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Fig. 1: Our framework uses a diverse set of video clips to learn a semantic descriptor space from crowdsourced ratings. During deployment,
a user can intuitively manipulate the robot camera motion with descriptors instead of tuning low-level robot positioning parameters.

Abstract— Aerial vehicles are revolutionizing the way film-
makers can capture shots of actors by composing novel aerial
and dynamic viewpoints. However, despite great advancements
in autonomous flight technology, generating expressive camera
behaviors is still a challenge and requires non-technical users
to edit a large number of unintuitive control parameters. In
this work, we develop a data-driven framework that enables
editing of these complex camera positioning parameters in a
semantic space (e.g. calm, enjoyable, establishing). First, we
generate a database of video clips with a diverse range of shots
in a photo-realistic simulator, and use hundreds of participants
in a crowd-sourcing framework to obtain scores for a set of
semantic descriptors for each clip. Next, we analyze correlations
between descriptors and build a semantic control space based
on cinematography guidelines and human perception studies.
Finally, we learn a generative model that can map a set of desired
semantic video descriptors into low-level camera trajectory
parameters. We evaluate our system by demonstrating that our
model successfully generates shots that are rated by participants
as having the expected degrees of expression for each descriptor.
We also show that our models generalize to different scenes in
both simulation and real-world experiments. Data and video
found at: https://sites.google.com/view/robotcam.

I. INTRODUCTION
Aerial vehicles have become an important tool for sup-

porting human creativity and expressiveness, fundamentally
altering the way both professional and amateur users produce
media content for movies, sports and virtual / augmented
reality. Much of the impact of aerial cameras stems from
their capability to compose aerial and dynamic viewpoints
that are infeasible using traditional devices such as hand-held
cameras and dollies [1]. In addition, recent developments both
in industry [2, 3] and academia [4]–[6] now allow drones
to detect, track and follow objects of interest autonomously
while maintaining safety in cluttered environments.

However, a major limitation of today’s cinematography
platforms is the difficult and unintuitive interface for camera
control. A scene can be captured in myriad ways, and each

camera path provides a different visualization of the story
[7], causing distinct impressions on the viewers. Users are
not able to directly control the emotional expression of
the final footage. Instead, they need to carefully tune the
camera’s position, velocities and angles to achieve a desired
expression. An added challenge is the complex interaction
between camera parameters, which produces a combinatorial
complexity that drives the viewer’s perception. This task is
cumbersome to users not only due to the large parameter
search space, but also because it requires intimate knowledge
of cinematography rules [8]–[10], which take years to master.

Our work aims to fill in the gap in existing controls for
autonomous cameras. As seen in Fig. 1, our framework
enables users to determine the desired shot types based
on intuitive and perceptually meaningful parameters (e.g.
exciting, enjoyable, establishing). We employ a photo-realistic
simulator to generate a database of video clips with a
diverse set of shot types, and use crowd-sourced perceptual
experiments to obtain semantic scores for each video. We then
learn the two-way mapping between low-level shot parameters
and semantic descriptors. We take inspiration from previous
works that created semantic control spaces for domains such
as cloth animations [11], object and body shapes [12, 13],
and robot motion [14]. Our contributions are threefold:
1) Perceptual experiments: First, we conduct a series of
experiments to determine the minimal perceptually valid step
sizes for different shot parameters. We then build a dataset
of 200 videos using variations along these units, and use
an interactive crowd-sourcing platform to obtain numerical
scores for different subjective semantic descriptors;
2) Semantic control space: Using the perceptual scores, we
learn a regression model that provides an intuitive semantic
control space to re-parameterize the desired video expression
into low-level shot parameters to guide the aerial camera;



3) Experimental validation: We validate the learned models
in a series of experiments in simulation and real-world tests.
We show that shots generated from the semantic space are
rated by participants as having the expected degrees of
expression for each attribute, and that the model generalizes
to different actors, activities, and background compositions.

II. RELATED WORK

Autonomous aerial cinematography: We find multiple
lines of work on the use of drones for cinematography. For
instance, [15] and [16] use optimization methods for naviga-
tion on or close to pre-defined trajectories segments. We also
find works that use pre-selected high-level cinematographic
guidelines such as distances and angles relative to actors
[9, 10] as an input for trajectory optimization in unscripted
scenes among obstacles [4, 17]. Alternatively, [18] control
the camera based on image projection features.

Autonomous artistic reasoning: Autonomous reasoning
about how camera movements can provide artistic value
to videos has been a topic of interest in multiple contexts.
For instance, [19] and [20] train policies to control pan-tilt-
zoom cameras in basketball and soccer games by imitating
human demonstrations and using video features. For drone
cinematography, [21] use reinforcement learning to train
a policy that switches between four basic shot types to
maximize human-provided rewards. We also find works that
aim to imitate different camera motion styles. For example,
[22] use trajectory optimization so that a flying camera can
imitate the idiosyncrasies of hand-held camera motions. [23]
use supervised learning to predict camera actions for different
shot types, and [24] build a latent space of shot types out of
movie examples, which is coupled with a generative model.

Sentiment analysis: Unlike the previous works which
were focused on imitating a particular behavior, sentiment
analysis focuses on understanding how humans perceive and
interpret visual content [25]. Most video sentiment models
are based on psychology literature and use a combination
of the Valence-Arousal-Dominance state model [26] with
semantic descriptors grouped by similarities [27]. Several
authors explore the relationship between image features and
sentiments [28]–[30], and train models for movie recommen-
dation, summarization, and information retrieval [29, 31].

Learning a perceptual control space: Our approach
is motivated by previous works that edit processes using
semantic or context-specific attributes, as found in the fields
of garment simulations [11], 3D shapes [12, 13], and images
[32]. Closest to our domain in robotics, [14] developed a
data-driven interface for semantic design of expressive robot
motion. All these past works share a common approach: they
first build a dataset connecting instances to their intuitive
semantic labels (usually via crowd-sourcing), and then use
this data to learn a generative model mapping the semantic
descriptors back to unintuitive low-level parameters.

Our work is the first to develop a perceptual control space
for designing camera trajectories. We allow users without
any domain expertise in aerial vehicles or cinematography to
capture expressive camera behaviors. Unlike previous works

Fig. 2: Experimental setup: a) Photo-realistic simulator with an
animated character and aerial vehicle; b) Shot parameters that define
the vehicle’s position relative to the actor, in spherical coordinates.

that imitate styles, our system does not require the user to
search for specific examples of videos they want to indirectly
emulate. As we detail next, we show that we can generate any
footage by directly selecting its desired semantic descriptors.

III. PERCEPTUAL EXPERIMENTS

Our overarching goal is to learn a perceptually meaningful
space for aerial camera control. We focus our study on
single-actor shots, and assume the existence of sparse sets of
obstacles such as the ones found in suburban environments
(e.g. trees, telephone poles, traffic signs). All simulated data
is recorded using a drone in the photo-realistic environment
AirSim [33] (Fig. 2a) coupled with a custom ROS interface
[34]. We limit our clips to 15 second segments, which is a
reasonable unit of length for individual shots [35, 36]. As
seen in the supplementary video, the main scene consists of
an animated character running down a street, avoiding a car
parked on the road, and finally jumping on top of another
vehicle and dancing. We chose this actor motion because
it contains both static and dynamic segments, and causes a
relatively neutral emotional impression on the viewer.

We employ the base motion planner from [17], which
uses a trajectory optimization method to avoid collisions and
occlusions with the environment. Within this framework, a
shot is parameterized by the positions and velocities of the
drone relative to the actor. We define a shot using spherical
coordinates (Fig. 2b): Ωshot = [ρ, ρ̇, θ, θ̇, φ, Vz]T ∈ R6,
where ρ and ρ̇ are the distance and velocity towards the
actor, θ and θ̇ are the horizontal angle and angular velocity,
φ is the tilt angle and Vz the vehicle’s vertical speed.

A. Minimal Perceptual Units for Shot Parameters

Our approach requires us to build a mapping between
shot parameters and semantic descriptors. To do so, we must
sample the manifold containing all possible shot variations.
Within the cinematography literature [9, 10] we find canonical
sets of values for parameters like the distance to the actor ρ
(close-up, medium, and long shots) and tilt angles (variations
every 45◦). However, a naive approach for sampling the
remaining parameters results in a prohibitively large state
space given that some of its parameters such as angle rates
are virtually unbounded. In addition, parameter steps that
are too small may render imperceptible changes in the final
video, resulting in redundant samples.

To address these issues, we learn a minimally perceptible
unit of measure along each dimension in the shot parameter
space. A major challenge arises because this is a high-
dimensional space, and metrics are not globally consistent



Fig. 3: Examples of dynamic shot presets used in the study.

(e.g. variations in angular velocity will be more perceptible
when the camera is closer to the actor).

In order to make our experiments tractable we adopt the
simplifying assumptions of [11], and evaluate local axis-
aligned perceptual steps around a set of meaningful shot
preset configurations. In Table I we define six shot presets
based on common aerial shot types: the static shots (Follow
0/1) maintain a constant relative position between camera
and actor, and Fig. 3 depicts the dynamic shots.

TABLE I: Shot presets for perceptual units study. We only vary
the parameters in bold for each preset.

ρ θ φ ρ̇ θ̇ Vz

Preset
Unit [m] [◦] [◦] [m/s] [◦/s] [◦/s]

Follow 0 8 0 20 0 0 0
Follow 1 8 135 20 0 0 0

Orbit 5 0 20 0 20 0
Dronie 25 0 45 -0.5 0 -0.5

Overhead 8 180 85 0 0 0
Fly-by 15 150 20 0 -8 0

For each parameter φ, ρ̇, θ̇, Vz , we sample approximately
ten linearly distributed variations around its preset value over
the maximum range. We only allow changes that keep the
shot within its original type. Table I highlights the variable
parameters in bold. We create a total of 84 videos, and for
each variation we perform a two-sided t-test analyzing if the
resulting video is perceived as the same or different from the
preset video (with p = 0.05 significance).

For this first web survey (WS1) we recruited over 200
participants using Amazon Mechanical Turk (MTurk) [37].
This research received a waiver from our Institutional Review
Board, and participants were compensated for their time. After
being approved on a short qualifying task, each participant
viewed a total of 12 pairs of videos, one being the preset
and the other being either a variation or the preset against
itself. Videos were played asynchronously three times (only
one video played at a time), and after watching at least once,
participants answered: “Is the camera perspective the same
or different in the two clips shown?” Each clip was compared
30 times against its preset.

Figure 4 displays our results showing the minimal percep-
tual units around each preset and parameter. As expected,
we find that not all noticeable variations are symmetrical
around the presets, and deltas are only locally consistent. For
example, a change larger than ∆φ = 5◦ in tilt is noticeable
for overhead shots, while a larger delta ∆φ = 10◦ is required
for follow shots, where the preset angle is lower. Humans
are surprisingly good at noticing variations in angular speed:
deltas as small as ∆θ̇ = 2.5◦ were noticeable.

Fig. 4: Minimal perceptual deltas for each parameter. The preset
value is shown in green, red indicates statistically significant
perceptual variations (p = 0.05), and blue are the insignificant
variations. Heights display the percentage of videos rated as being
different than their preset.

B. Obtaining Semantic Scores for Videos

Once we are able to generate a diverse dataset of videos
with the minimal perceptual units of each shot parameter, the
next step is to devise a method to obtain numerical scores
for the subjective semantic descriptors representing each clip
(our choice of descriptors is detailed in Section III-C). To
do so, we use TrueSkill [38], which is a relative ranking
algorithm based on pairwise comparisons, similar to the Elo
chess-player rating algorithm [39]. Pairwise comparisons have
been shown to be more consistent and render more accurate
results than absolute scales for subjective scores [28, 40]–
[42]. We model the score for each semantic descriptor di as a
Gaussian distribution di = N (µi, σi), and update both mean
and variance of each pair of samples after each comparison.

C. Building a Semantic Descriptor Space via Crowd-Sourcing

We initially compiled a list of 15 semantic descriptors
(Table II) which are commonly used to refer to subjective
qualities of images and videos in the cinematography and
psychology literature [9, 10, 25, 28, 29, 42]. Because our
scenes do not include dialog or soundtrack, we do not include
descriptors which are uniquely associated with audio features.

A camera control space consisting of 15 descriptors is
still not an intuitive interface for non-expert users. Therefore,
in order to reduce the cognitive load on the operator, our
first semantic study targeted reducing the space to a smaller
number of descriptors. To do so, we generated a database
of 50 distinct 15-second clips using each shot preset’s
minimal perceptual units. We randomly sampled parameter
variations for all axes simultaneously, and allowed positive
and negative deltas using multiples of {0, 0.5, 1.0, 1.5, 2.0}
from the perceptual units.

To obtain semantic scores for each shot, we designed a
second web survey (WS2) on MTurk. This time, each user was
shown one pair of clips at a time, which played synchronously
three times. After watching the videos at least once, users
answered five questions of the type “Which video is more

?”, where denotes the different descriptors. Each user
watched a total of 12 video pairs, and passed a qualifying
task before the survey. We processed answers from a new
set of 200 users using TrueSkill to obtain a descriptor vector



d ∈ R15 containing the relative scores of each semantic
descriptor for each clip. We analyzed the similarity between
all pairs of descriptors using correlation coefficients, as seen
in Figure 5.

TABLE II: 7 Clusters of the 15 original descriptors shown within
brackets [], and divided by emotion axis and direction. We place
no descriptor as representing negative valence, but low values of
interesting and enjoyable can span this emotion.

Axis Arousal Valence Dominance

Positive [Exciting, Surprising,
Rushed, Dynamic]

[Interesting],
[Enjoyable]

[Establishing],
[Revealing]

Negative [Calm, Slow, Predictable,
Boring, Serene, Static] NA [Nervous]

Fig. 5: Correlations between a set of 15 semantic descriptors within
a diverse dataset of 50 videos. Data processed from 200 user surveys.

We found that some groups of descriptors present large
positive and negative correlations with one another. For
instance, videos labeled as being very calm also present
high scores for slow, and low scores for dynamic. We use
the Affinity Propagation algorithm [43] to cluster groups
of descriptors with high correlation. As seen in Table II,
we reduce the dimensionality of the descriptor space by
building a total of seven groups of descriptors, with one
descriptor representing the group for subsequent studies. The
choice of the number of clusters is ambiguous, and any
value between 1 and 15 clusters would have been possible
by varying the preference value in the Affinity Propagation
algorithm. Our choice of seven clusters supported two criteria:
(i) it presents a small enough number of parameters that a user
can interact within an interface, and (ii) the resulting seven
clusters can be grouped to span all axes of the Valence-
Arousal-Dominance [26] space, which is widely used in
affective content analysis [28].

Next, we generated the final dataset for learning the
mapping between semantics and shot parameters, now using
a larger set of 200 randomly generated videos sampled

around the preset values. Analogously to WS2, we deployed
a third perceptual rating survey (WS3) to compute a 7-
dimensional descriptor vector for each video (d ∈ R7) using
answers from a new set of 500 participants who passed a
qualification test. In order to verify our initial assumption
that the resulting clusters are able to span the full space
of the three emotions axis, we again calculate a correlation
matrix between descriptors. This time we also artificially
create negated scores by mirroring each descriptor around its
mean value, and then use a multidimensional scaling method
[44] to find the best 3D coordinates that fit our data, treating
correlation scores as distances between points. Figure 6 shows
that our experimental data in fact is able to span a 3D affective
space, as seen by our fitted Valence-Arousal-Dominance
basis vectors. The vectors are not fully orthogonal, indicating
correlations among emotion axes, which is an expected result
based on the psychology literature [42].

Fig. 6: Learned 3D space of emotions computed from a survey
with 200 videos and 500 participants. We display seven semantic
descriptors and their negated values (e.g. Calm, Not calm), and fit a
emotion basis vector along each major emotion axis: Arousal (red),
Valence (green) and Dominance (blue).

IV. LEARNING A SEMANTIC CONTROL SPACE

Given the dataset of shot parameters Ωshot ∈ R6 and
semantic descriptors d ∈ R7, we wish to learn a function
f : d→ Ωshot that provides a mapping from a set of desired
descriptors to the set of shot parameters that produces a
clip with such emotional impression on the viewer (D2P
model). We are also interested in the inverse question: given
a shot, can we infer its emotional expression as a mapping
f−1 : Ωshot → d (P2D model)?

A. Training Details

We explored two approaches to learn such functions: linear
regression (LR) and deep neural networks (DNN). We employ
Lasso regression [45] for our linear model, as it includes an
additional loss to reduce the L1 norm of coefficients. We
tested different DNN architectures, and after a series of tests
using 5-fold cross validation on our dataset, we settled with
a fully connected network with 3 hidden layers containing
32, 16, and 8 neurons respectively. We augment the shot
parameter vector with 5 additional variables corresponding
to a one-hot encoding of the shot type (follow, orbit, dronie,



overhead, fly-by), which is used to process the model’s output
into one of the canonical drone shot types. All values are
normalized to the [−1, 1] range for training.

B. Model Results

Both LR and DNN presented very similar performance
on the D2P model using a dataset of 200 videos, with
R2

LR = 0.19 and R2
DNN = 0.22. Given this similarity

and the fact that LR allows us to interpret the values of
its coefficients more easily, the rest of our analysis here uses
linear models. We note, however, that we trained both models
with a relatively small quantity of examples due to the high
cost of obtaining labeled data. With more data, a DNN model
would very likely achieve superior performance.

Figure 7a shows the normalized coefficients for the D2P
model. We notice intuitive relationships between parameters
which were learned entirely from user evaluations. For
instance, establishing videos are linked to larger distances
ρ to the actor, matching the cinematographic concept of
establishing shots. Other strong relationships we identify
are of calm videos having smaller angular velocities θ̇, and
enjoyable clips tending to veer towards lower tilt angles φ,
away from overhead shots.

We also investigate the P2D i.e. inverse model, which
maps shot parameters to descriptor values. Figure 7b shows
the relationships between variables. The distance between
camera and actor causes the largest impact on viewer
perception. Other shot parameters have a selective influence
on descriptors. For instance, larger tilt angles φ produce less
revealing and less interesting videos, but have less influence
on how calm a video is.

V. EXPERIMENTAL VALIDATION

A. Semantic Control Space

We validated the quality of the learned semantic control
space in a series of user experiments. Using the D2P model,
we generated a set of videos per semantic descriptor by
linearly sampling increasingly low to high desired expression
values over the range of [−2, 2] standard deviations. The
choice of values for the descriptor vector is not entirely arbi-
trary, as several of the attributes present positive and negative
correlations. For instance, if the user is only interested about
the value of a single descriptor and sets a high score for
exciting, the calm score must naturally go down. Therefore,
we treat the descriptor vector d as a multivariate normally
distributed variable d = [d1, d2]T , where d2 ∈ Rn are the
n user-specified scores. We then calculate the remaining
scores d1 using the means and covariances between groups
of variables: d1 = µ1 + Σ12Σ−1

22 (d2 − µ2).
In contrast to our previous experiments, here we created a

new survey on MTurk (WS4) where users viewed each clip
individually, and scored them using a 5-point Likert scale
(1 being Not at all, and 5 being Extremely ). We
averaged scores from 15 users per clip. An absolute scale
is preferred for this study because our goal is to understand
how average users perceive the resulting clips, and not just
to create a relative video ranking.

Fig. 7: Normalized linear model coefficients: a) mapping from
semantic descriptors to shot parameters (D2P model), and b) mapping
from shot parameters to semantic descriptors (P2D model).

Fig. 8: Comparison of semantic scores predicted from shot
parameters using the learned model (orange) against the original
crowdsourced values (gray). Shaded gray area displays TrueSkill
score uncertainty. Videos are ordered in ascending order of scores.

As seen in Figure 9, we test our model in two simulation
environments using 42 videos (6 per descriptor axis). The
first environment is identical to the one employed for learning
the models, and the second one tests how well the D2P model
generalizes to a new actor type (soccer player dribbling a ball),
scene background (grass field with an audience cheering),
and shot duration (20s, against 15s earlier).

In addition, we also validate our model in real-world
experiments, collecting a total of 28 clips (4 per descriptor
axis). We use a Parrot Bebop 2 drone and control it with the
real-time autonomy stack developed by [4] to visually localize
the actor and plan smooth aircraft motions. We collected
additional shots (Fig. 11) shown in the supplementary video.

Figure 9 shows that our D2P model is able to successfully
generate shots that are rated by participants as having
the expected degrees of expression for each descriptor.



Fig. 9: User study results validating generative shot model for different simulated and real-world scenes. For each descriptor we generated
videos ranging from low to high desired scores, and averaged the perception score from 15 users on a 5-point absolute Likert scale.
Perceived scores match the desired ascending ranking.

Fig. 10: Reduction of semantic descriptor space and shot parameter
space into 2D compressions using T-SNE. Colors indicate shot types.

Fig. 11: Examples of shots taken with our autonomous drone setup:
1) Dance moves; 2) Parkour; 3) Running scenes. The full sequences
are shown in the supplementary video.

Furthermore, the model generalizes well to other simulated
scenes and to real-world footages, which strongly suggests
that our semantic control space is not overly attached to
specific features of the training environment or to a single
set of actor motions.

B. Semantic Shot Classification and Latent Space Analysis

We also validate the quality of the P2D model on a held-
out test set with 20% of the 200 videos. Fig. 8 shows the
quality of the model’s predictions per emotion (R2 = 0.69).

Figure 10 provides further insights into the mappings
between shot parameters and descriptors. We use T-SNE [46]
to visualize a 2D projection of higher-dimensional spaces, and
color the data by shot types. Based on the 2D visualization
and on the different R2 score values, we argue that learning
a model that maps shot parameters to descriptors is an easier
task, as it requires learning a surjective function (many-
to-one). The inverse mapping is harder since one point in
the descriptor space can correspond to multiple set of shot

parameters (one-to-many).

VI. CONCLUSION AND DISCUSSION

In this paper, we present a semantic control space for aerial
cinematography that allows users to guide camera motions
using intuitive controls instead of selecting low-level shot
parameters. We use crowdsourcing with hundreds of users
to learn the mapping between shot parameters and semantic
descriptors in a diverse dataset of 200 videos. We validate
our semantic generative shot model in multiple experiments,
and show that it successfully generalizes to new scenes in
simulation and in real-world experiments with an aerial robot.
Additionally, we provide insights into the space of emotions
our model can represent, and investigate the relationship
between shot parameters and descriptors to understand what
our model is effectively learning.

Our framework targets non-technical users, and can gener-
ate shot parameters directly from a semantic vector. However,
expert users can easily adapt it to gain more control over
the model’s outcome. For example, one can learn separate
generative models for individual shot types and gain more
control over the system’s inputs / outputs.

We find multiple directions for future work in the area.
For instance, we are interested in employing a larger set of
parameters to control the shots, such as lens zoom [47], and
potentially even soundtracks. In addition, we would like to
extend our framework to accept environment features into
the generative model. Another limitation we face is regarding
the shot time horizon: currently our algorithm generates a
single shot at a time. However, there is great potential in
developing algorithms that can reason over longer durations,
and infer emotional expression over sequences of shots.
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[16] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,
“Real-time planning for automated multi-view drone cinematography,”
ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 132, 2017.

[17] R. Bonatti, C. Ho, W. Wang, S. Choudhury, and S. Scherer, “Towards a
robust aerial cinematography platform: Localizing and tracking moving
targets in unstructured environments,” 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

[18] C. Huang, Z. Yang, Y. Kong, P. Chen, X. Yang, and K.-T. T. Cheng,
“Through-the-lens drone filming,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,
pp. 4692–4699.

[19] J. Chen and P. Carr, “Mimicking human camera operators,” in 2015
IEEE Winter Conference on Applications of Computer Vision. IEEE,
2015, pp. 215–222.

[20] J. Chen and J. J. Little, “Where should cameras look at soccer games:
Improving smoothness using the overlapped hidden markov model,”
Computer Vision and Image Understanding, vol. 159, pp. 59–73, 2017.

[21] M. Gschwindt, E. Camci, R. Bonatti, W. Wang, and S. Scherer, “Can
a robot become a movie director? learning artistic principles for
aerial cinematography,” 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019.
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