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Abstract

Generative dialogue models currently suffer
from a number of problems which standard
maximum likelihood training does not ad-
dress. They tend to produce generations that
(i) rely too much on copying from the context,
(ii) contain repetitions within utterances, (iii)
overuse frequent words, and (iv) at a deeper
level, contain logical flaws. In this work we
show how all of these problems can be ad-
dressed by extending the recently introduced
unlikelihood loss (Welleck et al., 2019a) to
these cases. We show that appropriate loss
functions which regularize generated outputs
to match human distributions are effective for
the first three issues. For the last important
general issue, we show applying unlikelihood
to collected data of what a model should not do
is effective for improving logical consistency,
potentially paving the way to generative mod-
els with greater reasoning ability. We demon-
strate the efficacy of our approach across sev-
eral dialogue tasks.

1 Introduction

Open-ended tasks such as dialogue reveal a num-
ber of issues with current neural text generation
methods. In more strongly grounded tasks such as
machine translation and image captioning, current
encoder-decoder architectures provide strong per-
formance, where mostly word-level decisions are
often taken correctly by the model. However, crit-
ical failings are exposed in less constrained gener-
ation: reliance on repetitive copying and overuse
of frequent words, and an inability to maintain
logical coherence. The former shows the learn-
ing objective is faulty in that it cannot match sim-
ple statistics of the training data, while the latter
touches more to the heart of artificial intelligence:

?Work done while at Facebook AI Research (FAIR).

Figure 1: GPT-2 345M model completions can show
lack of coherence, e.g. direct contradictions.

these models do not understand what they are say-
ing. For example, Figure 1 shows how the 345M-
parameter GPT2 model (Radford et al., 2019) can
give high probability to contradictory generations.

In this work, we show how the recently in-
troduced unlikelihood objective (Welleck et al.,
2019a) can be generalized to remedy these prob-
lems. Unlikelihood is a technique developed for
removal of repetition in language model comple-
tions, and works by adding an extra term to the
objective that forces repetitions to have low proba-
bility, alleviating the degenerative problems high-
lighted in Holtzman et al. (2019). In fact, unlike-
lihood can be seen as a much more general frame-
work, as we will see.

We first generalize unlikelihood to a different
domain: dialogue, where we measure statistics
of the training distribution in terms of contextual
copies, within-utterance repeats, and vocabulary
usage. We then develop loss functions that con-
trol these statistics, providing improved metrics on
several tasks. Secondly, we show how the same
tools can be used to address deeper semantic is-
sues in such models. By leveraging existing natu-
ral language inference (NLI) data (Welleck et al.,
2019b) as supervision against poor quality gener-
ations, we train models that assign low probabil-
ity to generating incoherent and contradictory text.
Overall, our approach yields more consistent dia-
logue models across several axes, and provides a
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promising framework for further advances.
Code and pre-trained models will be made

available.†

2 Dialogue Unlikelihood Training

Dialogue Generation Dialogue generation con-
sists in predicting an utterance y = (y1, . . . , y|y|)
given a context x = {s1, . . . , sk, u1, . . . , ut} that
consists of initial context sentences s1:k (e.g., sce-
nario, knowledge, personas, etc.) followed by di-
alogue history utterances u1:t from speakers who
take consecutive turns.

Likelihood Training Given a dataset D =
{(x(i),y(i))} derived from a collection of human-
human interactions, the standard approach to gen-
erative training for dialogue tasks is maximum
likelihood estimation (MLE), that minimizes:

L(i)
MLE(pθ,x

(i),y(i)) = −
|y(i)|∑
t=1

log pθ(y
(i)
t |x(i), y

(i)
<t),

where x(i) is a gold context (dialogue history and
initial context sentences) and y(i) is a gold next-
utterance, and y(i)t is the t-th token of y(i).

Likelihood-based (greedy or beam) decoding
applied after training a model with this objective
yields sequences with statistics that do not match
the original human training sequence distribution.

Unlikelihood Training To control for such dis-
tribution mismatches, we employ the unlikelihood
loss (Welleck et al., 2019a), generalizing it to our
setting, and developing a particular form of the
loss function for each type of mismatch.

The general form of the unlikelihood loss pe-
nalizes a set of tokens Ct at each time-step,
L(i)

UL(pθ, C1:T ,x,y) =

−
|y|∑
t=1

∑
yc∈Ct

β(yc) log (1− pθ(yc|x, y<t)) ,

where Ct ⊆ V is a subset of the vocabulary, and
β(yc) is a candidate-dependent scale that controls
how much the candidate token should be penal-
ized. The overall objective in unlikelihood train-
ing then consists of mixing the likelihood and un-
likelihood losses,

L(i)
ULE = L(i)

MLE + αL(i)
UL, (1)

†https://parl.ai/projects/dialogue_
unlikelihood/

where α ∈ R is the mixing hyper-parameter.
Likelihood tries to model the overall sequence

probability distribution, while unlikelihood cor-
rects for known biases. It does this via the set
of negative candidates Ct calculated at each step t,
where we are free to select candidate generation
functions depending on the biases to be mitigated.
Likelihood pushes up the probability of a gold to-
ken y(i)t while unlikelihood pushes down the prob-
ability of negative candidate tokens yc ∈ Ct.

In Welleck et al. (2019a) the context x consists
of a ground-truth sequence (x = x(i)), the target
y is either a ground-truth sequence (y = y(i)) or
a model-generated sequence (y = ŷ), and the per-
token scale parameter β(yc) is 1.

In this paper, we demonstrate how unlikelihood
can be used as a general framework by applying
it to the dialogue domain. We show how varying
the contexts x, targets y, candidates C and scaling
β can be used to improve the coherence and lan-
guage modeling quality of dialogue models. To do
this, we now consider the different biases we wish
to mitigate, and construct a specific unlikelihood
loss for each in turn.

2.1 Repetition and Copying

Generative dialogue models are known to both (i)
rely too much on copying existing context knowl-
edge or dialogue history; and (ii) repeat them-
selves within individual utterances. To address
this with unlikelihood, we define two types of neg-
ative candidate tokens which either appear in a re-
peating n-gram from the context or from the gen-
erated label itself,

Ccontext-copy
t =

{
{yt} yt ∈ repeat context n-gram

∅ otherwise,

C label-repeat
t =

{
{yt} yt ∈ repeating label n-gram

∅ otherwise,

where yt is a token in a repeating context n-gram
when yt is part of an n-gram that already appeared
in the context tokens x, and is in a repeating la-
bel n-gram when yt is part of an n-gram that al-
ready appeared in y<t. Given a ground-truth con-
text x(i), we apply these two forms of unlikelihood
to a model-generated sequence ŷ(i). In summary,
we either apply the per-example loss

L(i)
UL(pθ, C

context-copy
1:|y| ,x(i), ŷ(i))

https://parl.ai/projects/dialogue_unlikelihood/
https://parl.ai/projects/dialogue_unlikelihood/


for controlling context copies, or

L(i)
UL(pθ, C

label-repeat
1:|y| ,x(i), ŷ(i)).

for controlling label repeats. We also consider
mixing the two losses to mitigate both issues.

2.2 Vocabulary Usage

Neural sequence models trained with maximum
likelihood generate sequences with token distribu-
tions that differ from those of human text (Dinan
et al., 2020; Holtzman et al., 2019). In particular,
these models tend to produce high frequency to-
kens too often and low frequency tokens too rarely,
where frequency is defined by the human token
distribution.

We address this with unlikelihood by penal-
izing tokens according to the mismatch between
the model and ground-truth unigram distributions.
Specifically, we first maintain an empirical esti-
mate of the model’s unigram distribution pmodel(yt)

and the human distribution p∗(yt):

pmodel(yt) =
count(yt)
|Y |

,

where Y is a collection of token predictions on
a subset of training data D′ (e.g. the preceding
k = 256 batches), and count(yt) is the number
of occurrences of yt in Y . This is computed us-
ing model sequences (y = ŷ), defining Y as the
collection of all tokens in all ŷ.

We wish to push down the probability of tokens
appearing too often, i.e. when pmodel(yt) > p∗(yt).
For the unlikelihood loss, each step’s candidate is
thus the current token, C identity

t = {yt}, and each to-
ken’s unlikelihood loss is scaled according to the
mismatch between the approximated model and
human distributions,

β(yc) = pmodel(yc) log

(
pmodel(yc)

p∗(yc)

)
.

The unlikelihood loss for a token yc is non-zero
when the token occurs more often in the model’s
estimated unigram distribution. In summary, the
resulting per-example loss is

L(i)
UL(pθ, C

identity
1:|y| ,x

(i),y)

where y is a model-generated sequence.

2.3 Contradictions
Neural generation models appear fluent, especially
when pre-trained on large datasets, but are still
poor at understanding the language they produce.
That is, they can produce logically or factually
inaccurate, or contradicting statements (Welleck
et al., 2019b; Zhang et al., 2018; Hayashi et al.,
2019; Petroni et al., 2019). Here, we show how the
unlikelihood objective can be used to train such
models to assign low probability to inconsistent
and contradictory utterances.

To do so, we assume the existence of training
data of both positive and negative examples of co-
herent behavior. There is a raft of recent large-
scale, high quality data that can be massaged into
this form, from natural language inference (NLI)
tasks (Bowman et al., 2015; Williams et al., 2018;
Welleck et al., 2019b) to commonsense reasoning
tasks (Zellers et al., 2019; Qin et al., 2019). Two
collections of data can be derived from the labels
of such a supervised task:

D+ = {(x(i),y(i)+)}, D− = {(x(i),y(i)−)},

where D+ is coherent behavior, e.g. neutral or en-
tailing data in NLI, and D− is incoherent behavior,
e.g. contradictions. In general, many forms of this
type of data can be collected, not just NLI, and it is
also not necessary for the contexts x(i) to overlap
as we have written here.

Standard likelihood training can then be per-
formed on coherent data D+, while the unlikeli-
hood objective is applied to D− as we wish to push
down the probability of generating the incoherent
response y− given a context x. That is, given an
incoherent pair (x,y−) we use the loss

LUL(pθ, C identity
1:|y| ,x,y

−),

where we penalize each token in the target
(Cidentity
t = {y−t }). Hence, the loss makes gener-

ating the contradicting sentences less likely.

3 Related Work

Our work provides new applications of unlikeli-
hood training (Welleck et al., 2019a), showing that
unlikelihood offers a general framework for im-
proving generative models, and in particular dia-
logue models. Outside of that work, the use of
negative training in dialogue retrieval, rather than
generation, has been previously extensively stud-
ied, see e.g. (Humeau et al., 2019; Nugmanova



et al., 2019). In the area of generative dialogue, a
number of works have focused on improving the
standard likelihood training approach. Closer to
our work is that of He and Glass (2019) which
developed the approach of negative training to
prevent generic and malicious responses in dia-
logue models. In terms of improving repetition
and specificity, a recent alternative approach is that
of control (Fan et al., 2018; Ficler and Goldberg,
2017; Ghazvininejad et al., 2017; See et al., 2019).
Nucleus sampling (Holtzman et al., 2019) can help
to remove generic or repetitive utterances at the
expense of accuracy, but was shown to be inferior
to beam blocking, which in turn was shown to be
inferior to unlikelihood in Welleck et al. (2019a).

In terms of dialogue coherence, Welleck et al.
(2019b) showed that retrieval, but not generative
models, could be improved with NLI as a re-
scorer, while Yang et al. (2018) multi-tasked with
NLI. The work of Gabriel et al. (2019) has also
studied improving narrative flow with a discrimi-
native rescorer, but in that case for generated lan-
guage. In our work, the improvements are tightly
integrated into the training of the model itself.

4 Experiments

In all of our experiments we employ a large
pre-trained seq2seq Transformer (Vaswani et al.,
2017) as our base model, which we then fine-tune
for particular tasks with the objectives outlined in
Section 2 and specified in each experiment below.
Following previous work (Humeau et al., 2019),
we pre-train our model on dialogue data, using a
previously existing Reddit dataset extracted and
obtained by a third party and made available on
pushshift.io, training to generate a comment con-
ditioned on the full thread leading up to the com-
ment, spanning ∼ 2200M training examples. Our
Transformer model consists of an 8 layer encoder,
8 layer decoder with 512-dimensional embeddings
and 16 attention heads, and is based on the ParlAI
implementation of Miller et al. (2017). The model
was trained with a batch size of 3072 sequences
for approximately 3M updates using a learning
rate of 5e-4, and an inverse square root scheduler.
This pre-training took approximately two weeks
using 64 NVIDIA V100s.

4.1 Repetition and Copying

We use the ConvAI2 persona-based dialogue
(Zhang et al., 2018), Wizard of Wikipedia

Repetition

Model PPL F1 Context Label

Human - - .0223 .0004
MLE Baseline 11.4 .199 .1131 .0210

UL (Context only) 11.8 .194 .0330 .0069
UL (Label only) 11.4 .203 .0984 .0005
UL (Context & Label) 11.9 .193 .0352 .0023

Table 1: Evaluation on the ConvAI2 task valid set
(test set is hidden), comparing standard likelihood
(MLE) with context and label repetition unlikelihood
loss training. The repetition types can be decreased
depending on which type of unlikelihood loss is used,
with minimal changes in perplexity and F1.

Repetition

Model PPL F1 Context Label

Human - - .160 .001
MLE Baseline 8.3 .368 .441 .014

UL (Context only) 8.8 .346 .229 .037
UL (Label only) 8.3 .371 .426 .001
UL (Context + Label) 8.5 .358 .313 .009

Table 2: Evaluation on the Wizard of Wikipedia test
set, comparing standard likelihood (MLE) with context
and label repetition unlikelihood loss training. The rep-
etition types can be decreased depending on the type of
unlikelihood loss used, while minimally impacting F1.

knowledge-grounded dialogue (Dinan et al., 2019)
and ELI5 long-form question answering (Fan
et al., 2019) datasets to evaluate the effect of
using unlikelihood to reduce copying and repe-
tition in model generated utterances. On each
dataset, we fine-tune the pre-trained pushshift.io
Reddit model, then evaluate by generating next-
utterances for dialogue contexts from the test set
(or validation in ConvAI2, as the test set is hid-
den). We use greedy decoding in our main exper-
iments for simplicity and scalability, but we also
obtained similar results with beam search, shown
in Appendix A.

To measure label repetition in a sequence y, we
use the portion of duplicate n-grams:

1.0− |unique n-grams(y)|
|n-grams(y)|

,

and report the metric averaged over the examples.
Label repetition increases from zero as the model
generates more repeated n-grams. To measure
context repetition, we measure the fraction of gen-



Repetition

Model PPL F1 Context Label

Human - - .009 .010
MLE Baseline 21.0 .130 .033 .617

UL (Context only) 21.4 .163 .008 .322
UL (Label only) 21.4 .183 .015 .055
UL (Context + Label) 21.8 .184 .009 .078

Table 3: Evaluation on the ELI5 task test set, com-
paring standard likelihood (MLE) with context and la-
bel repetition unlikelihood loss training. The repetition
types can be decreased depending on which type of un-
likelihood loss is used, while improving F1.

erated n-grams that appear in the original context:

|n-grams(y) ∩ n-grams(x)|
|n-grams(y)|

,

and report the metric averaged over the exam-
ples. Context repetition increases when the model
‘copies’ n-grams from the context. To quantify
language modeling quality, we use standard per-
plexity and F1 metrics.

We use the pre-trained model fine-tuned with
MLE as the baseline, and compare it against the
pre-trained model fine-tuned with copy and repe-
tition unlikelihood (§2.1).

Results Results for ConvAI2 are shown in Ta-
ble 1. We see that training unlikelihood using
only-contexts or only-labels reduces their corre-
sponding metrics dramatically compared to the
MLE baseline. Training with both context- and
label-repetition unlikelihood reduced both context
repetitions (by 69%, .0352 vs. .1131) and label
repetitions (by 89%, .0023 vs .0210) compared to
the MLE baseline, much closer to human levels,
while keeping perplexity essentially constant.

Comparatively, the Wizard of Wikipedia MLE
baseline experiences a much larger problem with
context repetition, due to its tendency to copy
grounded knowledge verbatim (Table 2).

Results for ELI5, shown in Table 3, show that it
has an especially large problem with label repeti-
tion, and that label-unlikelihood is able to reduce
the repetitions by 91% (.055 vs .617), while sig-
nificantly boosting F1 (.130 to .182).

Figures 2 and 3 show perplexity as a function
of label and context repeats respectively using un-
likelihood on ELI5. The parameter α can clearly
control repeats smoothly, with only very high val-
ues resulting in increased perplexity.
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Figure 2: ELI5: Perplexity vs. label repeats as a func-
tion of α in the label unlikelihood objective.
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Figure 3: ELI5: Perplexity vs. context repeats as a
function of α in the context unlikelihood objective.

Human Evaluation Finally, we perform a hu-
man evaluation using the same pairwise evaluation
scheme as (Fan et al., 2019) performed on ELI5,
comparing the MLE baseline to UL (Label only)
which asks: Which response answers the question bet-
ter? The evaluators are asked to consider both the
readability and accuracy of the answer. Results are
given in Figure 4 (left), showing a statistically sig-
nificant improvement over the baseline (150 trials,
two tailed binomial test, p < 0.01). Further details
are given in Appendix C.

4.2 Vocabulary Usage

We evaluate the ability of vocabulary unlikelihood
(§2.2) to reduce the mismatch between model and
human token distributions.

We use the ConvAI2 dataset, where our baseline
is again trained using maximum likelihood. Start-
ing with the baseline model, we then fine-tune sev-
eral models using vocab unlikelihood at logarith-
mically interpolated values of α ∈ [1, 1000].

We partition the vocabulary into ‘frequent’,
‘medium’, ‘rare’, and ‘rarest’ using the human



unigram distribution computed with the ConvAI2
training set, corresponding to the sorted token sets
whose cumulative mass accounts for the top 40%,
the next 30%, the next 20% and the final 10% of
usage, respectively. We evaluate a model by gen-
erating utterances given contexts from the Con-
vAI2 validation set, and compute the fraction of
tokens within each class.

Results Figure 5 shows how the vocabulary dis-
tribution obtained after unlikelihood training is af-
fected by the choice of mixing hyperparameter α
(Eq. 1): it can smoothly transition between the hu-
man training distribution and the MLE trained dis-
tribution (‘Baseline’), which is far from the human
one.

Table 4 compares the MLE baseline with un-
likelihood with increasing α values in terms of dis-
tribution and F1 score. The vocabulary unlikeli-
hood fine-tuning shifts probability mass from the
over-represented frequent words towards under-
represented medium and rare words, with the ef-
fect strengthening as α increases. At a small cost
to perplexity and F1, the unlikelihood tuning re-
duced the overuse of common tokens by 9 points,
matching the human rate, while improving the
production of rare tokens by 3 percentage points.

Human Evaluation Finally, we perform a hu-
man evaluation using the ACUTE-EVAL frame-
work (Li et al., 2019), comparing the MLE base-
line to UL for various α. First, 252 human-bot
conversations (8 turns each) are collected, and
then models are compared pairwise by asking the
question: Who would you prefer to talk to for a long
conversation? For these experiments we compare
with both methods generating using beam with
context blocking of trigrams. Results are given
in Figure 4 (right), showing a statistically signif-
icant improvement over the baseline according to
humans (two tailed binomial test, p < 0.01). Fur-
ther details are given in Appendix C.

4.3 Contradictions
We use the dialogue natural language inference
(NLI) task of Welleck et al. (2019b) to obtain
labeled non-contradicting and contradicting dia-
logue sentence pairs to use in unlikelihood training
(§2.3). Dialogue NLI contains utterances labeled
as entailing (E), neutral (N) or contradiction (C),
given a premise that is either a persona sentence
(an initial context sentence describing a dialogue
agent’s personality) or another dialogue utterance
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Figure 4: Human evaluation experiments for label un-
likelihood on ELI5 (left), and vocabulary unlikelihood
on ConvAI2 for two values of α (right). Unlikelihood
significantly outperforms the MLE baselines.

Token frequency classes

Model PPL F1 Freq Med Rare Rarest

Human - - .400 .300 .200 .100
MLE Baseline 11.4 .199 .491 .282 .157 .068

UL, α = 100 11.4 .200 .483 .289 .163 .063
UL, α = 101 11.9 .201 .459 .328 .154 .058
UL, α = 102 12.5 .190 .430 .335 .163 .071
UL, α = 103 14.4 .174 .399 .339 .188 .073

Table 4: Unlikelihood loss applied to vocabulary dis-
tributions. Stronger α terms greatly shift probability
mass from the most Frequent words to Medium and
Rare words, at a small cost to PPL and F1. Frequent,
medium, rare and rarest token classes are defined as the
sets of tokens whose cumulative masses account for the
top 40%, the next 30%, the next 20% and final 10% of
tokens empirically generated by humans, respectively.
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Figure 5: Vocabulary control with unlikelihood train-
ing: more probability mass is transferred from Fre-
quent words to Rare words as we increase the αweight-
ing parameter. The maximum likelihood baseline is far
from the human distribution.

from the Persona-Chat dialogue task (Zhang et al.,
2018). We show examples from Dialogue NLI in



Figure 6: Dialogue NLI from (Welleck et al., 2019b).

Train Test Valid

Entailment 95k 4613 4959
Triple-Entailment 105k 5285 5481
Neutral 110k 5500 5700
Negatives 110k 5500 5700

Table 5: Dialogue NLI two utterance generation task
dataset statistics.

Figure 6. The original data consists of sentence
pairs (s1, s2) along with a label (E, N, or C), and
was constructed by developing a schema and em-
ploying crowdworkers to label utterances with re-
lation triples. The labels are then inferred from the
triple representation.

We first transform the original classification
dataset into a form useful for unlikelihood training
of a generative dialogue model. We consider two
setups: (i) a two utterance generation task; and (ii)
a full dialogue generation task.

Two Utterance Generation Task We adapt the
initial dialogue NLI dataset by using entailing and
neutral training sentence pairs as plausible posi-
tive utterances, and contradicting pairs as nega-
tives. That is, if a pair (s1, s2) from Dialogue NLI
has label E or N, the example (x,y) = (s1, s2) is
added toD+, otherwise (label C) it is added toD−.

We consider two types of entailment: entailing
sentence pairs that appear together in a dialogue
in the original Persona-Chat dataset and are there-
fore natural (‘entailment’), and those that only en-
tail via their triple relations (‘triple-entailment’).
The latter are more challenging, noisier targets.
Evaluation is performed by measuring the test set
perplexity over the four target label types, where
contradictions should have relatively higher per-
plexity. We additionally evaluate a selection ac-
curacy task, where for each test example there are
two candidate responses: a positive and a negative

(contradicting) statement. The candidate response
with the lowest perplexity is considered to be the
model’s selection, and we measure the selection
success rate. Evaluation is broken down by pos-
itive type (entailment, triple-entailment, neutral).
Dataset statistics are given in Table 5.

Full Dialogue Task To evaluate in a more real-
istic setup that involves full dialogue rather than
a single utterance, we take full Persona-Chat di-
alogues (Zhang et al., 2018) similar to Figure 6,
and map back the dialogue NLI data to provide
positive and negative continuations of the dia-
logue. We consider continuations as either triple
entailing utterances, neutral utterances or contra-
dictions – where the relation triple is used to
match the existing persona or dialogue turns by
the same speaker to induce the label. That is,
an example (x,y) consists of a dialogue history
x = {p1, . . . , pk, u1, . . . , ut} and utterance y = s2,
where (s1, s2) is a sentence pair from Dialogue
NLI, and at least one sentence in x has the same re-
lation triple as s1. When the pair (s1, s2) is labeled
as E or N in Dialogue NLI, the example (x,y) is
added to D+, and otherwise it is added to D−.

Results Our MLE baseline obtains a perplexity
of 11.4, in line with current best systems on this
task (Lewis et al., 2019). Unfortunately, despite
being good on such standard metrics, our base-
line models fail at our coherence task. As seen
in Table 6 for the two utterance task, the perplex-
ity of contradicting utterances (12.5) is on average
lower than for neutral (36.7) or triple-entailing ut-
terances (17.5), although it is higher than entail-
ing utterances. We believe this is due to contra-
dicting utterances having high word overlap with
the premise utterance, coupled with an inability to
judge incoherence. Viewed as a selection task be-
tween utterances, picking the utterance with the
lowest perplexity, this means the selection rates
of non-contradicting utterances are very low, e.g.
picking neutral utterances over contradicting utter-
ances only 18% of the time. Even fully entailing
utterances are only picked 73% of the time. Sim-
ilar results are found on the full dialogue task as
well, see Table 7.

Unlikelihood training brings large improve-
ments in coherence metrics, whilst minimally im-
pacting overall dialogue perplexity. After apply-
ing unlikelihood, perplexity for contradicting ut-
terances has a clear signature, with very large av-



Selection Accuracy Perplexity

Data + Model Entail Tr.-E Neutral Entail Tr.-E Neutral Contradict ConvAI2

MLE Baseline 72% 41% 18% 8.54 17.5 36.7 12.5 11.4
UL (Dialogue NLI) 96% 85% 78% 9.1 26.6 39.4 248.9 11.9

Table 6: Test evaluation on the Dialogue NLI two utterance generation task, comparing standard likelihood (MLE)
models trained on pushshift.io Reddit and ConvAI2 with unlikelihood loss NLI training. Results are broken down
according to whether the premise and positive candidate are entailing, triple-entailing, or neutral (Entail, Tr.-E,
Neutral). Selection Accuracy measures how often the model assigns lower perplexity to the positive candidate
than to the negative candidate in the pair. Top two rows: for standard maximum likelihood models, the perplexity
of contradicting utterances is lower compared to neutral or triple-entailing utterances (albeit higher compared to
entailing utterances), showing partial failure at the coherence task. Bottom row: NLI Unlikelihood training yields
large improvements on all coherence metrics, while minimally increasing overall perplexity.

Selection Accuracy (vs. Neg) Perplexity

Data + Model Triple-Entail Neutral Triple-Entail Neutral Contradict ConvAI2

MLE Baseline 66.5% 36.8% 23.3 45.1 35.9 11.4
UL (Dialogue NLI) 89.0% 69.8% 21.5 40.3 63.5 11.8

Table 7: Test evaluation on the Full Dialogue NLI generation task. NLI unlikelihood training improves coherence
metrics compared to likelihood (MLE) training. For UL, the triple-entailing or neutral candidates are assigned rel-
atively lower perplexity compared to contradicting candidates, with higher selection accuracy for coherent labels.

LMLE LUL
Premise Hypothesis PPL PPL

Yes, I love watching baseball and basketball. I do not (C) I love running. 25.5 226.9
like running though. (E) I despise running. 29.9 9.4

Yes, I love watching baseball and basketball. I do like (E) I love running. 26.2 3.1
running though. (C) I despise running. 42.8 247.1

We did too but working in real estate for 12 years . (E) I have been working as a real estate
sucked up a lot of time agent for the past 12 years. 3.9 3.8

(C) We did too but working in real estate
for fifteen years sucked up a lot of time. 3.1 17.6

Figure 7: Example perplexities of a baseline maximum likelihood model (LMLE) and our unlikelihood trained
model (LUL ) when generating the provided hypotheses, given the premise. The maximum likelihood trained
model assigns high probability (low perplexity) to contradictory generations, while unlikelihood does not.

erage values compared to entailing or neutral utter-
ances, e.g. 248.9 vs. 9.1 for contradict vs. entail
on the two utterance task. This converts to cor-
responding large increases in selection accuracy
across all types on both tasks, e.g., an increase
from 18% to 78% on neutral statements on the two
utterance task, and from 37.4% to 69.8% on the
full dialogue task.

Some example model predictions are given in
Figure 7, comparing the MLE baseline and unlike-
lihood model perplexities of generating the given
hypotheses. The likelihood model cannot differ-
entiate between contradicting and entailing state-
ments easily, while there are large perplexity dif-
ferences for the unlikelihood model in these cases.

5 Conclusion

Generating consistent and coherent human-like di-
alogue is a core goal of natural language research.
We studied several aspects that contribute to that
goal, defined metrics to measure them, and pro-
posed algorithms that improve them, mitigating
some of the failings of maximum likelihood train-
ing, the current dominant approach. Our method
defines objective functions under the umbrella of
unlikelihood: during training, we wish to make in-
consistent dialogue unlikely by lowering the prob-
ability of such events occurring. This makes gen-
erative models repeat themselves less, copy the
context less, and use more rare words from the
vocabulary – closer to matching human statistics.
Further, utilizing supervised datasets with labeled



coherent and incoherent utterances and applying
unlikelihood yields measurably improved levels of
coherence with respect to the aspect measured, in
this case contradiction. Future work could apply
this same technique with other supervised data,
e.g. correcting causal or commonsense reasoning
errors (Zellers et al., 2019; Qin et al., 2019).
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Repetition

Model PPL F1 Context Label

Human - - .160 .0006
MLE Baseline 8.3 .373 .582 .002

UL (Context only) 8.8 .345 .270 .001
UL (Label only) 8.3 .371 .645 .000
UL (Context + Label) 8.5 .358 .445 .003

Table 8: Evaluation on the Wizard of Wikipedia task
test set, comparing standard likelihood (MLE) with
repetition unlikelihood loss training, where both meth-
ods use beam search (beam size of 5).

A Repetition Control with Beam Search

The experiments on repetition and copying in the
main paper were carried out with greedy decoding
for simplicity. In this section we show that simi-
lar results hold with beam decoding as well. Us-
ing a beam size of 5, we take the same 4 models
from Table 2 and compute metrics with beam in-
stead. The results are given in Table 8 which show
similar trends to before, except the baseline model
using beam tends to suffer more from repetition,
which is a known result (Holtzman et al., 2019).
Note that we simply evaluated the same unlikeli-
hood models as before, but we expect that better
results could be obtained by performing sequence
level unlikelihood training with beam search in the
training loop, as well as choosing hyperparameters
specifically with this kind of decoding being used
to measure validation performance.

B Nucleus Sampling for Vocabulary
control

Table 9 compares the MLE baseline, unlikelihood
with increasing α values, and Nucleus sampling
(Holtzman et al., 2019) with hyperparameter p in
terms of distribution and F1 score. The vocab-
ulary unlikelihood fine-tuning shifts probability
mass from the over-represented frequent words to-
wards under-represented medium and rare words,
with the effect strengthening as α increases. At a
small cost to perplexity and F1, the unlikelihood
tuning reduced the overuse of common tokens by
9 points, matching the human rate, while improv-
ing the production of rare tokens by 3 percentage
points.

Nucleus sampling is a popular method that can
also produce generations closer to the human vo-
cabulary distribution. It does this by sampling
from the model’s probability distribution rather

Token frequency classes

Model PPL F1 Freq Med Rare Rarest

Human - - .400 .300 .200 .100
MLE Baseline 11.4 .199 .491 .282 .157 .068

Nucleus p = 0.3 11.4 .180 .452 .315 .168 .064
Nucleus p = 0.4 11.4 .171 .440 .320 .172 .068
Nucleus p = 0.5 11.4 .160 .425 .322 .180 .072
Nucleus p = 0.6 11.4 .151 .411 .318 .192 .078
Nucleus p = 1.0 11.4 .141 .394 .302 .201 .101

UL, α = 100 11.4 .200 .483 .289 .163 .063
UL, α = 101 11.9 .201 .459 .328 .154 .058
UL, α = 102 12.5 .190 .430 .335 .163 .071
UL, α = 103 14.4 .174 .399 .339 .188 .073

Table 9: Unlikelihood loss applied to vocabulary dis-
tributions. Stronger α terms greatly shift probability
mass from the most Frequent words to Medium and
Rare words, at a small cost to PPL and F1. Frequent,
medium, rare and rarest token classes are defined as the
sets of tokens whose cumulative masses account for the
top 40%, the next 30%, the next 20% and final 10% of
tokens empirically generated by humans, respectively.
Nucleus sampling can also produce a distribution close
to human with parameter p close to 1, but with larger
losses in F1.

than using beam search, where the sampler re-
stricts to the smallest set of tokens with total mass
above a threshold p ∈ [0, 1]. Small values of p
are similar to greedy sampling. Increasing p yields
distributions closer to human, but with large losses
in F1 score, e.g. p = 0.5 has a similar distribution
to unlikelihood with α = 102 but the F1 scores are
0.160 vs. 0.190. This can be understood because
maximizing likelihood during decoding yields bet-
ter token accuracy than sampling (Welleck et al.,
2019a), so the unlikelihood training approach to
both use likelihood decoding and match the human
distribution can obtain the best of both worlds.

C Human Evaluation

Description of ConvAI2 vocabulary setup We
follow (Li et al., 2019) and perform a pairwise
comparison with full-length model conversations.
We first collected 252 model-human conversa-
tions with each of the models (MLE baseline, and
weights for α of Unlikelihood, examples in 8). We
then set up a pairwise-comparison using the soft-
ware of (Li et al., 2019), using the same question
(“Who would you prefer to talk to for a long conver-
sation?”) and use the exact same quality control
question (a baseline greedy model without repeti-
tion control, versus a human). We collected ap-



proximately 200 preferences per model compari-
son and filtered annotators who failed quality con-
trol.

Description of ELI5 repetition setup We fol-
low (Fan et al., 2019) and perform a pairwise eval-
uation where human annotators were asked “which
response answers the question better?” A screenshot
of the UI is shown in Figure 9. Human evalua-
tors were asked to rate a total of 5 questions, two
of which were quality control annotations. The
quality control examples contained the real hu-
man responses, along with model predictions: one
question contained a baseline model, and one con-
tained an unlikelihood model. Annotators which
did not pick humans in quality controls were re-
moved from the final setups. We collected 200 an-
notations comparing the baseline and the unlikeli-
hood model.

Results Evaluation results from all evaluated
matchups are shown in Figure 10. We find
our repetition-controlled ELI5 model significantly
outperforms the MLE baseline. We find that two
of the vocabulary repetition significantly outper-
form the MLE baseline. We compute significance
with a two-tailed binomial test (p < .01).



Figure 8: Examples of model-human conversations collected during human evaluation of the vocab unlikelihood
models. Human utterances are in blue bubbles, model utterances are in white. Conversations (a) and (b) are from
the baseline. Conversations (c) and (d) are from the α = 102 model and more frequently employ rarer words.



Figure 9: Screenshot of the Human Evaluator UI.
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Figure 10: Complete Human Evaluation results. Hu-
man evaluators do not significantly prefer the α = 100

and α = 103 models over the baseline model.


