looking at how much they gain compared to random methods; and 2) providing
the field with more solid baselines going forward. We make several important observations about
proper experimental protocol for sentence classification evaluation; and finish with a list of take-
away recommendations.

2 RELATED WORK

Sentence embeddings are receiving a lot of attention. Many approaches have been proposed, varying
in their use of both training data and training objectives. Methods include autoencoders (Socher
et al., 2011; Hill et al., 2016) and other learning frameworks using raw text (Le & Mikolov, 2014;
Pham et al., 2015; Jernite et al., 2017; Pagliardini et al., 2017), a collection of books (Kiros et al.,
2015), labelled entailment corpora (Conneau et al., 2017), image-caption data (Kiela et al., 2017),
raw text labelled with discourse relations (Nie et al., 2017), or parallel corpora (Wieting & Gimpel,
2017). Multi-task combinations of these approaches (Subramanian et al., 2018; Cer et al., 2018) have
also been proposed. Progress has been swift, but lately we have started to observe some troubling
trends in how research is conducted, in particular with respect to properly identifying the sources of
empirical gains (see also Lipton & Steinhardt (2018)).

There was an issue with non-standard evaluation methods, for which SentEval (Conneau & Kiela,
2018) and then GLUE (Wang et al., 2018) were created. One often overlooked aspect of sentence
representation evaluation, for example, is that logistic regression classifiers and multi-layer percep-
trons (MLP) are not the same thing. To single out an example, the recent paper by Shen et al. (2018),
which aims to “give baselines more love”, does not compare against LSTMs with the exact same
pre-processing and range of hyperparameters, in effect ignoring its own baselines, and uses a custom
designed MLP, sweeping over many hyperparameters unique to their setup with different embedding
dimensionsionalities.

Even when comparing InferSent and SkipThought, it is not entirely clear where differences come
from: the better pre-trained word embeddings; the different architecture; the different objective; the
layer normalization—e.g. what would happen if we trained a bidirectional LSTM with max-pooling
using GloVe embeddings (i.e., InferSent’s architecture) with a SkipThought objective or added layer
normalization to InferSent? The nowadays surprisingly poor performance of the models in Hill et al.
(2016) can at least partly be explained because 1) they use poorer (older) word embeddings; and 2)
FastSent sentence representations are of the same dimensionality as the input word embeddings,
while they are compared in the same table to much higher-dimensional representations. Obviously,
a logistic regression classifier on top of a higher-dimensional input has more parameters too, giving
such models an unfair advantage. In part, doing such in-full comparisons is simply not feasible,
and often not appreciated by reviewers anyway, so we can hardly blame the authors of these papers.
That said, we wholeheartedly agree that baselines need more love, befitting a good tradition in NLP
(Wang & Manning, 2012): with this work we hope to establish even stronger baselines for future
work and try to estimate how much performance is being added by training sentence embeddings on
top of pre-trained word embeddings.

There has been a lot of recent interest in trying to understand what linguistic knowledge is encoded
in word and sentence embeddings, for instance in machine translation (Belinkov et al., 2017; Sen-
nrich, 2016; Dalvi et al., 2017), with a focus on evaluating RNNs or LSTMs (Linzen et al., 2016;
Hupkes et al., 2018) or even sequence-to-sequence models (Lake & Baroni, 2018). Various probing
tasks (Ettinger et al., 2016; Adi et al., 2016; Conneau et al., 2018) were designed to try to understand
what you can “cram into a vector” for representing sentence meaning. We show that a lot of informa-
tion may be crammed into vectors using randomly parameterized combinations of pre-trained word
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embeddings: that is, most of the power in modern NLP systems is derived from having high-quality
word embeddings, rather than from having better encoders.

The idea of using random weights is almost as old as neural networks, ultimately going back to ideas
in multi-layer perceptrons with fixed randomly initialized first layers (Gamba et al., 1961; Borsellino
& Gamba, 1961; Baum, 1988), or what Minsky and Papert call Gamba perceptrons (Minsky &
Papert, 2017). The idea of fixing a subset of the network was made more explicit in (Schmidt et al.,
1992; Pao et al., 1994), which some people have started to call extreme learning machines (Huang
et al., 2006).2

Random features in machine learning are often used for low-rank approximation (Vempala, 2005), as
per the Johnson-Lindenstrauss lemma; exploiting the useful properties of random matrices (Mehta,
2004). Random “kitchen sink” features have become a seminal approach in the machine learning
literature (Rahimi & Recht, 2008; 2009). Similar ideas underlie e.g. double-stochastic gradient
methods (Dai et al., 2014). In fact, it is well-known that random weights do well, as for example
shown in computer vision with respect to convnets (Jarrett et al., 2009; Saxe et al., 2011). Similarly,
the importance of random initializations has been examined in depth (Sutskever et al., 2013). In our
case, we use random projections for higher-rank feature expansion of low-rank dense pre-trained
word embeddings, exploiting Cover’s theorem (Cover, 1965). An encoder like this does not require
any training, unlike other sentence encoders such as SkipThought and InferSent. Comparing those
methods to our random sentence encoders provides valuable insight into how much of a performance
improvement we have actually gained from training for a long time (in the case of SkipThought) or
training on expensive annotated data (in the case of InferSent which is trained on the Stanford Nat-
ural Language Inference (SNLI) Corpus Bowman et al. (2015), a large textual entailment dataset.).

The same idea of using fixed random computations underlies reservoir computing (Lukoševičius &
Jaeger, 2009) and echo-state networks (Jaeger, 2001). In reservoir computing, inputs are fed into
a fixed, random, dynamical system called a reservoir that maps the input into a high dimensional
space. Then a trainable linear transformation of this high dimensional space is learned to predict
some output signal. Echo-state networks are a specific type of reservoir computing and are further
described in Section 3.1.3.

Reservoir computing has been used previously in Natural Language Processing (NLP), though it is
not common in the literature. (Frank, 2006a;b) investigate whether ESNs are capable of displaying
the systematicity in natural language. (Tong et al., 2007; Hinaut & Dominey, 2012) investigate ESNs
ability for learning grammitcal structure. Lastly, Daubigney et al. (2013) uses ESNs to find efficient
teaching strategies.

3 APPROACH

In this paper, we explore three architectures that produce sentence embeddings from pre-trained
word embeddings, without requiring any training of the encoder itself. These sentence embeddings
are then used as features for a collection of downstream tasks. The downstream tasks are all trained
with a logistic regression classifier using the default settings of the SentEval framework (Conneau
& Kiela, 2018). The parameters of this classifier are the only ones that are updated during training
(see Section 3.2 below).

3.1 RANDOM SENTENCE ENCODERS

We are concerned with obtaining a good sentence representation h that is computed using some func-
tion f parameterized by θ over pre-trained input word embeddings e ∈ L, i.e. h = fθ(e1, . . . , en)
where ei is the embedding for the i-th word in a sentence of length n. Typically, sentence en-
coders learn θ, after which it is kept fixed for the transfer tasks. InferSent represents a sentence as
f = max(BiLSTM(e1, . . . , en)) and optimizes the parameters using a supervised cross-entropy ob-
jective for predicting one of three labels from a combination of two sentence representations: entail-
ment, neutral or contradictive. SkipThought represents a sentence as f = GRUn(e1, . . . , en), with
the objective of being able to decode the previous and next utterance using negative log-likelihood
from the final (i.e., n-th) hidden state.

2See http://elmorigin.wixsite.com/originofelm for an interesting discussion of ELM.
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InferSent requires large amounts of expensive annotation, while SkipThought takes a very long
time to train. Here, we examine different ways of parameterizing f for representing the sentence
meaning, without any training of θ. This means we do not require any labels for supervised training,
nor do we need to train the sentence encoder for a long time with an unsupervised objective. We
experiment with three methods for computing h: Bag of random embedding projections, Random
LSTMs, and Echo State Networks. In this section, we describe the methods in more detail. In the
following sections, we show that our methods lead to surprisingly good results, shedding new light
on sentence representations, and establishing strong baselines for future work.

3.1.1 BAG OF RANDOM EMBEDDING PROJECTIONS (BOREP)

The first family of architectures we explore consists of simply applying a single random projection
in a standard bag-of-words (or more accurately, bag-of-embeddings) model. We randomly initialize
a matrix W ∈ RD×d, where D is the dimension of the projection and d is the dimension of our
input word embedding. The values for the matrix are sampled uniformly from [− 1√

d
, 1√

d
], which is

a standard initialization heuristic used in neural networks (Glorot & Bengio, 2010). The sentence
representation is then obtained as follows:

h = fpool(Wei),

where fpool is some pooling function, e.g. fpool(x) =
∑

(x), fpool(x) = max(x) (max pooling)
or fpool(x) = |x|−1

∑
(x) (mean pooling). Optionally, we impose a nonlinearity max(0,h). We

experimented with imposing positional encoding for the word embeddings, but did not find this to
help.

3.1.2 RANDOM LSTMS

Following InferSent, we employ bidirectional LSTMs, but in our case without any training. Conneau
et al. (2017) reported good performance for the random LSTM model on the transfer tasks. The
LSTM weight matrices and their corresponding biases are initialized uniformly at random from
[− 1√

d
, 1√

d
], where d is the hidden size of the LSTM. In other words, the architecture here is the

same as that of InferSent modulo the type of pooling used:

h = fpool(BiLSTM(e1, . . . , en)).

3.1.3 ECHO STATE NETWORKS

Echo State Networks (ESNs) (Jaeger, 2001) were primarily designed for sequence prediction prob-
lems, where given a sequence X , we predict a label y for each step in the sequence. The goal is to
minimize the error between the predicted ŷ and the target y at each timestep. Formally, an ESN is
described using the following update equations:

h̃i = fpool(W
iei +Whhi−1 + bi)

hi = (1− α)hi−1 + αh̃i,

where W i, Wh, and bi are randomly initialized and are not updated during training. The parameter
α ∈ (0, 1] governs the extent to which the previous state representation is allowed to leak into
the current state. The only learned parameters in an ESN are the final weight matrix, W o and
corresponding bias bo, which are together used to compute a prediction ŷi for the ith label yi:

ŷi =W o[ei;hi] + bo.

We diverge from the typical per-timestep ESN setting, and instead use the ESN to produce a random
representation of a sentence. We use a bidirectional ESN, where the reservoir states, hi, are con-
catenated for both directions. We then pool over these states to obtain the sentence representation:
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Model Dim MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOE 300 77.3(.2) 78.6(.3) 87.6(.1) 91.3(.1) 80.0(.5) 81.5(.8) 80.2(.1) 78.7(.1) 72.9(.3) 70.5(.1)

BOREP 4096 77.4(.4) 79.5(.2) 88.3(.2) 91.9(.2) 81.8(.4) 88.8(.3) 85.5(.1) 82.7(.7) 73.9(.4) 68.5(.6)
RandLSTM 4096 77.2(.3) 78.7(.5) 87.9(.1) 91.9(.2) 81.5(.3) 86.5(1.1) 85.5(.1) 81.8(.5) 74.1(.5) 72.4(.5)
ESN 4096 78.1(.3) 80.0(.6) 88.5(.2) 92.6(.1) 83.0(.5) 87.9(1.0) 86.1(.1) 83.1(.4) 73.4(.4) 74.4(.3)

InferSent-1 = paper, G 4096 81.1 86.3 90.2 92.4 84.6 88.2 88.3 86.3 76.2 75.6
InferSent-2 = fixed pad, F 4096 79.7 84.2 89.4 92.7 84.3 90.8 88.8 86.3 76.0 78.4
InferSent-3 = fixed pad, G 4096 79.7 83.4 88.9 92.6 83.5 90.8 88.5 84.1 76.4 77.3
∆ InferSent-3, BestRand - 1.6 3.4 0.4 0.0 0.5 2.0 2.4 1.0 2.3 2.9

ST-LN 4800 79.4 83.1 89.3 93.7 82.9 88.4 85.8 79.5 73.2 68.9
∆ ST-LN, BestRand - 1.3 3.1 0.8 1.1 -0.1 0.5 -0.3 -3.6 -0.9 -5.5

Table 1: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r) on all ten downstream tasks where all models have 4096 dimensions with the exception of
BOE (300) and ST-LN (4800). Standard deviations are show in parentheses. InferSent-1 is the paper
version with GloVe (G) embeddings, InferSent-2 has fixed padding and uses FastText (F) embed-
dings, and InferSent-3 has fixed padding and uses GloVe embeddings. We also show the difference
between the best random architecture (BestRand) and InferSent-3 and ST-LN, respectively. The av-
erage performance difference between the best random architecture and InferSent-3 and ST-LN is
1.7 and -0.4 respectively.

h = max(ESN(e1, . . . , en)).

The property of echo state networks that sets them apart from randomly initialized classical re-
current networks, and allows for better performance, is the echo state property. The echo state
property (Jaeger, 2001) claims that the state of the reservoir should be determined uniquely from the
input history, and the effects of a given state asymptotically diminish in favor of more recent states.

In practice, one can satisfy the echo state property in most cases by ensuring that the spectral radius
of Wh is less than 1 (Lukoševičius & Jaeger, 2009). The spectral radius, i.e., the maximal absolute
eigenvalue ofWh, is one of many hyperparameters to be tuned when using ESNs. Others include the
activation function, the amount of leaking between states, the sparsity ofWh, whether to concatenate
the inputs to the reservoir states, how to sample the values for W i and other factors. Lukoševičius
& Jaeger (2009) gives a good overview of what hyperparameters are most critical when designing
ESNs.

3.2 EVALUATION

In our experiments, we evaluate on a standard sentence representation benchmark using SentE-
val (Conneau & Kiela, 2018). SentEval allows for evaluation on both downstream NLP datasets
as well as probing tasks, which measure how accurately a representation can predict linguistic in-
formation about a given sentence. The set of downstream tasks we use for evaluation comprises
sentiment analysis (MR, SST), question-type (TREC), product reviews (CR), subjectivity (SUBJ),
opinion polarity (MPQA), paraphrasing (MRPC), entailment (SICK-E, SNLI) and semantic relat-
edness (SICK-R, STSB). The probing tasks consist of those in Conneau et al. (2018). We use the
default SentEval settings (see Appendix A).

4 RESULTS

We compare primarily to two well-studied sentence embedding models, InferSent (Conneau et al.,
2017) and SkipThought (Kiros et al., 2015) with layer normalization (Ba et al., 2016). We point out
that there are recently introduced multi-task sentence encoders that improve performance further,
but these either do not use pre-trained word embeddings (GenSen (Subramanian et al., 2018)), or
don’t use SentEval (Universal Sentence Encoders (Cer et al., 2018)). Since both architectures are
inspired by InferSent and SkipThought, and combine their respective supervised and unsupervised
objectives, we limit our comparison to the original models.
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We compute the average accuracy/Pearson’s r, along with the standard deviation, over 5 different
seeds for the random methods, and tune on validation for each task. See Appendix A for a discussion
of the used hyperparameters.

Table 1 reports the results on the selected SentEval benchmark tasks, where all models have 4096
dimensions (with the exception of SkipThought, which has 4800). We compare to three different
InferSent models: the results from the paper, which had non-standard pooling over padding symbols
(InferSent-1); the results from the InferSent GitHub,3 with fixed padding, using FastText instead of
GloVe (InferSent-2); the results from an InferSent model we trained ourselves,4 with fixed padding,
using GloVe embeddings (InferSent-3) (see Appendix C for a more detailed discussion of padding
and pooling).5 Note that the comparison to layer-normalized SkipThought is not entirely fair, be-
cause it uses different (and older) word embeddings, but a higher dimensionality. We hypothesize
that SkipThought might do a lot better if it had been trained with better pre-trained word embed-
dings.

First of all, we observe that all random sentence encoders generally improve over bag-of-
embeddings. This is not entirely surprising, but it is important to note that the proper baseline for
an n-dimensional sentence encoder is an n-dimensional BOREP representation, not an (m < n)-
dimensional BOE representation. BOREP does markedly better than BOE, constituting a much
stronger baseline (and requiring no additional computation besides a simple random projection).

When comparing the random sentence encoders, we observe that ESNs outperform BOREP and
RandLSTM on all tasks. It is unclear whether (randomly initialized) LSTMs exhibit the echo state
property, but the main reason for the improvement is likely that in our experiments ESNs had more
hyperparameters available for tuning.

When comparing to InferSent, in which case we should look at InferSent-3 in particular (as it has
fixed padding and also uses GloVe embeddings), we do see a clear difference on some of the tasks,
showing that training does in fact help. The performance gains over the random methods, however,
are not as big as we might have hoped, given that InferSent requires annotated data and takes time to
train, while the random sentence encoders can be applied immediately. For SkipThought, we discern
a similar pattern, where the gain over random methods (which do have better word embeddings) is
even smaller. While SkipThought took a very long time to train, in the case of SICK-E you would
actually even be better off simply using BOREP, while ESN outperforms SkipThought on five of the
10 tasks.

Note that in these experiments we do model selection over per-task validation set performance, but
Appendix B shows that the method is robust, as we could also have used the best-overall model on
validation and obtained similar results.

Keep in mind that the point of these results is not that random methods are better than these other en-
coders, but rather that we can get very close and sometimes even outperform those methods without
any training at all, from just using the pre-trained word embeddings.

4.1 TAKING COVER TO THE MAX

If we take Cover’s theorem to the limit, we can project to an even higher-dimensional representa-
tion as long as we can still easily fit things onto a modern GPU: hence, we project to 4096 × 6
(24576) dimensions instead of the 4096 dimensions we used in Table 1. In order to make for a fair
comparison, we can also randomly project InferSent and SkipThought representations to the same
dimensionality and examine performance.

Table 2 shows the results. Interestingly, the gap seems to get smaller, and the projection in fact
appears to be detrimental to InferSent and SkipThought performance. The numbers reported in the
table are competitive with (older) much more sophisticated trained methods.

3https://github.com/facebookresearch/InferSent
4We trained this model using the hyperparameters described by Conneau et al. (2017). Training on both

SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018), we achieved a test performance on SNLI of
84.4 when max-pooling over padded words and 83.9 when max-pooling over the length of the sentences.

5We note that GenSen uses the same pooling as Infersent-1, and we show in Appendix C that this has a
significant effect on performance.
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Figure 1: Performance while varying dimensionality, for the three random sentence encoders over
all ten downstream tasks.

Model MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOE 77.3(.2) 78.6(.3) 87.6(.1) 91.3(.1) 80.0(.5) 81.5(.8) 80.2(.1) 78.7(.1) 72.9(.3) 70.5(.1)

BOREP 78.6(.2) 79.9(.4) 88.8(.1) 93.0(.1) 82.5(.8) 89.5(1.3) 85.9(.0) 84.3(.3) 73.7(.9) 68.3(.5)
RandLSTM 78.2(.2) 79.9(.4) 88.2(.2) 92.8(.2) 83.2(.4) 88.4(.7) 86.6(.1) 83.0(.9) 74.7(.4) 73.6(.4)
ESN 79.1(.2) 80.2(.3) 88.9(.1) 93.4(.2) 84.6(.5) 92.2(.8) 87.2(.1) 85.1(.2) 75.3(.6) 73.1(.2)

InferSent-3 4096×6 79.7 83.9 89.1 92.8 82.4 90.6 79.5 85.9 75.1 75.0
ST-LN 4096×6 75.2 80.8 86.8 92.7 80.6 88.4 82.9 81.3 71.5 67.0

Table 2: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r) on all ten downstream tasks. Standard deviations are show in parentheses. All models
have 4096×6 dimensions. ST-LN and InferSent-3 were projected to this dimension with a random
projection.

Simply maximizing the number of dimensions, however, might lead to overfitting, so we also ana-
lyze how performance changes as a function of the dimensionality of the sentence embeddings: we
sample random models for a range of dimensions, {512, 1024, 2048, 4096, 8192, 12288, 24576},
and train models for BOREP, random LSTMs, and ESNs. Performance of these models is shown in
Figure 1.

As suggested by Cover’s theorem, as well as earlier findings in the sentence embedding literature
(see e.g. Fig. 5 of Conneau et al. (2017)), we observe that higher dimensionality in most cases
leads to better performance. In some cases it looks like we would have benefited from having even
higher dimensionality (e.g. SUBJ, TREC and SST2), while in other cases we can see that the model
probably starts to overfit (STSB, SICK-E for BOREP). In general, the trend is up, meaning that a
higher-dimensional embeddings leads to better performance.

5 ANALYSIS

We analyze random sentence embeddings by examining how these embeddings perform on the prob-
ing tasks introduced by Conneau et al. (2018), in order to gauge what properties of sentences they
are able to recover. These probing tasks were introduced in order to provide a framework for as-
certaining the linguistic properties of sentence embeddings, comprising three types of information:
surface, syntactic and semantic information.
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Model SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv

BOE (300d, class.) 60.5 87.5 32.0 62.7 50.0 83.7 78.0 76.6 50.5 53.8
BOREP (4096d, class.) 64.4 97.1 33.0 71.3 49.8 86.3 81.5 79.3 49.5 54.1
RandLSTM (4096d, class.) 72.8 94.1 35.6 76.2 55.2 86.6 84.0 79.5 49.7 63.1
ESN (4096d, class.) 78.8 92.4 36.9 76.2 62.9 86.6 82.3 79.7 49.7 60.3

Infersent-3 80.6 93.5 37.1 78.2 57.3 86.8 84.8 80.5 53.0 65.8
ST-LN 79.9 79.9 39.5 82.1 69.4 90.2 86.2 83.4 54.5 68.9

Table 3: Performance on a set of probing tasks defined in (Conneau et al., 2018). All random
architecture models are 4096 dimensions and were selected by tuning over validation performance
on the classification tasks.

There are two surface information tasks: predicting the correct length bin from 6 equal-width bins
sorted by sentence length (Length) and predicting which word is present in the given sentence from
a set of 1000 mid-frequency words (Word Content, WC). Syntactic information comprises 3 tasks:
predicting whether a sentence has been perturbed by switching two adjacent words (BShift); the
depth of the constituent parse tree of the sentence (TreeDepth); and the topmost constituent se-
quence of the constituent parse in a 20-way classification problem (TopConst). Finally, there are
five semantic information tasks: predicting the tense of the main-clause verb (Tense); the number
of the subject of the main clause (SubjNum); the number of the direct object of the main clause
(ObjNum); whether a sentence has been modified by replacing a noun or verb with another in a way
that the newly formed bigrams have similar frequencies to those they replaced (Semantic Odd Man
Out, SOMO); and whether the order of two coordinate clauses has been switched (CoordInv).

Table 3 shows the performance of the random sentence encoders (using the best-overall model tuned
on the classification validation sets of the SentEval tasks) on these probing tasks along with bag-of-
embeddings (BOE), SkipThought-LN, and InferSent. From the table, we see that ESNs and RandL-
STMs outperform BOE and BOREP on most of the tasks, especially those that require knowledge
of the order of the words. This indicates that these models, even though initialized randomly, are
capturing order, as one would expect. We also see that ESNs and InferSent are fairly close on many
of the tasks, with Skipthought-LN generally outperforming both.

It seems that random models do best when the tasks largely require picking up on certain words.
We can see which tasks these are by looking at how well BOREP does compared to the recurrent
models (WC, Tense, SubjNum, ObjNum are good candidates for this type of task). In these, random
models are all very competitive to the trained encoders. If one looks at the tasks where there is the
largest difference between ESN and the best of IS or ST-LN (SOMO, CoordInv, BShift, TopConst)
it seems that one thing these all have in common is that they do require sequential knowledge. We
say this because both the BOREP baseline lags behind the recurrent models significantly for many
of these (and is often at the majority-vote baseline) and also the very definitions of these tasks. This
also makes intuitive sense as well since this is the type of knowledge that is much harder to learn
and is not provided by stand-alone word embeddings. Therefore, we’d expect the trained models to
have an edge here, which seems to bear out in these experiments.

6 DISCUSSION

In light of our findings, we list several take-away messages with regard to sentence embeddings:

• If you need a baseline for your sentence encoder, don’t just use BOE, use BOREP of the
same dimension, and/or a randomly initialized version of your encoder.

• If you are pressed for time and have a small to mid-size dataset, simply randomly project
to a very high dimensionality, and profit.

• More dimensions in the encoder is usually better (up to a point).
• If you want to show that your system is better than another system, use the same classifier

on top with the same hyperparameters; and use the same word embeddings at the bottom;
while having the same sentence embedding dimensionality.

• Be careful with padding, pooling and sorting: you may inadvertently end up favoring cer-
tain methods on some tasks, making it harder to identify sources of improvement.

8
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As Rahimi and Recht wrote when reflecting on their random kitchen sinks paper6:

Its such an easy thing to try. When they work and I’m feeling good about life, I
say “wow, random features are so powerful! They solved this problem!” Or if I’m
in a more somber mood, I say “that problem was trivial. Even random features
cracked it.” [...] Regardless, it’s an easy trick to try.

Indeed, random sentence encoders are easy to try: they require no training, and should be used as a
solid baseline to be compared against when learning sentence encoders that are supposed to capture
more than simply what is encoded in the pre-trained word embeddings. While sentence embeddings
constitute a very promising research direction, much of their power appears to come from pre-trained
word embeddings, which even random methods can exploit. The probing analysis revealed that the
trained systems are in fact better at some more intricate semantic probing tasks, aspects of which are
however apparently not well-reflected in the downstream evaluation tasks.

7 CONCLUSION

In this work we have sought to put sentence embeddings on more solid footing by examining how
much trained sentence encoders improve over random sentence encoders. As it turns out, differ-
ences exist, but are smaller than we would have hoped: in comparison to sentence encoders such as
SkipThought (which was trained for a very long time) and InferSent (which requires large amounts
of annotated data), performance improvements are less than 2 points on average over the 10 Sen-
tEval tasks. Therefore one may wonder to what extent sentence encoders are worth the attention
they’re receiving. Hope remains, however, if we as a community start focusing on more sophisti-
cated tasks that require more sophisticated learned representations that cannot merely rely on having
good pre-trained word embeddings.
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A HYPERPARAMETERS

For all experiments, we attempt to keep the number of tunable hyperparameters to a minimum.
By being judicious with the number of tuning experiments and averaging over different seeds, we
provide strong evidence that these architectures are robust and can be competitive with trained (non-
random) sentence embedding models.

In all experiments, we tune the type of pooling to use. Different tasks benefit from different types
of pooling, and while many pooling mechanisms have been proposed in the literature, we just tune
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over the most commonly used ones: mean pooling and max pooling. We use the publicly avail-
able 300-dimensional GloVe embeddings (Pennington et al., 2014) trained on Common Crawl for
all experiments. All words that are not in the vocabulary for GloVe are assigned a vector of zeros.

For the ESNs, we only tune whether to use a ReLU or no activation function,7 the spectral radius
from {0.4, 0.6, 0.8, 1.0}, the range of the uniform distribution for initializing W i where the max
distance from zero is selected from {0.01, 0.05, 0.1, 0.2}, and finally the fraction of elements in Wh

that are set to 0, i.e., sparsity, is selected from {0, 0.25, 0.5, 0.75}. Furthermore, our model did not
include a bias term bi.

We chose not to experiment with other possibilities that ESNs provide that could further enhance
performance like leaking or concatenating/adding the input embedding to the reservoir state in favor
of a simpler model.

We use the default SentEval settings, which are to train with a logistic regression classifier, use a
batch size of 64, a maximum number of epochs of 200 with early stopping,8 no dropout, and use
Adam (Kingma & Ba, 2014) for optimization with a learning rate of 0.001.

B TESTING ROBUSTNESS

Model MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOREP (class.) 77.6(.4) 79.3(.2) 88.3(.2) 91.9(.2) 80.6(.6) 88.8(.3) 85.5(.1) 82.2(.1) 73.6(.8) 69.3(.6)
BOREP (corr.) 77.4(.4) 79.6(.4) 88.3(.1) 92.2(.1) 81.8(.4) 85.6(1.4) 84.6(.2) 82.1(.3) 73.9(.4) 68.5(.6)
RandLSTM (class., corr.) 77.2(.3) 78.7(.5) 87.9(.1) 91.9(.2) 81.5(.3) 86.5(1.1) 85.5(.1) 81.8(.5) 74.1(.5) 72.4(.5)
ESN (class.) 78.2(.2) 80.1(.2) 88.3(.2) 92.5(.1) 83.0(.5) 88.3(1.5) 85.3(.2) 82.4(.7) 73.1(.4) 70.0(.4)
ESN (corr.) 76.7(.2) 78.2(.6) 88.0(.1) 91.5(.3) 81.2(.5) 86.7(1.2) 86.1(.1) 82.9(.1) 74.1(.5) 74.4(.3)

Table 4: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r) on all ten downstream tasks. Standard deviations are show in parentheses. All models have
4096 dimensions and were selected by tuning over validation performance on classification tasks or
correlation tasks as noted. For RandLSTM this corresponds to a single model that uses max pooling.

In order to examine the stability of the random sentence encoders, we select the two best overall
models by best validation score—one that achieved the highest accuracy score, and one that achieved
the highest correlation score (as these differed significantly)—and examine the results. The perfor-
mance of these models is shown in Table 4. We observe that performance is very stable, and that
task-specific tuning yields little or no benefit over the best-overall model, which is beneficial: the
good results obtained by random sentence encoders are not some fluke, and the finding is robust.

C POOLING AND PADDING

Model MR CR MPQA SUBJ SST2

Sorted RandLSTM 81.7 84.0 89.4 93.0 81.2
InferSent 81.6 86.7 90.3 92.5 84.5
GenSen 82.7 87.4 91.0 94.1 83.2

Unsorted RandLSTM 77.2 79.2 88.1 92.0 81.8
InferSent 79.9 84.3 89.5 92.4 84.4
GenSen 78.1 84.2 89.7 92.4 83.9

Table 5: Accuracy on single-sentence binary classification tasks from SentEval, where max-pooling
is done over padded values instead of over the length of the sentence. Experiments are split between
Sorted where sentences are sorted in order of length prior to batching and Unsorted where they are
not.

7A tanh activation did not work well in these experiments, even though it is often used in ESNs.
8Training is stopped when validation performance has not increased 5 times. Checks for validation perfor-

mance occur every 4 epochs.
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We further analyzed how max-pooling over padding affects downstream evaluations and noticed that
for this effect to occur, the batch size to produce the embeddings and the order in which sentenced
were embedded needed to be a specific way. The order in which sentences are embedded in SentEval
is not random, as sentences are sorted by length prior to being grouped into batches. We noticed
that upsetting this order, or changing the batch size so that sentences are grouped differently, causes
a significant change on the downstream performance.

In Table 5, we reproduce this effect for RandLSTM (averaged over 5 seeds) and also include results
for InferSent and GenSen using their released code. The first half of the table shows results when
max pooling with padding is used and the batches are sorted. The second half of the table shows
performance when the batches are unsorted. As can be seen by the table, the performance has a
significant drop-off when the batches are unsorted, especially for MR and CR.

Max pooling over padded values changes negative values in the features of longer sentences to zero.
This is because if the largest value in the hidden representations over the length of the sentence is
negative, the padded zeros will be greater. Thus, longer sentences, when grouped with shorter ones,
will have more sparse representations. We tried to reproduce this effect by using a ReLU, but it
didn’t increase performance. We also checked to see if length was strongly correlated with either
class for the problems in Table 5, but found the correlation was low for all binary tasks. In fact it is
0.0 for CR, one of the tasks most affected by this phenomenon.

It turns out that in several of the datasets, those examples obtaining the sparse representations (be-
coming sparsed) occur much more often in certain classes than others. Table 6 analyzes the distri-
bution of sparsed examples in MR, CR, MPQA, SUBJ, and SST2.

Since MR, CR, MPQA, and SUBJ have no defined training/validation/testing split, the first row of
the table shows the percentage of the data that becomes sparsed when the sentences are embedded.
The second row is what percentage of those sparsed embeddings are of the positive class.

SST2 is split into a training/validation/test set. In it, only 3.5% of the training data is sparsed.
However, 94% of the sparsed data has a class 1 label. In the testing data, 75% of the data is sparsed
with 61% of the data having class 1. Overall, since little training data is actually sparsed, and the
class imbalance of the testing data isn’t as skewed as in the other datasets, SST2 is less affected by
these sparsed representations as can be seen in the table.

MR CR MPQA SUBJ

% Total data sparsed 23 59 8 23
% Class 1 data sparsed 91 82 70 92

Table 6: Percentage of total data sparsed due to max-pooling over padded values and the percentage
of that data that is the positive class for MR, CR, MPQA, and SUBJ.

D EXPLORING DIFFERENT INITIALIZATION STRATEGIES

We analyzed the effects of different initialization strategies had on performance for BOREP and
RandLSTM. We experimented with 6 different initialization strategies: 1) Heuristic, which is the
approach used in this paper for BOREP and RandLSTM experiments unless otherwise noted, where
elements are sampled uniformly from [− 1√

d
, 1√

d
] 2) Uniform where parameters are sampled from

[−0.1, 0.1], 3) Normal where parameters are sampled from a normal distribution with 0 mean and a
standard deviation of 1, 4) Orthogonal where elements are sampled from the heuristic and then the
matrices of the parameters are made orthogonal 5) He initialization (He et al., 2015) and 6) Xavier
initialization (Glorot & Bengio, 2010).

We analyzed the effect different initialization strategies had on performance for BOREP and Ran-
dLSTM. BROEP is robust to initialization strategy, with a slight edge for Orthogonal and Xavier
initialization. However, RandLSTM does poorly with Normal initialization and to a lesser degree,
Uniform. He and Xavier initialization seem to give the best average performance.
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Model MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB Avg.

BOREP Heuristic 77.4(.4) 79.5(.2) 88.3(.2) 91.9(.2) 81.8(.4) 88.8(.3) 85.4(.2) 82.2(.1) 73.9(.4) 72.1(.5) 81.8
Uniform 77.7(.2) 80.2(.2) 88.4(.2) 92.2(.2) 81.7(.2) 87.6(.7) 85.4(.2) 82.2(.1) 73.7(.4) 72.1(.5) 81.6
Normal 77.7(.2) 79.6(.4) 88.4(.1) 92.2(.1) 81.0(.4) 88.6(1.4) 85.1(.1) 82.1(.6) 73.3(.7) 72.1(.5) 81.5
Orthogonal 77.6(.1) 79.3(.4) 88.5(.2) 92.0(.1) 81.0(.4) 87.2(.9) 85.6(.1) 82.5(.2) 74.1(.3) 73.0(.6) 82.1
He 77.5(.2) 79.7(.3) 88.4(.2) 92.2(.2) 81.6(.3) 88.3(.7) 85.4(.2) 82.0(.3) 73.5(.6) 72.1(.5) 81.6
Xavier 77.6(.1) 79.6(.2) 88.4(.1) 92.1(.1) 81.9(.3) 86.8(.7) 85.4(.2) 82.5(.1) 74.0(.3) 72.1(.5) 82.0

RandLSTM Heuristic 77.2(.3) 78.7(.5) 87.9(.1) 91.9(.2) 81.5(.3) 86.5(1.1) 85.5(.1) 81.8(.5) 74.1(.5) 72.4(.5) 81.8
Uniform 76.4(.5) 78.6(.6) 87.9(.2) 91.6(.2) 81.0(.5) 88.7(.8) 82.9(.2) 81.1(.2) 73.3(1.2) 66.7(.8) 80.8
Normal 67.0(.4) 69.8(.3) 85.8(.3) 84.2(.2) 71.9(1.3) 85.0(1.2) 58.8(.9) 69.2(.4) 68.4(.6) 33.9(.9) 69.4
Orthogonal 77.1(.1) 78.4(.1) 87.8(.2) 91.5(.3) 81.7(.5) 85.5(1.7) 85.5(.2) 82.0(.3) 74.3(.3) 72.5(.5) 81.6
Kaiming 77.9(.2) 79.7(.2) 88.3(.1) 92.5(.2) 82.9(.6) 88.9(1.0) 85.0(.1) 83.5(.5) 74.8(.3) 69.8(.5) 82.3
Xavier 77.3(.1) 78.9(.4) 88.0(.2) 91.9(.1) 81.7(.3) 86.8(1.3) 85.3(.1) 81.6(1.1) 74.1(.2) 72.7(.3) 81.8

Table 7: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r) on all ten downstream tasks. Standard deviations are show in parentheses. Six different
approaches to initializing the parameters for each model are explored.

Model MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOE (300d) Heuristic 62.9(.5) 72.0(.7) 73.2(.6) 80.5(.2) 61.8(.6) 72.4(1.9) 70.9(.4) 76.6(.2) 70.5(1.3) 54.7(.7)
Uniform 61.0(.5) 67.5(.5) 73.6(.5) 78.6(.1) 62.4(1.0) 68.1(1.0) 67.7(.8) 74.9(.8) 69.3(.6) 59.3(.8)
Normal 62.4(.5) 69.7(.8) 73.2(.3) 79.7(.3) 62.2(.4) 70.6(2.4) 72.5(.7) 77.8(.6) 71.7(.5) 63.4(.5)
Orthogonal 59.4(.5) 63.8(.0) 72.4(.4) 74.9(.8) 61.8(.7) 59.2(2.3) 72.3(.4) 75.6(1.4) 66.5(.0) 63.1(.7)
He 61.3(.5) 69.1(.5) 73.7(.5) 78.9(.3) 62.1(1.3) 68.5(1.0) 67.8(.7) 75.3(.5) 68.8(1.3) 59.1(.8)
Xavier 58.5(.3) 63.8(.0) 72.9(.3) 74.6(.5) 61.9(1.3) 61.2(1.4) 67.7(.8) 71.1(1.3) 66.5(.0) 59.4(.9)

BOE (4096d) Heuristic 71.8(.3) 78.2(.2) 81.5(.4) 88.5(.1) 74.5(1.1) 85.0(1.3) 76.9(4.2) 81.5(.2) 71.8(.9) 57.0(.2)
Uniform 71.8(.4) 77.0(.5) 83.2(.2) 88.0(.1) 75.8(.4) 84.8(.5) 78.4(.3) 80.3(.4) 71.7(.4) 64.6(1.5)
Normal 72.1(.4) 77.7(.2) 82.9(.3) 88.2(.3) 75.6(.5) 85.0(1.2) 81.0(.2) 82.3(.3) 73.6(.5) 66.4(.8)
Orthogonal 67.6(.3) 75.2(.5) 83.3(.3) 85.0(.3) 75.3(.5) 78.2(4.2) 81.0(.3) 81.6(.3) 72.8(1.2) 68.4(.5)
He 70.4(.7) 76.0(.2) 82.7(.3) 87.1(.3) 76.0(.4) 83.0(1.1) 78.4(.2) 79.2(.4) 70.8(.6) 65.6(1.4)
Xavier 68.7(.4) 75.3(.5) 82.3(.3) 85.4(.4) 75.2(.4) 80.8(1.6) 78.4(.2) 78.9(.5) 70.4(.2) 66.3(1.3)

BOREP Heuristic 69.3(.3) 75.6(.3) 80.4(.5) 86.5(.4) 72.5(.5) 83.0(.9) 78.8(.4) 81.3(.2) 72.2(1.0) 57.7(.5)
Uniform 68.2(.3) 74.0(.4) 79.7(.3) 85.1(.4) 72.9(.6) 81.0(2.3) 80.9(.1) 82.1(.2) 73.3(.9) 67.2(.7)
Normal 68.8(.6) 75.4(.5) 80.2(.7) 86.4(.2) 72.9(.8) 83.2(.9) 80.6(.3) 81.5(.3) 72.9(1.0) 63.0(.9)
Orthogonal 61.6(.2) 65.3(.4) 75.4(.4) 80.1(.4) 69.4(.8) 67.6(1.2) 81.0(.3) 78.4(.4) 71.6(.8) 68.0(.4)
He 68.7(.5) 74.7(.8) 80.3(.2) 86.2(.4) 73.6(.5) 83.2(1.2) 80.8(.1) 82.1(.3) 73.9(.9) 65.3(.8)
Xavier 62.8(.5) 69.3(1.0) 76.4(.5) 80.9(.6) 71.0(.8) 67.7(1.6) 80.9(.1) 79.4(.8) 72.4(.7) 67.9(.4)

RandLSTM Heuristic 66.4(.5) 73.5(.2) 76.7(.2) 84.6(.3) 70.3(.6) 79.8(1.0) 78.8(.3) 82.1(.3) 71.2(1.0) 62.4(.7)
Uniform 59.6(.6) 68.0(.6) 74.7(.4) 76.5(.7) 62.5(1.1) 78.0(2.6) 73.7(.3) 78.5(.4) 71.3(.4) 55.9(.4)
Normal 53.2(.7) 62.6(.5) 77.5(.2) 64.2(.9) 54.2(1.3) 78.9(1.1) 53.9(1.0) 68.0(.5) 66.6(.7) 29.5(3.2)
Orthogonal 54.2(1.3) 63.8(.0) 69.1(.2) 67.2(1.2) 55.9(2.2) 53.8(2.1) 74.5(.4) 69.1(.5) 66.5(.1) 59.3(.7)
Kaiming 63.9(.6) 72.8(.4) 75.3(.7) 83.3(.4) 68.9(.7) 80.2(2.9) 77.9(.3) 81.0(.4) 71.0(.6) 62.1(.4)
Xavier 57.0(.1) 63.8(.0) 70.5(.5) 69.7(.8) 61.7(1.3) 61.4(3.8) 77.2(.4) 76.1(.8) 66.7(.4) 62.6(.4)

∆ GloVe, Random 8.6 4.6 8.1 6 9.3 5.7 4.6 1.4 0.9 5.1

Table 8: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r) on all ten downstream tasks. Standard deviations are show in parentheses. All parameters
for both the underlying word embeddings and architectures (if applicable) are randomly sampled
from six different initialization schemes. The last row shows the performance difference between
the best performing model (from BOREP and RandLSTM) in Table 7 which uses pre-trained word
embeddings and the best performing model from this table (outside of BOE with 4096 dimensino
vectors) which uses randomly initialized embeddings. The average gain from using pre-trained em-
beddings is 5.4 points.

E EXPLORING RANDOM ENCODERS WITH RANDOM WORD EMBEDDINGS

We next explore the contributions of pre-trained word embeddings for the BOREP and RandLSTM
models. In these experiments, both the parameters of the architectures and the word embeddings
are randomly sampled. Just as in Section D, we experiment with six ways of initializing the random
embeddings for BOE, BOREP, RandLSTM, and a 4096 dimension BOE model. The parameters of
the architectures (if applicable) are sampled in the same way as the random embeddings. The results
are shown in Table 8.

From the table, we see knowledge from the pre-trained word embeddings offers significant improve-
ment for most tasks, averaging 5.4 points per task. It seems to be especially helpful for classification,
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and less-so for those tasks relying on a measure of semantic similarity. This is sensible because se-
mantic similarity tasks can make use of embeddings appearing in the test data that were not in the
training data if the words appear in both sentences in the example. However, this is not the case for
classification as an unseen random word embeddings provide very little information.

Interestingly, pooling randomly initialized 4096 dimension embeddings outperforms BOREP and
RandLSTM. It would be interesting to see the performance of this model when the embeddings are
pre-trained instead of random. Perhaps pooling them would be competitive with trained encoders
like Infersent. It would also be interesting to see what effect large-dimension word embeddings have
on both a trained sentence encoder like Infersent as well as random recurrent architectures. We leave
this exploration for future work.
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