
Do explanations make VQA models more predictable to a human?

Arjun Chandrasekaran∗,1 Viraj Prabhu∗,1 Deshraj Yadav ∗,1

Prithvijit Chattopadhyay∗,1 Devi Parikh1,2

1Georgia Institute of Technology 2Facebook AI Research
{carjun, virajp, deshraj, prithvijit3, parikh}@gatech.edu

Abstract

A rich line of research attempts to make
deep neural networks more transparent by gen-
erating human-interpretable ‘explanations’ of
their decision process, especially for inter-
active tasks like Visual Question Answering
(VQA). In this work, we analyze if existing ex-
planations indeed make a VQA model – its re-
sponses as well as failures – more predictable
to a human. Surprisingly, we find that they do
not. On the other hand, we find that human-
in-the-loop approaches that treat the model as
a black-box do.

1 Introduction

As technology progresses, we are increasingly
collaborating with AI agents in interactive scenar-
ios where humans and AI work together as a team,
e.g., in AI-assisted diagnosis, autonomous driving,
etc. Thus far, AI research has typically only fo-
cused on the AI in such an interaction – for it to
be more accurate, be more human-like, understand
our intentions, beliefs, contexts, and mental states.

In this work, we argue that for human-AI inter-
actions to be more effective, humans must also un-
derstand the AI’s beliefs, knowledge, and quirks.

Many recent works generate human-
interpretable ‘explanations’ regarding a model’s
decisions. These are usually evaluated offline
based on whether human judges found them to be
‘good’ or to improve trust in the model. However,
their contribution in an interactive setting remains
unclear. In this work, we evaluate the role of
explanations towards making a model predictable
to a human.

We consider an AI trained to perform the
multi-modal task of Visual Question Answering
(VQA) (Malinowski and Fritz, 2014; Antol et al.,
2015), i.e., answering free-form natural language

∗Denotes equal contribution.

Figure 1: We evaluate the extent to which expla-
nation modalities (right) and familiarization with
a VQA model help humans predict its behavior –
it’s responses, successes, and failures (left).

questions about images. VQA is applicable to
scenarios where humans actively elicit informa-
tion from visual data, and naturally lends itself to
human-AI interactions. We consider two tasks that
demonstrate the degree to which a human under-
stands their AI teammate (we call Vicki) – Failure
Prediction (FP) and Knowledge Prediction (KP).
In FP, we ask subjects on Amazon Mechanical
Turk to predict if Vicki will correctly answer a
given question about an image. In KP, subjects
predict Vicki’s exact response.

We aid humans in forming a mental model of
Vicki by (1) familiarizing them with its behavior
in a ‘training’ phase and (2) exposing them to its
internal states via various explanation modalities.
We then measure their FP and KP performance.

Our key findings are that (1) humans are indeed
capable of predicting successes, failures, and out-
puts of the VQA model better than chance, (2) ex-
plicitly training humans to familiarize themselves
with the model improves their performance, and
(3) existing explanation modalities do not enhance
human performance.

2 Related Work

Explanations in deep neural networks. Sev-
eral works generate explanations based on inter-



nal states of a decision process (Zeiler and Fergus,
2014; Goyal et al., 2016b), while others generate
justifications that are consistent with model out-
puts (Ribeiro et al., 2016; Hendricks et al., 2016).
Another popular form of providing explanations is
to visualize regions in the input that contribute to a
decision – either by explicitly attending to relevant
input regions (Bahdanau et al., 2014; Xu et al.,
2015), or exposing implicit attention for predic-
tions (Selvaraju et al., 2017; Zhou et al., 2016).
Evaluating explanations. Several works evaluate
the role of explanations in developing trust with
users (Cosley et al., 2003; Ribeiro et al., 2016)
or helping them achieve an end goal (Narayanan
et al., 2018; Kulesza et al., 2012). Our work, how-
ever, investigates the role of machine-generated
explanations in improving the predictability of a
VQA model.
Failure prediction. While Bansal et al. (2014)
and Zhang et al. (2014) predict failures of a model
using simpler statistical models, we explicitly train
a person to do this.
Legibility. Dragan et al. (2013) describe the
intent-expressiveness of a robot as its trajectory
being expressive of its goal. Analogously, we eval-
uate if explanations of the intermediate states of a
VQA model are expressive of its output.
Humans adapting to technology. Wang et al.
(2016) and Pelikan and Broth (2016) observe hu-
mans’ strategies while adapting to the limited ca-
pabilities of an AI in interactive language games.
In our work we explicitly measure to what extent
humans can form an accurate model of an AI, and
the role of familiarization and explanations.

3 Setup

Agent. We use the VQA model by Lu et al. (2016)
as our AI agent (that we call Vicki). The model
processes the question at multiple levels of granu-
larity (words, phrases, entire question) and at each
level, has explicit attention mechanisms on both
the image and the question1. It is trained on the
train split of the VQA-1.0 dataset (Antol et al.,
2015). Given an image and a question about the
image, it outputs a probability distribution over
1000 answers. Importantly, the model’s image and
question attention maps provide access to its ‘in-
ternal states’ while making a prediction.

Vicky is quirky at times, i.e., has biases, albeit
in a predictable way. Agrawal et al. (2016) out-

1We use question-level attention maps in our experiments.

Figure 2: These montages highlight some of
Vicki’s quirks. For a given question, Vicki has the
same response to each image in a montage. Com-
mon visual patterns (that Vicki presumably picks
up on) within each montage are evident.

lines several such quirks. For instance, Vicki has a
limited capability to understand the image – when
asked the color of a small object in the scene, say
a soda can, it may simply respond with the most
dominant color in the scene. Indeed, it may an-
swer similarly even if no soda can is present, i.e.
if the question is irrelevant.

Further, Vicki has a limited capability to un-
derstand free-form natural language, and in many
cases, answers questions based only on the first
few words of the question. It is also generally
poor at answering questions requiring “common
sense” reasoning. Moreover, being a discrimina-
tive model, Vicki has a limited vocabulary (1k)
of answers. Additionally, the VQA 1.0 dataset
contains label biases; therefore, the model is very
likely to answer “white’ to a “what color” ques-
tion (Goyal et al., 2016a).

To get a sense for this, see Fig. 2 which depicts
a clear pattern. In top-left, even when there is no
grass, Vicki tends to latch on to one of the domi-
nant colors in the image. For top-right, even when
there are no people in the image, it seems to re-
spond with what people could plausibly do in the
scene if they were present. In this work, we mea-
sure to what extent lay people can pick up on these
quirks by interacting with the agent, and whether
existing explanation modalities help do so.
Tasks: Failure Prediction (FP). Given an image
and a question about the image, we measure how
well a person can predict if Vicki will successfully
answer the question. A person can presumably
predict the failure modes of Vicki well if they have
a good sense of its strengths and weaknesses.



(a) The Failure Prediction (FP) interface. (b) The Knowledge Prediction (KP) interface.

Figure 3: (a) A person guesses if a VQA model (Vicki) will answer this question for this image correctly
or wrongly. (b) A person guesses what Vicki’s exact answer will be for this QI–pair.

Knowledge Prediction (KP). In this task, we
aim to obtain a fine-grained measure of a person’s
understanding of Vicki’s behavior. Given a QI–
pair, a subject guesses Vicki’s exact response from
a set of its output labels. Snapshots of our inter-
faces can be seen in Fig. 3.

4 Experimental Setup

In this section we investigate ways to make Vicki’s
behavior more predictable to a subject. We ap-
proach this by – providing instant feedback about
Vicki’s actual behavior on each QI pair once the
subject responds, and exposing subjects to various
explanation modalities that reveal Vicki’s internal
states before they respond.
Data. We identify a subset of questions in the
VQA-1.0 (Antol et al., 2015) validation split that
occur more than 100 times. We select 7 diverse
questions2 from this subset that are representa-
tive of the different types of questions (counting,
yes/no, color, scene layout, activity, etc.) in the
dataset. For each of the 7 questions, we sample a
set of 100 images. For FP, the 100 images are ran-
dom samples from the set of images on which the
question was asked in VQA-1.0 val. For the KP
task, these 100 images are random images from
VQA-1.0 val. Ray et al. (2016) found that ran-
domly pairing an image with a question in the
VQA-1.0 dataset results in about 79% of pairs be-
ing irrelevant. This combination of relevant and
irrelevant QI-pairs allows us to test subjects’ abil-
ity to develop a robust understanding of Vicki’s
behavior across a wide variety of inputs.

2What kind of animal is this? What time is it? What are
the people doing? Is it raining? What room is this? How
many people are there? What color is the umbrella?

Study setup. We conduct our studies on Ama-
zon Mechanical Turk. Each task (HIT) comprises
of 100 QI-pairs where for simplicity (for the sub-
ject), a single question is asked across all 100 im-
ages. The annotation task is broken down into a
train and test phase of 50 QI-pairs each. Over
all settings, 280 workers took part in our study (1
unique worker per HIT), resulting in 28k human
responses. Subjects were paid an average of $3
base plus $0.44 performance bonus, per HIT.
There are some challenges involved in scaling
data-collection in this setting: (1) Due to the pres-
ence of separate train and test phases, our AMT
tasks tend to be unusually long (mean HIT dura-
tions across the tasks of FP and KP = 10.11±1.09
and 24.49±1.85 min. respectively). Crucially, this
also reduces the subject pool to only those willing
to participate in long tasks. (2) Once a subject par-
ticipates in a task, they cannot do another because
their familiarity with Vicki would leak over. This
constraint causes our analyses to require as many
subjects as tasks. Since work division in crowd-
sourcing tasks follows a Pareto principle (Little,
2009), this makes data collection very slow.
In light of these challenges, we focus on a small
set of questions to systematically evaluate the role
of training and exposure to Vicki’s internal states.

4.1 Evaluating the role of familiarization
To familiarize subjects with Vicki, we provide
them with instant feedback during the train phase.
Immediately after a subject responds to a QI–
pair, we show them whether Vicki actually an-
swered the question correctly or not (in FP) or
what Vicki’s response was (in KP), along with a
running score of how well they are doing. Once
training is complete, no further feedback is pro-



vided and subjects are asked to make predictions
for the test phase. At the end, they are shown their
score and paid a bonus proportional to the score.

Failure Prediction. In FP, always guessing that
Vicki answers ‘correctly’ results in 58.29% accu-
racy, while subjects do slightly better and achieve
62.66% accuracy, even without prior familiarity
with Vicki (No Instant Feedback (IF)). Further, we
find that subjects that receive training via instant
feedback (IF) achieve 13.09% higher mean accu-
racies than those who do not (see Fig 4; IF vs No
IF for FP (left)).

Knowledge Prediction. In KP, answering each
question with Vicki’s most popular answer overall
(‘no’) would lead to an accuracy of 13.4%. Ad-
ditionally, answering each question with its most
popular answer for that question leads to an ac-
curacy of 31.43%. Interestingly, subjects who are
unfamiliar with Vicki (No IF) achieve 21.27% ac-
curacy – better than the most popular answer over-
all, but worse than the question-specific prior over
its answers. The latter is understandable as sub-
jects unfamiliar with Vicki do not know which of
its 1000 possible answers the model is most likely
to predict for each question.

We find that mean performance in KP with IF
is 51.11%, 29.84% higher than KP without IF (see
Fig 4; IF vs No IF for KP (right)). It is appar-
ent that just from a few (50) training examples,
subjects succeed in building a mental model of
Vicki’s behavior that generalizes to new images.
Additionally, the 29.84% improvement over No
IF for KP is significantly larger than that for FP
(13.09%). This is understandable because a priori
(No IF), KP is a much harder task as compared to
FP due to the increased space of possible subject
responses given a QI-pair, and the combination of
relevant and irrelevant QI-pairs in the test phase.

Questions such as ‘Is it raining?’ have strong
language priors – to these Vicki often defaults to
the most popular answer (‘no’), irrespective of im-
age. On such questions, subjects perform consid-
erably better in KP once they develop a sense for
Vicki’s inherent biases via instant feedback. For
open-ended questions like ‘What time is it?’, feed-
back helps subjects (1) narrow down the 1000 po-
tential options to the subset that Vicki typically
answers with – in this case time periods such as
‘daytime’ rather than actual clock times and (2)
identify correlations between visual patterns and
Vicki’s answer. In other cases like ‘How many

people are in the image?’ the space of possible an-
swers is clear a priori, but after IF subjects realize
that Vicki is bad at detailed counting and bases its
predictions on coarse signals of the scene layout.

4.2 Evaluating the role of explanations
In this setting, we show subjects an image, a ques-
tion, and one of the explanation modalities de-
scribed below. We experiment with 3 qualitatively
different modalities (see Fig.1, right):
Confidence of top-5 predictions. We show sub-
jects Vicki’s confidence in its top-5 answer predic-
tions from its vocabulary as a bar plot (of course,
we do not show the actual top-5 predictions). At-
tention maps. Along with the image we show
subjects the spatial attention map over the image
and words of the question which indicate the re-
gions that Vicki is looking at and listening to, re-
spectively. Grad-CAM. We use the CNN visu-
alization technique by Selvaraju et al. (2017), us-
ing the (implicit) attention maps corresponding to
Vicki’s most confident answer.
Automatic approaches. We also evaluate auto-
matic approaches to detect Vicki’s failure from its
internal states. We find that both, a decision stump
on Vicki’s confidence in its top answer, and on
the entropy of its softmax output, result in an FP
accuracy of 60% on our test set. A Multi-layer
Perceptron (MLP) trained on Vicki’s output 1000-
way softmax to predict success vs failure, achieves
an FP accuracy of 81%. Training it on just the
top-5 softmax outputs achieves an FP accuracy of
61.43%.
Training an MLP which takes as input question
features (average word2vec embeddings (Mikolov
et al., 2013) of words in the question) concate-
nated with image features (fc7 from VGG-19) to
predict success vs failure (which we call ALERT
following (Zhang et al., 2014)) achieves an FP ac-
curacy of 65%. Training an MLP on identical
question features as above but concatenated with
Grad-CAM saliency maps leads to FP accuracy of
73.14%. 3 Note that we only report machine re-
sults to put human accuracies in perspective. We
do not draw any inferences about the relative ca-
pabilities of both.
Results. Average performance of subjects in the
test phases of FP and KP, for different experimen-
tal settings are summarized in Fig. 4. In the first
setting, we show subjects an explanation modality

3These methods are trained on 66% of VQA-1.0 val. The
remaining data is used for validation.



Figure 4: Average performance across subjects for Failure Prediction and Knowledge Prediction, across
different settings: with or without (1) Instant feedback (IF) in the train phase, and (2) an explanation
modality. Explanation modalities are shown in both train and test phases unless stated otherwise. Error
bars are 95% confidence intervals from 1000 bootstrap samples. Note that the dotted lines are various
machine approaches applied to FP.

with instant feedback (IF+Explanation). For ref-
erence, also see performance of subjects provided
with IF and no explanation modality (IF).

We observe that on both FP and KP, subjects
who received an explanation along with IF show
no statistically significant difference in perfor-
mance compared to those who did not. We see
in Fig. 4, that both bootstrap based standard error
(95% confidence intervals) overlap significantly.

Seeing that explanations in addition to IF does
not outperform an IF baseline, we next measure
whether explanations help a user not already fa-
miliar with Vicki via IF. That is, we evaluate if ex-
planations help against a No IF baseline by provid-
ing an explanation only in the test phase, and no
IF (see Fig 4; No IF + Explanation). Additionally,
we also experiment with providing IF and an ex-
planation only during the train phase (see Fig 4; IF
+ Explanation (Train Only)), to measure whether
access to internal states during training can help
subjects build better intuitions for model behav-
ior without needing access to internal states at test
time. In both settings however, we observe no
statistically significant difference in performance
over the No IF and IF baselines, respectively. 4

5 Conclusion
As technology progresses, human-AI teams are in-
evitable. We argue that for these teams to be more
effective, we should also be pursuing research di-
rections to help humans understand the strengths,
weaknesses, quirks, and tendencies of AI. We in-

4When piloting the tasks ourselves, we found it easy to
‘overfit’ to the explanations and hallucinate patterns.

stantiate these ideas in the domain of Visual Ques-
tion Answering (VQA), by proposing two tasks
that help measure how well a human ‘understands’
a VQA model (we call Vicki) – Failure Prediction
(FP) and Knowledge Prediction (KP). We find that
lay people indeed get better at predicting Vicki’s
behavior using just a few ‘training’ examples, but
surprisingly, existing popular explanation modali-
ties do not help make its failures or responses more
predictable. While previous works have typically
assessed their interpretability or their role in im-
proving human trust, our preliminary hypothesis
is that these modalities may not yet help perfor-
mance of human-AI teams in a goal-driven set-
ting. Clearly, much work remains to be done in
developing improved explanation modalities that
can improve human-AI teams.

Future work involves closing the loop and eval-
uating the extent to which improved human per-
formance at FP and KP translates to improved suc-
cess of human-AI teams at accomplishing a shared
goal. Co-operative human-AI games may be a nat-
ural fit for such an evaluation.
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