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Abstract

The current work introduces a method for predicting Mem-
cached throughput on single-core and multi-core processors.
The method is based on traces collected from a full system
simulator running Memcached. A series of microarchtectural
simulators consume these traces and the results are used to
produce a CPI model composed of a baseline issue rate, cache
miss rates, and branch mispredictions rate. Simple queueing
models are used to produce througput predictions with accu-
racy in the range of 8% to 17%.
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1. INTRODUCTION

Key-Value Store in general, and Memcached in particular,
is an important application at Facebook [12]. Many Mem-
cached servers are used as a large-scale distributed memory
cache for slow-to-compute values [[13]]. Memcachecﬂis asim-
ple, open-source software package that exposes data in RAM
to clients over the network. As data size grows in the appli-
cation, more RAM can be added to a server, or more servers
can be added to the network. In the latter case, servers do not
communicate among themselves—only clients communicate
with servers. Clients use consistent hashing [15] to select a
unique server per key, requiring only the knowledge of the to-
tal number of servers and their IP addresses. This technique
presents the entire aggregate data in the servers as a unified
distributed hash table, keeps servers completely independent,
and facilitates scaling as data size grows.

Memcached’s interface provides all the basic primi-
tives that hash tables provide—insertion, deletion, and
lookup/retrieval—as well as more complex operations built
atop them. In this paper we focus on read operations (GET
requests), because they are the dominant operation in Face-
book’s workload [13] and represents the focal point of
throughput analysis.

This study is movitivated by Memcached’s large impact
on overall site performance. It is imperative that we under-
stand the factors that affect Memcached performance, as well
as develop predictive capabilities for the selection of future
server architectures. Hardware performance counters are use-
ful for measuring performance and identifying bottlenecks
on machines that are available today; however, even well-
established microprocessors may have unidentified flaws in
their performance counter subsystems, and the reliability of
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Figure 1. Intel Penryn Memcached Response Times

the performance counters is even lower on pre-release sys-
tems. Further, hardware performance counters cannot provide
much insight into the performance of our applications on fu-
ture hardware products for which we have no physical sample
of the machine. Performance modeling fills this gap. A model
that predicts application performance can be used to predict
the performance of systems that may be years from initial re-
lease. It is not necessary to have a physical machine in order
to model performance.

The main contribution of this paper is a detailed descrip-
tion of the microarchitectural simulation-based methodology
we developed to model Memcached performance, and can
also be used for similar applications. We have implemented
this model and use it to predict cycles-per-instruction (CPI)
by composing component models of the baseline issue rate,
cache miss rates, and branch mispredictions rate. CPI predic-
tions then lead directly to throughput predictions on sequen-
tial and parallel architectures with a high degree of accuracy.

2. METHODOLOGY

Our first challenge in tackling Memcached performance
modeling was how to measure thoughput in a way that allows
comparison between different machines and among different
levels of parallelism on the same machine. Figure [I] graphs
the response times of Memcached running on an Intel Pen-
ryn machine under increasing levels of load. It illustrates that
Memcached exhibits a clear saturation point after which the
response time grows dramatically, and the load at this point is
a good means of comparing Memcached performance.
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In order to estimate saturation point on a particular plat-
form, the run time of a single Memcached query needs to
be determined. Calculating the run time of a single transac-
tion requires three pieces of information: the frequency of
the microprocessor, the average number of instructions ex-
ecuted by a single Memcached transaction, and the average
rate at which a microprocessor can commit a single instruc-
tion (CPI). The frequency of a microprocessor is obtained
easily from its published specifications. However, obtaining
the frequency is less straight forward for designs that incor-
porate some sort of dynamic frequency scaling (e.g., Intel’s
Turbo Boost [7] or AMD’s APM [6]]). The number of instruc-
tions required to service a Memcached transaction depends
on the type and size of the transaction, the version of the op-
erating system, and the version of Memcached along, with
the versions of any libraries linked to the Memcached binary.
In the context of the current study, Memcached transactions
are all reads with eight-byte keys and 32-byte values, which
are typical of values at Facebook. The Linux kernel version
is 2.6.38, and the version of Memcached is 1.2.3h-dev.

The CPI for a microprocessor running Memcached is much
harder to estimate, and the process of obtaining this value
comprised the greatest portion of effort expended on this
project. A microprocessor possesses no inherent CPI. Rather,
the value is dependent on the microprocessor’s microarchi-
tectural characteristics, its frequency (which determines the
latency in cycles of DRAM accesses), and the characteristics
of the instructions it executes. We obtain a CPI estimate in
three steps. First, a trace (a record of all the instructions exe-
cuted, all memory locations accessed, and a subset of the pro-
cessor’s architectural state changes) is obtained by running
Memcached on a simulated host. Next, the trace is used as
input to several programs that simulate various aspects of the
processor’s microarchitecture. The product of this simulation
is the frequency at which performance dependent-events oc-
cur (e.g., cache miss rates). Finally, a simple analytical model
which assigns a latency in cycles to each of the events is used
to produce a final CPI estimate.

We combine the estimate of the processor’s CPI with the
processor’s frequency and a count of instructions per transac-
tion to predict the time required the complete a single trans-
action. The transaction time is used to produce an estimate of
Memcached server’s saturation point throughput.

The remainder of this section explains the performance es-
timation methodology in detail.

2.1. Trace Generation

Simulating Memcached’s workload requires knowledge of
the instructions that the machine executes, along with the
memory locations it accesses. Methods like dynamic instru-
mentation (e.g., Pin [3]) or a fast interpreter [3]]) facilitate the
collection of this information. Both techniques allow an exe-

cution trace to be collected quickly, but unfortunately, neither
can collect traces of privileged code. Since privileged code
(including the networking stack) can make up a significant
portion of a server application’s run time and performance,
these tools are not appropriate in this case. The current effort
uses full-system simulation to obtain instruction traces. To
this end, we ran Memcached on AMD’s SimNow [8]] simula-
tor, which fully simulates one or more microprocessors along
with the rest of the system in software. As the entire system
is simulated in software, the execution of privileged instruc-
tions, along with all changes to the privileged architectural
state, can be accessed. It should be noted here that predic-
tions for all platforms can be generated from a single trace:
traces represent the code path that would be executed on any
x86 microprocessor. Thus, it is necessary to collect new traces
only when new workloads need to be studied.

2.1.1. System Simulation

The SimNow simulator must first be configured with the
appropriate simulated hardware: the number of microproces-
sors and the amount of DRAM must be chosen. In order to run
Memcached, We used a single 64-bit Opteron processor and
two gigabytes of DRAM. The default network interface is an
Intel gigabit Ethernet device, which matches our production
Memcached configuration.

Linux and Memcached must next be installed on the Sim-
Now simulator. The simulator is booted with a bootable ISO
containing the CentOS 5.2 distribution of Linux. Once Cen-
tOS is installed, the Linux kernel is updated with Facebook’s
2.6.38 production kernel. Lastly, Memcached is installed.
Once all of the software components are configured, the re-
sulting hard disk image is written out to the file system.

A second SimNow instance is configured to offer load to
the simulated Memcached server, using a simple load gener-
ator [10]]. The network that connects the simulated machine
offering the load and the Memcached server is also simulated.
The program that simulates the network (the mediator) in-
cludes a DHCP server that assigns IP addresses to the ma-
chines on the simulated network.

2.1.2. Trace Collection

Once all of the simulated systems are configured and com-
municating across the network, mctester can be run on the
simulated client to offer load to the simulated Memcached
server. A trace of Memcached’s server state needs to be
recorded and written to a file for separate analysis. SimNow
provides a callback mechanism (using analyzers) to collect
this trace file. We implemented a callback analyzer that col-
lects state changes and generates a binary file that is further
compressed using the bzip2 library. The code to record and
compress the trace is packaged as a library, which also in-
cluded an interface for reading traces. The trace reader in-



terface implements a callback for each of the trace records.
Clients which wish to read the trace subscribe to the callbacks
corresponding to the records that are of interest.

A new trace file is created every 10'! instructions. A large
number of small trace files is useful for two reasons: First, not
all trace files will capture a phase of Memcached’s execution
that is useful, and small trace files allow useless trace sections
to be easily discarded. Second, any simulator which con-
sumes trace files should be multithreaded for performance,
and small trace files comprise a natural partitioning of the
workload to the simulator’s threads. A detailed discussion of
multithreading is available in Section[2.2]

2.1.3. Trace Validation

Once a trace is collected, a series of analyses must be con-
ducted to determine whether the trace is a valid proxy for the
real-world workload. The goal is to produce a trace whose
characteristics match those observed for Memcached running
on real hardware.

The primary metric for determining a valid trace is the pro-
portion of user to kernel activity. Our observations of actual
Memcached use show that under load from mectester, kernel
activity (mainly networking) makes up roughly 60% of the
system time. It should follow that in the traces, a roughly
similar mix of kernel to user instructions should be seen.
One characteristic of Memcached using TCP is that when
the machine is overloaded, the proportion of kernel instruc-
tions decreases dramatically to under 10%, because of exces-
sive memory copying. Other tests include comparing cache
misses and branch prediction rates measured on real hardware
to those obtained via simulation.

The method of collecting and validating traces is not at all
difficult. However, producing a set of valid traces is a mat-
ter of trial-and-error, and the process is time consuming. The
largest difficulty we encountered was the time dilation be-
tween the simulated machine offering load and the simulated
Memcached server. When SimNow is running without any
analyzers installed, it employs a threaded code interpreter to
speed up simulation, running at about 60- to 100-million in-
structions per second (MIPS). However, when an analyzer is
loaded, SimNow must generate callbacks for events on an
instruction-level granularity and must fall back on a much
slower decode-and-dispatch method of simulation, slowing
down the simulation by an order of 1000x

Since the client is running at ~ 100 MIPS and the server
is running at ~= 0.1 MIPS, at what rate should load be offered
to the server? The initial efforts at trace collection focused on
scaling the offered load to the instruction execution rate of a
server. In actual practice, however, this method did not yield
fruitful results. The traces collected from this effort exhibited
very high proportions of user instructions, suggesting that the
simulated Memcached server was overloaded.

The alternative, and ultimately successful, route to trace
collection discards the idea of a scaled rate altogether. This
method is essentially a binary search of the offered load
from one to 100 RPSjient, With the goal of the search being
the highest RPSjien: that produces a valid trace. Using this
method we settled on a trace collected at a rate of 12 RPSjjent.
The trace obtained by this method reasonably matched the
validation criteria in all respects.

2.2. Simulation

A trace contains the record of the instructions that are ex-
ecuted on a generic x86 platform. Traces are consumed by
simulators that are configured to represent specific implemen-
tations of the x86 architecture (e.g., an Atom, a Xeon, or an
Opteron processor). Three major types of simulators are used
to produce information that is then consumed by a perfor-
mance model. Issue rate simulators (Sec. estimate the
rate at which a processor can consume instructions. Cache
simulators (Sec. [2.2.3)) predict miss rates at all the levels of
a processor’s memory hierarchy. Branch predictor simulators
(Sec.[2.2.2)) predict the rate at which a processor mispredicts
conditional branches.

2.2.1. Baseline Issue Rate

The issue rate simulator predicts the rate at which instruc-
tions flow through the processor, independent of all other
stalling events. Issue rate depends on three factors: the na-
tive parallelism of the application executed on the processor,
the size of the processor’s scheduler, and the number of func-
tional units (e.g., load/store units, branch units, ALUs) in the
CPU. Prior work [2]] has used a model that implements an in-
finite number of functional units. In this effort, however, we
already know or can approximate the functional unit count for
the product we wish to predict performance on.

The pipeline of a modern out-of-order processor can be
roughly divided into two units: a front end that provides a
stream of decoded instructions to a back-end that executes
the instructions. At the head of the back-end pipeline is the
scheduler. The scheduler stores some instructions and tracks
the availability of each instruction’s source operands. Out-of-
order processors rename instructions’ operands from a pool
of physical registers in order to eliminate false dependencies
that occur due to the limited number of architectural registers.
When all of an instruction’s source operands are available, it
is eligible to be issued to a functional unit for execution. The
number of functional units in a processor is limited, and each
functional unit is specialized to perform a particular set of
operations (e.g., a load, store, integer operations, or floating-
point operations).

The issue rate simulator allows the size of the scheduler
along with the number and type of functional units to be spec-
ified. It assumes infinite decode bandwidth and an infinite



number of physical registers. All functional units are assumed
to be single-cycle latency (if long-latency, nonpipelined oper-
ations are very frequent, their effects can be included in the
CPI model described in Section [2.3)). The simulator func-
tions much a like a processor. Instructions are decoded into
micro-operations (uops), which are then renamed, stored into
the scheduler, and issued as soon as possible.

Uops contain an end_of_instruction flag that in-
dicates whether the uop completes an instruction, as is
always set in cases where a single instruction trans-
lates to a single uop. In other cases, only the last
uop’s end_of_instruction flag is set. Each cy-
cle, the simulator counts the number of uops whose
end_of_instruction flags are set, and upon completion,
uses this count to compute the average issue rate.

2.2.2. Branch Mispredicts

Branch mispredictions tend to be infrequent but incur a
large penalty, so significant effort is expended to produce
accurate branch predictors. Details about production branch
predictors is almost nonexistent, so little time was devoted
to producing a variety of branch predictors. Instead, we rely
solely on a model of the gShare predictor, trying to match its
size to published sources as closely as possible.

2.2.3. Cache Misses

For many server workloads, including Memcached, the
processor’s memory subsystem has a significant effect on
overall performance. It is therefore necessary to model the
memory subsystem with a reasonable level of fidelity to the
simulated design. Unlike the issue rate and branch mispre-
dicts, the miss rate of the memory subsystem is also impacted
when the workload is run on two or more threads.

The memory subsystem consists of caches for instructions
and/or data and TLBs. [4]. We developed a cache model that
allows individual cache sizes and attributes to be specified
and different cache organizations to be configured. For each
cache, the user may choose the cache line size, the num-
ber of sets, the number of ways, and the replacement policy.
Whether the cache is inclusive, exclusive, or a victim cache
can be configured as well. Caches up to L3 can be instantiated
with any sort of hierarchy. Instruction and data TLBs with up
to two levels of hierarchy can be specified.

The cache model does not include a timing component;
miss penalties are considered only when estimating overall
performance (Sec. [2.3)). The output of the model is a rate
of misses per 1,000 instructions (MPKI) for each cache and
TLB in the hierarchy. The model differentiates between loads
and stores, since store misses are rarely a source of exposed
latency and are not considered when modeling performance.

The multiprocessor (MP) cache model is built upon the sin-
gle processor model’s framework, and implements a MESI

cache coherence protocol [1]. It provides the same informa-
tion for each cache as the single processor model. The chal-
lenge in simulating multiple threads of execution was not
the cache model, but in obtaining multiprocessor traces from
SimNow. Numerous attempts to obtain traces from two or
more processors on SimNow never yielded a valid trace. In-
stead, the single processor Memcached trace was broken into
multiple segments, and each segment was simulated on a dif-
ferent processor’s cache. This technique is straightforward;
however, it possesses one flaw that must be overcome. Be-
cause all of the traces really come from the same thread they
share a stack pointer, and it is likely that stack data will ping-
pong between the two processors’ caches as stack data is read
and written. To avoid this deleterious effect, we identify stack
references and hash their physical addresses with a thread id.

2.3. CPI Estimation

We estimate the CPI for Memcached running on a particu-
lar processor using a spreadsheet that sums the cycle penalties
of events that affect performance. The frequency of events is
obtained from simulation studies discussed in Section 2.2]
The size of the penalty is derived from published sources, es-
timation, or by measurement on platforms that are physically
available. The CPI estimate starts with a derived from the
issue rate simulator. Penalties for branch mispredicts, cache
misses, and misaligned loads are added to the baseline in or-
der to produce the final estimate.

CPITotal = CPIBaseline + CPIMcmory + CPIBranchMisp (1)

2.3.1. Cache Misses

The frequency of misses to each line in the cache hierarchy
is obtained from the cache model. Miss penalties are some-
times published, but are also easy to measure in available
systems. LMbench [11] provides a tool called lat_mem_read
which measures memory latency and TLB latency.

Another source of latency is loads that cross cache line
boundaries (misaligned loads). Unlike other architectures,
x86 supports accesses that are not aligned on their natural
boundaries, including accesses that straddle two cache lines.
The exact mechanism by which this is implemented is beyond
the scope of this paper; however, performing a misaligned ac-
cess imparts an additional performance penalty (e.g., 14 cy-
cles on the Atom; 10 cycle on the Penryn Xeon).

2.3.2. Branch Misprediction

Branch misprediction rates are obtained from the branch
prediction simulator. To understand the mispredict penalty of
a conditional branch, it is useful to review the life of a mis-
predicted branch. A branch prediction is made at the head of
the fetch pipeline. The branch predictor guesses whether the



branch is taken or not taken based on some branch history in-
formation. Based on the prediction, the processor fetches in-
structions in the predicted direction. The branch reaches the
scheduler, it must wait until all of it’s dependent instructions
have executed. Dependent operations clear the scheduler at a
drain rate that is determined by the baseline IPC plus the IPC
contributions of any blocking operations.

IPCscheduler Drain = IPCBaseline + IPCBlocking (@)

If the scheduler size is known, the latency for the branch to
execute is calculated as follows:

Scheduler Size
CyclesschedulerLatency = m 3)
cheduler Drain

For the purposes of simulation, a blocking operation is
counted as a data TLB miss or misses to the L2 cache and
lower in the cache hierarchy. When the branch is finally ex-
ecuted, its direction is resolved and the misprediction is de-
tected. Dependent instructions in the scheduler and reorder
buffer are killed and the fetch unit is signaled to restart fetch-
ing from the correct branch direction. The processor will
wait for useful instructions to make their way down the fetch
pipeline into the scheduler before execution can resume. Con-
sequently, the value for the branch mispredict penalty is:

CyclespranchMisp = 2 X Depthretchpipe + CyclesschedulerLatency

“

2.4. Estimating Throughput

Having obtained an overall CPI estimate, predicting Mem-
cached throughput for a single thread is a relatively trivial
matter of calculating the execution time for a single transac-
tion. The execution time for a transaction is estimated using
the CPI, the number of instructions in a single transaction,
and the core clock frequency of the microprocessor:

1
TransactionTimeysec = CPI X InstrCount X ——— (5)
Fregmp;

A count of 9,200 instructions per transactions was derived
by counting instructions in Memcached traces, and was val-
idated using performance counters on real hardware. Recall-
ing the discussion in Section [2.1.3] Memcached has two dis-
tinct phases of program behavior. In the first phase, Mem-
cached is able to keep pace with the offered load. When load
approaches the saturation point, Memcached tansitions to a
second phase of behavior in which the connection buffers be-
gin to accumulate transactions awaiting service. In this later
phase, Memcached’s performance is progressively dominated
by calls to memmove in the connection buffer handling code.
Our goal here is to identify the request rate at which this phase

change occurs: the point at which the request rate exceeds
Memcached server’s ability to sustain that rate.

Predicting multiprocessor performance is more involved,
since two additional effects must be modeled: the effect of
multiple threads on the performance of the processor microar-
chitecture and the effect of lock contention in Memcached.
Of the microarchiterual features discussed in Sec. [2.2] only
cache miss rates are impacted by a multiprocessor workload
(the penalty of a branch mispredict is affected by the cache
miss rate, but the actual rate of mispredicts is assumed to
be unchanged by a multiprocessor workload). We employ the
simulation technique from Sec.[2.2.3]to quantify this effect.

Memcached (version 1.2.3h-dev) employs a single mutex
lock that serializes all accesses to its key-value store. As the
number of Memcached threads is increased, contention for
this mutex increases as well. Analyzing Memcached traces
for code that occurs within the critical section reveals that
only about 1.7% of instructions are executed inside a critical
section. It cannot be assumed that, because the critical section
instruction account for a small proportion overall, the perfor-
mance of these instructions is equally small. Intuitively, if the
instructions in the critical sections are responsible for access-
ing the key-value store, then these instructions may account
for a larger proportion of the memory system performance
than their small numbers suggest. In order to test this intu-
ition, the cache simulator was modified to count misses only
for accesses that occurred in critical sections. From these miss
rates, separate CPI calculations can be made for the serial and
parallel portions of the code. The results show that the criti-
cal sections, while accounting for only 1.7% of instructions,
make up approximately 13% of execution cycles. This analy-
sis is covered in more detail in Sec.[3.21

3. EXPERIMENTAL EVALUATION

In this section, we apply the analysis techniques discussed
in Sec. [2]to two different microarchitectures, Atom and Pen-
ryn. The Atom architecture is a low-power, in-order proces-
sor that yields impressive performance per Watt on Mem-
cached [9]]. The Penryn architecture is a server-class, out-of-
order microprocessor that represents the opposite end of the
spectrum from the Atom.

3.1. Single Processor Performance

3.1.1. Intel Atom

The Intel Atom N540 runs at a frequency of 1.86 GHz. It
has 32 KB, eight-way set-associative instruction cache; a 24
KB, six-way data cache; and 512 KB L2 cache. All cache
lines are 64 bytes long. The Atom has fully-associative, 16-
entry L1 I- and D-TLBs, and four-way associative, 64-entry,
L2 I- and D-TLBs. Other properties are shown in Table[I]

Table [2| shows the CPI-component model of the Atom.
Baseline Cycles shows the number of cycles required to is-



Scheduler Size 32 entries
Fetch Pipe 6 stages
L2 Hit Latency 14 cycles
DRAM Latency 166 cycles
L1 TLB Miss 7 cycles
L2 TLB Miss 52 cycles
Branch Mispredict | 75 cycles

Table 1. Atom Latencies

Scheduler Size 32 entries
Fetch Pipe 8 stages

L2 Hit Latency 15 cycles

DRAM Latency | 300 cycles
TLB Miss 7 cycles

TLB Miss 122 cycles
Branch Mispredict | 58 cycles

Table 3. Penryn Latencies

’ Component H Freq/1K Instr ‘ Cycles/1K Instr ‘ ’ Component H Freq/1K Instr \ Cycles/1K Instr
Baseline CYC!GS 1 or7 Baseline Cycles 1 693
L1 ICache Miss 39.2 545.6 L1 ICache Miss 39.2 587.94
L1 DCache Miss 14.8 188.0 L1 DCache Miss 8.7 124.47
L2 Instr Mi.ss 0.2 389 L2 Instr Miss 0.006 1.8
L2 Data Miss 14 2249 L2 Data Miss 0.45 133.8
L1 ITLB Miss 11.7 82.1 L1 ITLB Miss 1.1 24.7
L1 DTLB Miss 21.9 153.5 L1 DTLB Miss 21.9 153.5
L2 ITLB Migs 5.3 2717 L2 DTLB Miss 2.89 352.7
L2 DTLB Miss 11.3 585.7 Misaligned Load 4.114 41.1
Branch Mispredicts || 11.1 834.1 Branch Mispredicts || 6.88 403.5

[ Total | | 3905.0 \ [ Total [ 24994

Table 2. Atom single-core CPI Components

sue 1,000 instructions for an in-order machine. Cache miss
rates per 1,000 instructions and their corresponding cycle es-
timates are broken down into each component of the memory
system. Note that the branch misprediction rate is the largest
component of the model. For the Atom, a branch miss is esti-
mated to be 75 cycles. This large penalty is assessed because
1) the machine has a high baseline penalty because it must
issue instructions in order and 2) as an in-order machine, L1
data cache misses are considered blocking events. The sum of
cycles per 1,000 instruction is 3,905, or a CPI of 3.905. The
time to execute a single Memcached GET transaction is 19.1
usec, derived as follows:

1

19.1 =3.9CPI x 9,2001nst ructi —_—
usec x9, nstructions x 1860MH-=

usec

(6)

To obtain a throughput estimate, the Atom server is repre-
sented as an M/M/1 queue for which the service time is set to
19.1 usec. From the queuing model, a maximum throughput
of 58,000 requests per second (RPS) is obtained. The actual
saturation point measured on the Atom is 51,000 RPS, so the
estimated throughput is only 12.1% different from the mea-
sured throughput.

3.1.2. Intel Penryn
The Intel Penryn micro-architecture we used (L5420) runs
at a core clock frequency of 2.5 GHz. L1 instruction and

Table 4. Penryn single-core CPI Components

data caches are both 32KB, eight-way set-associative, with
64-byte lines. The 6MB, 16-way L2 cache is shared by two
cores. Instruction addresses are cached in a 128 entry instruc-
tion TLB, while the L1 data TLB is has 16 entries and is
backed by a 256 entry L2 TLB. Table [3] shows the relevant
miss latencies. The CPI model for the Penryn is shown in Ta-
ble 4] Notice that the Baseline Cycles component is over 200
cycles lower than that of the Atom due to the out-of-order de-
sign of the Penryn. The larger L2 cache results in much lower
L2 miss rates, and a larger branch predictor results in a lower
branch misprediction rate. The CPI model predicts an average
instruction latency of 2.49 cycles per instruction, from which
a transaction service time of 9.16 usec is calculated. Plugging
this service time into the queuing model gives an estimated
throughput of 108,000 RPS. The observed throughput on a
real Penryn machine gives a maximum single-core through-
put of 128,000 RPS, a discrepancy of only 16%.

3.2. Multiprocessor Performance

These data show that reasonably accurate predictions of
Memcached throughput can be obtained using a CPI model
on both in-order and out-of-order machines. While these sin-
gle core results are encouraging, the model must predict mul-
ticore performance as well to be useful. This section describes
how the single-core model can be expanded to predict multi-
core performance. The multicore model is validated against
the Penryn processor for both 2-core and 4-core workloads.
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Running Memcached on multiple cores affects the model’s
estimates of cache miss rates. Using our multiprocessor cache
model ( Sec.[2.2.3)), new miss rate estimates are generated for
the 2-core and 4-core configurations. (Tables 5] [6). Based on
these data, CPI is estimated to be 2.48 (8.13 usec transaction
time) and 3.18 (10.43 usec) for 2 and 4 cores, respectively.

In Sec. we learned that ~ 13% of a transaction’s run
time is spent in code that is serialized by Memcached’s key-
value store mutex. This model takes a simple approach to
modeling lock contention for Memcached. When running two
threads, 87% of each thread’s code can be run in parallel
with the other thread, while the remaining 13% must be run
sequentially. To model the lock contention, we assume the
worst case in which every time a thread wishes to obtain
the key-value store mutex, it is contending with the second
thread for the lock. This assumption adds a 13% performance
penalty to the run time of each thread when modeling the
dual-thread case. Similarly, when modeling the four-thread
case, the worst case scenario is again assumed: when any one
thread is trying to obtain the lock, it is contending with the
other three threads—incurring a 39% runtime pentalty.

When running two threads, the run time of a single trans-
action is calculated as 7.47 usec (based on the CPI estimate
from Table [5). A syncronization penalty of 13% is added to
the run time, yielding a final run time of 8.14 usec. An M/M/2
queue is used to model the throughput, resulting in an es-
timated throughput of 204,000 RPS. The throughput limit of
the actual machine is measured as 174,000 RPS, which places
the estimate whithin 17% of the measured throughput.

The four-core case is modeled similarly. Based on an esti-
mated CPI of 3.06, the time to complete a single transaction
on the Penryn is calculated as 11.26 usec. Using the worst-
case throughput assumption, we assumed that any one thread
is contendending with three others. Based on this assump-
tion, a 39% run time pentalty is added to the transaction, pro-
ducing a final run time estimate of 15.65 usec. Modeling the
four-core machine as an M/M/4 queue in which the service
time is 15.65 usec, an estimated throughput of 251,000 RPS is

Component [ Freq/1K Instr | Cycles/1K Instr
Baseline Cycles 1 693

L1 ICache Miss 19.3 288.9

L1 DCache Miss 12.12 162.9

L2 Instr Miss 0.044 13.2

L2 Data Miss 1.261 378.3

L1 ITLB Miss 1.2 27.1

L1 DTLB Miss 21.6 151.5

L1 DTLB Miss 1.9 233.5
Misaligned Load 4.1 41.1

Branch Mispredicts || 6.88 375.1

| Total I | 2031.4 \

Table 5. Penryn 2-core CPI Components

’ Component H Freq/1K Instr \ Cycles/1K Instr ‘
Baseline Cycles 1 693
L1 ICache Miss 25.0 375.0
L1 DCache Miss 2.95 248.1
L2 Instr Miss 0.00 0.0
L2 Data Miss 2.95 885.0
L1 ITLB Miss 0.99 22.9
L1 DTLB Miss 16.3 114.1
L1 DTLB Miss 1.43 175.3
Misaligned Load 4.1 41.1
Branch Mispredicts || 6.88 521.2

] Total H \ 3059.1

Table 6. Penryn 4-core CPI Components

obtained. On real hardware, Memcached throughput is mea-
sured at 232,000 RPS, making this estimate off by only 8%.

4. DISCUSSION AND FUTURE WORK

The results in Section [3] suggest that a CPI component
model and a simple concurrency model can predict Mem-
cached performance on both in-order and out-of-order mi-
croprocessors in single- and multi-core configurations. Using
trace-based simulation means that the long, error-prone job
of tuning and validating the simulated workload needs to be
performed only once for a particular application. Once traces
have been collected, any processor configuration can be sim-
ulated using the same set of traces.

Although the throughput predicted by the model is a rea-
sonably good match to the observed performance, there are
opportunities to improve the accuracy of the results. The CPI
model tends to underestimate performance. As we mentioned
earlier, prefetching has a small (= 5%) benefit for Mem-
cached performance, and this likely accounts for some of
the performance difference. Another possible source of error
is that the model does not account for memory-level paral-



lelism (MLP) [[16]. The model considers all lower-level cache
misses as blocking and counts the full penalty of the miss. In
reality, modern microprocessors have some capacity of par-
allelize misses, with the degree of parallelism depending on
the processor’s microarchitecture and the characterisitics of
the workload. Incorporating a technique models MLP would
likely increase the accuracy of the current model [[17]].

An interesting result of our analysis is that average GET
requests only require ~ 9,200 instructions to complete from
start to finish. This low number corroborates previous claims
that Memcached is highly suitable to running on low-power
low-speed processors with sacrificing responsiveness [13, 9].
We plan to investigate this suitability further as low-power
architectures mature into server applications.

Expanding this modeling technique to other workloads
such as HipHop [14] will require more sophisticated mod-
eling techniques in some areas. Although prefetching has a
small effect on Memcache performance, other workloads are
sensitive to prefetching, so some work in this area would be
necessary. Branch prediction is modeled very simply, but as
evidenced from the CPI component models, branch mispre-
diction penalties can be a large component of overall CPIL. The
model would certainly benefit from more choices of branch
prediction schemes and more knowledge of exactly what
branch predictors are implemented in real hardware products.
The simple concurrency model used here appears to be per-
fectly adequate for a workload that has a single contended
lock. However, an application with more locks would cer-
tainly require a more sophisticated scheme for modeling con-
currency. Finally, this work avoids modeling hardware that
implements multithreading. As this feature is present in many
products available today, hardware threading should be the
subject of future research in this area.
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