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Abstract. Consumer depth sensors are more and more popular and
come to our daily lives marked by its recent integration in the latest
Iphone X. However, they still suffer from heavy noises which dramatically
limit their applications. Although plenty of progresses have been made
to reduce the noises and boost geometric details, due to the inherent
illness and the real-time requirement, the problem is still far from been
solved. We propose a cascaded Depth Denoising and Refinement Network
(DDRNet) to tackle this problem by leveraging the multi-frame fused
geometry and the accompanying high quality color image through a joint
training strategy. The classic rendering equation is delicately exploited
in our network in an unsupervised manner. Experimental results indicate
that our network achieves real-time denoising and refinement on various
categories of static and dynamic scenes. Thanks to the well decoupling
of the low and high frequency information in the cascaded network, we
achieve superior performance over the state-of-the-art techniques.

Keywords: Depth enhancement · Consumer depth camera · Unsuper-
vised learning · Convolutional Neural Networks· DynamicFusion

1 Introduction

Consumer depth cameras have enabled lots of new applications in computer
vision and graphics, ranging from live 3D scanning to virtual and augmented
reality. However, even with tremendous progresses in improving the quality and
resolution, current consumer depth cameras still suffer from heavy sensor noises.

During the past decades, in view of the big quality gap between depth sen-
sors and traditional image sensors, researchers have made great efforts to leverage
RGB images or videos to bootstrap the depth quality. While RGB-guided fil-
tering methods show the effectiveness [22, 34], a recent trend is on investigating
the light transport in the scene for depth refinement with RGB images, which is
able to capture high frequency geometry and reduce the texture-copy artifact-
s [43, 12, 46, 3]. Progresses have also been made to push these methods to run
in real time [44, 30]. In these traditional methods, before refinement, a smooth



2 Yan et al.

filtering is usually carried out on the raw depth to reduce the sensor noise. How-
ever, this simple spatial filtering may alter the low-dimensional geometry in a
non-preferred way. This degeneration can never be recovered in the follow-up
refinement step, as only high-frequency part of the depth is modified.

To attack these challenges, we propose a new cascaded CNN structure to
perform depth image denoising and refinement in order to lift the depth quality
in low frequency and high frequency simultaneously. Our network consists of two
parts, with the first focusing on denosing while the second aiming at refinement.
For the denoising net, we train a CNN with a structure similar to U-net [36].
Our first contribution is on how to generate training data. Inspired by the recent
progress on depth fusions [19, 26, 11], we generate reference depth maps from the
fused 3D model. With fusion, heavy noise present in single depth map can be
reduced by integrating the truncated signed distant function (TSDF). From this
perspective, our denoising net is learning a deep fusion step, which is able to
achieve better depth accuracy than heuristic smoothing.

Our second contribution is the refinement net, structured in our cascade
end-to-end framework, which takes the output from the denoising net and re-
fine it to add high-frequency details. Recent progresses in deep learning have
demonstrated the power of deep nets to model complex functions between visu-
al components. One challenge to train a similar net to add high-frequency details
is that there is no ground truth depth map with desired high-frequency details.
To solve this, we propose a new learning-based method for depth refinement
using CNNs in an unsupervised way. Different from traditional methods, which
define the loss directly on the training data, we design a generative process for
RGB images using the rendering equation [20] and define our loss on the inten-
sity difference between the synthesized image and the input RGB image. Scene
reflectance is also estimated through a deep net to reduce the texture-copy ar-
tifacts. As the rendering procedure is fully differentiable, the image loss can be
effectively back propagated throughout the network. Therefore, through these
two components in our DDRNet, a noisy depth map is enhanced both in low
frequency and high frequency.

We extensively evaluate our proposed cascaded CNNs, demonstrating that
our method can produce depth map with higher quality in both low and high
frequency, compared with the state-of-the-art methods. Moreover, the CNN-
based network structure enables our algorithm to run in real-time. And with the
progress of deep-net-specific hardware, our method is promising to be deployed
on mobile phones. Applications of our enhanced depth stream in the Dynam-
icFusion systems [26, 11] are demonstrated, which improve the reconstruction
performance of the dynamic scenes.

2 Related Work

Depth Image Enhancement As RGB images usually capture a higher resolution
than depth sensors, many methods in the past have focused on leveraging the
RGB images to enhance the depth data. Some heuristic assumptions are usu-
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ally made about the correlation between color and depth. For example, some
work assume that the RGB edges are coinciding with depth edges or discontinu-
ities. Diebel and Thrun [9] upsample the depth with a Markov-Random Field.
Depth upsampling with color image as input can be formulated as an optimiza-
tion problem which maximizes the corrleation between RGB edges and depth
discontinuities [31]. Another way to implement this heuristics is through filter-
ing [23],e.g. with joint bilateral upsampling filter [22]. Yang et al [45] propose a
depth upsampling method by filtering a cost space joint-bilaterally with a stereo
image to achieve the resolution upsampling. Similar joint reconstruction ideas
with stereo images and depth data are investigate by further constraining the
depth refinement with photometric consistency from stereo matching [49]. With
the development of modern hardwares and also the improvements in filtering
algorithms, variants of joint-bilateral or multilateral filtering for depth upsam-
pling can run in real-time [6, 10, 34]. As all of these methods are based on the
heuristic assumption between color and depth, even producing plausible results,
refined depth maps are not metrically accurate, and texture-copy artifacts are
inevitable as texture variations are frequently mistaken for geometric detail.

Depth Fusion With multiple frames as input, different methods have been pro-
posed to fuse them to improve the depth quality or obtain a better quality scan.
Cue et al. [8] has proposed a multi-frame superresolution technique to estimate
higher resolution depth images from a stack of aligned low resolution images.
Taking into account the sensors’ noise characteristics, the signed distance func-
tion is employed with an efficient data structure to scan scenes with an RGBD
camera [16]. KinectFusion [27] is the first method to show real-time hand-held
scanning of large scenes with a consumer depth sensor. Better data structures
that exploit spatial sparsity in surface scans, e.g. hierarchical grids [7] or voxel
hashing schemes [28], have been proposed to scan larger scenes in real time.
These fusion methods are able to effectively reduce the noises in the scanning
by integrating the TSDF. Recent progresses have extended the fusion to dynam-
ic scenes [26, 11]. The scan from these depth fusion methods can achieve very
clean 3D reconstruction, which improves the accuracy of the original depth map.
Based on this observation, we employ depth fusion to generate a training data
for our denoising net. By feeding lots of the fused depth as our training data
to the the network, our denoising net effectively learns the fusion process. In
this sense, our work is also related to Riegler et al. [35], where they designed
an OctNet to perform the learning on signed distance function. Differently, our
denoising net directly works on depth and by special design of our loss function,
our net can effectively reduce the noise in the original depth map. Besides, high
frequency geometric detail is not dealt with in OctNet, while by our refinement
net we can achieve detailed depth maps.

Depth Refinement with Inverse Rendering To model the relation between col-
or and depth in a physically correct way, inverse rendering methods have been
proposed to leverage RGB images to improve depth quality by investigating the
light transport process. Shape-from-shading (SfS) techniques have been investi-
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gated on how to extract the geometric detail from a single image [17, 48]. One
challenge to directly apply SfS is that the light and reflectance are usually un-
known when capturing the depth map. Recent progresses have shown that SfS
can refine coarse image-based geometry models [4], even if they were captured
under general uncontrolled lighting with multi-view cameras [43, 42] or an RGB-
D camera [12, 46]. In these work, illumination and albedo distributions, as well
as refined geometry are estimated via inverse rendering optimization. Optimiz-
ing all these unknowns are very challenging by traditional optimization schemes.
For instance, if the reflectance is not properly estimated, the texture-copy arti-
fact can still exist. In our work, we employ a specifically structured network to
tackle the challenge of reflectance and geometry separation problem. Our net-
work structure can be seen as a regularizer which constrain the inverse rendering
loss to back propagate only learnable gradient to train our refinement net. Also
with a better reflectance estimation method than previous work, the reflectance
influence can be further alleviated, resulting in a CNN network which extracts
only geometry-related information to improve the depth quality.

Learning-based and Statistical Methods Data driven methods are another cat-
egory to solve the depth upsampling/refinement problem. Data-driven priors
are also helpful for solving the inverse rendering problem. Barron and Malik [2]
jointly solve reflectance, shape and illumination, based on priors derived statis-
tically from images. Similar concepts were also used for offline intrinsic image
decomposition of RGB-D data [1]. Khan et al. [21] learn weighting parameters
for complex SfS models to aid facial reconstruction. Wei and Hirzinger [40] use
deep neural networks to learn aspects of the physical model for SfS. Note that
even our method is also learning based, our refinement net does not take any
training data. Instead, the refinement net relies on a pre-defined generative pro-
cess and thus an inverse rendering loss for the training process. The closest idea
to our paper is the encoder-decoder structure used for image-based face recon-
struction [38, 33]. They take the traditional rendering pipeline as a generative
process, defined as a fixed decode. Then, a reconstruction loss can be optimized
to train the encoder, which directly regress from a input RGB image. However,
these methods all require a predefined geometry and reflectance subspace, usu-
ally modeled by linear embedding, to help train a meaningful encode, while our
method can work with general scenes captured by RGBD sensor.

3 Method

We propose a new framework for jointly training a denoising net and a refinement
net from a consumer-level camera to improve depth map both in low frequency
and high frequency. The proposed pipeline features our novelties both in training
data creation and cascaded CNNs architecture design. To obtain ground-truth
high-quality depth data for training is very challenging. We thus have formulated
the depth improvement problem into two pixel-wise regression tasks, while each
one focuses on lifting the quality in different frequency domains. This also en-
ables us to combine supervised learning unsupervised learning to solve the issue
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Fig. 1. The pipeline of our method. The black lines are the forward pass during test,
the gray lines are supervise signal, and the orange lines are related to the unsupervised
loss. Note that every loss function has a input mask W , which is omitted in this figure.
Nref , Ndt are reference normal map and refined normal map with detail, Ddn and Ddt

are denoised and refined output.

of lacking ground truth training data. For denoising part, a function D mapping
a noisy depth map Din to a smoothed one Ddn with high-quality low frequen-
cy is learned by a CNN with the supervision of near-groundtruth depth maps
Dref , created from a state of the art of dynamic fusion. For refinement part, an
unsupervised shading-based criterion is developed based on inverse rendering to
train and a function R to map Ddn and the corresponding RGB image Cin to
an improved depth map Ddt with rich geometric details. The albedo map for
each frame is also estimated by a CNN in a way similar to [25]. We concurrent-
ly train cascaded CNNs from supervised depth data and unsupervised shading
cues to achieve state-of-the-art performance on the task of single image depth
enhancement. The detailed pipeline can be visualized in Figure 1.

3.1 Dataset

Previous methods usually take a shortcut to obtain the training data by syn-
thesizing [37, 39]. However, what if noise characteristic varies from sensor to
sensor, or even the noise source is untraceable? In this case, how to generate
ground-truth (or near-ground-truth) depth map becomes a major problem.

Data generation. In order to learn the real noise distribution of different
consumer depth cameras, we need to collect a training dataset of raw depth da-
ta with corresponding target depth maps, which act as the supervised signal of
our denoising net. To achieve this, we use the non-rigid dynamic fusion pipeline
proposed by [11], which is able to reconstruct complete and good quality geome-
tries of dynamic scenes from single RGB-D camera. The captured scene could
be static or dynamic and we do not impose any assumptions on the type of
motions. Besides, the camera is allowed to move freely during the capture. The
reconstructed geometry is well aligned with input color frames. To this end, we
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first capture a sequence of synchronized RGB-D frames {Dt, Ct}. Then we run
the non-rigid fusion pipeline [11] to produce a complete and improved mesh, and
deform it using the estimated motion to each corresponding frame. Finally the
target reference depth map {Dref,t} is generated by rasterization at each cor-
responding view point. Besides, we also produce a foreground mask {Wt} using
morphological filtering, which indicates the region of interest in the depth.

Content and novelty. Using the above method, we contribute a new dataset
of human bodies, including color image, raw depths with real noises and the cor-
responding reference depths with sufficient quality. Our training dataset contains
36840 views of aligned RGB-D data along with high quality Dref rendered from
fused model, among which 11540 views are from structured light depth sensor
and 25300 views are from time-of-flight depth sensor. Our validation dataset
contains 4010 views. Training set contains human bodies with various clothes
poses under different lighting conditions. Moreover, to verify how our method
generalized to other scenes, objects such as furniture and toys are also included
in the test set. Existing public datasets, eg. Face Warehouse, Biwi Kinect face
and D3DFACS, lack geometry details, thus do not meet our requirement for
surface refinement. ScanNet consists of a huge amount of 3D indoor scenes, but
has no human body category. Our dataset fills the blank in human body surface
reconstruction. Dataset and training code will be public available.

3.2 Depth Map Denoising

The denoising net D is trained to remove the sensor noise in depth map Din

given the reference depth map Dref . Our denoising net architecture is inspired
by DispNet[24] with skip connections and multi-scale predictions, as shown in
Fig. 2. The denoising net consists of three parts: encoder, nonlinearity and de-
coder. The encoder aims to successively extract low-resolution high-dimensional
features from Din. To add nonlinearity to the network without performance
degradation, several residual blocks with pre-activation are stacked sequentially
between encoder and decoder part. The decoder part upsamples encoded fea-
ture maps to the original size, together with skip connections from the encoder
part. These skip connections is useful to preserve geometry details in Din. The
whole denoising net adopts the residual learning strategy to extract the latent
clean image from noisy observation. Not only does this direct pass set a good
initialization, it turns out that residual learning is able to speed up the training
process of deep CNN as well. Instead of the ”unpooling + convolution” oper-
ation, our upsampling uses transpose convolution with trainable kernels. Note
that the combination of bilinear up-sampling and transpose convolution in our
upsampling pass help to inhibit checkerboard artifacts[41, 29]. Our denoising net
is fully convolutional with receptive field up to 256. As a result, it is able to
handle almost all types of consumer sensor inputs with different size.

The first loss for our denoising net is defined on the depth map itself. For
example, per-pixel L1 and L2 loss on depth are used for our reconstruction term:

`rec(Ddn, Dref )=‖Ddn −Dref‖1+‖Ddn −Dref‖2, (1)
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Fig. 2. The structure of our denoising net consists of encoder, nonlinear and decoder.
There are three upsampling levels and one direct skip to keep captured value.

whereDdn = D(Din) is the output denoised depth map, andDref is the reference
depth map. It is known that L2 and L1 loss may produce blurry results, however
they accurately capture the low frequencies[18] which meets our purpose.

However, with only the depth reconstruction constraint, the high-frequency
noise in small local patch could still remain after passing denoising net. To
prevent this, we design a normaldot term to remove the high-frequency noise
further. Specifically, this term is designed to constrain the normal direction of
the denoised depth map to be consistent with the reference normal direction. We
define the dot production of reference normal N i

ref and tangential direction as
the second loss term for our denoising net. Since each neighbouring depth point
j (j ∈ N (i)) could potentially define a 3D tangential direction,we sum over all
possible directions, and the final normaldot term is formulated as:

`dot(Ddn, Nref )=
∑
i

∑
j∈N (i)

[
< P i − P j , N i

ref >
]2
, (2)

where P i is the 3D coordinate of Di
dn. This term explicitly drives the network to

consider the dependence between neighboring pixels N (i), and to learn locally
the joint distributions of the neighboring pixels. Therefore, the final loss function
for training the denoising net is defined as:

Ldn(Ddn, Dref ) = λrec`rec + λdot`dot, (3)

where λrec, λdot defines the strength of each loss term.
In order to get Nref from the depth map Dref , a depth to normal (d2n) layer

is proposed. d2n layer is fully differentiable and has been employed several times
in our end-to-end framework as shown in Figure 1.

3.3 Depth Map Refinement

Although denoising net is able to effectively remove the noises, the denoised
depth map, even getting improved in low frequency, still lacks details compared
with RGB images. To add high-frequency details to the denoised depth map,
we adopt a relatively small fully convolutional network based on hypercolumn
architecture[14, 33].
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Fig. 3. Refinement net structure. The convolved feature maps from Ddn are comple-
mented with the corresponding feature maps from Cin possessing the same resolution.

Denote the single channel intensity map of color image Cin as I. 4 The hy-
percolumn descriptor for a pixel is extracted by concatenating the features at its
spatial location in several layers, from both Ddn and I of the corresponding color
image with high-frequency details. We first combine the spectral features from
Ddn and I, then fuse these features in the spatial domain by max-pooling and
convolutional down-sampling, which end with multi-scale fused feature maps.
The pooling and convolution operation after hypercolumn extraction constructs
a new set of sub-bands by fusing the local features of other hypercolumns in
the vicinity. This transfers fine structure from color map domain to depth map
domain. Three post-fusion convolutional layers is introduced to learn a better
channel coupling. tanh function is used as the last activation to limit the output
to the same range of the input. In brief, high frequency features in the color im-
age are extracted, and used as guidance, to extrude local detailed geometry from
the denoised surfaces by the proposed refinement net shown in Fig. 3. As high
frequency details are mainly inferred from small local patches, a shallow network
with relative small reception field has enough capacity. Without post-processing
as in other two-stage pipelines[37], our refinement net generates high-frequency
details on depth map in a single forward pass.

Many SfS-based refinement approaches [44, 13] demonstrate that color images
can be used to estimate the incident illumination, which is parameterized by
the rendering process of an image. For Lambertian surface and low-frequency
illumination, we can express the reflected irradiance B as the function of the
surface normal N , the lighting condition l and the albedo R as follows:

B(l, N,R) = R

9∑
b=1

lbHb(N), (4)

where Hb : R3 7→ R is the basis function of spherical harmonics(SH) that takes
unit surface normal N as input. l = [l1, · · · , l9]T are the nine 2nd order SH
coefficients which represent the low-frequency scene illumination.

Based on Eq. 4, a per-pixel shading loss is designed. It penalizes both in-
tensity and gradient of the difference value between the rendered image and the

4 Intensity image I plays the same role as Cin. We study I for simplicity.
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Fig. 4. Estimated albedo map and relighted uniform albedo using estimated lighting
coefficients. The light source is above the head and the lighting estimation is accurate.

corresponding intensity image:

`sh(Ndt, Nref , I) = ‖B(l∗, Ndt, R)− I‖2+λg‖∇B(l∗, Ndt, R)−∇I‖2, (5)

where Ndt represents the normal map of the regressed depth from the refinement
net, λg is the weight to balance shading loss term, R is the albedo map estimated
using Nestmeyer’s “CNN + filter” method[25]. Then, the light coefficients l∗ can
be computed by solving the least squares problem:

l∗ = arg min
l
‖B(l, Nref , R)− I‖22. (6)

Here Nref is calculated by the aforementioned d2n layer in section 3.2. To show
the effectiveness of our estimated illumination, a per-pixel albedo image is cal-
culated by RI = I/

∑9
b=1 lbHb(Nref ), as shown in Figure 4. Note that pixels

at grazing angles are excluded in the lighting estimation, as both shading and
depth are unreliable in these regions. Additionally, to constrain the refined depth
to be close to the reference depth map, a fidelity term is added:

`fid(Ddt, Dref ) = ‖Ddt −Dref‖2. (7)

Furthermore, a smoothness term is added to regularize the refined depth. More
specifically, we minimize the anisotropic total variation of the depth:

`smo(Ddt) =
∑
i,j

|Di+1,j
dt −Di,j

dt |+|D
i,j+1
dt −Di,j

dt |. (8)

With all the above terms, the final loss for our refinement net is expressed as:

Ldt(Ddt, Dref , I)=λsh`sh+λfid`fid+λsmo`smo, (9)

where λsh, λfid, λsmo defines the strength of each loss term. The last two addi-
tional terms are necessary, because they constrain the output depth map to be
smooth and also close to our reference depth, as the shading loss would not be
able to constrain the low frequency component.

3.4 End-to-End Training

We train our denoising net and the refinement net jointly. To do so, we define
total loss Ltotal as the sum of Ldn and Ldt of the cascaded networks. The denois-
ing net is supervised by temporal fused reference depth map, and the refinement



10 Yan et al.

CNN is trained in a novel unsupervised manner. By incorporating supervision
signals in both the middle and the output of the network, we achieve a steady
convergence during the training phase. In the forward pass, each batch of input
depth maps is propagated through the denoising net, generating smoothed depth
maps without noise patterns. First, reconstruction L1/L2 term and normaldot
term are added to Ltotal. Then, the denoised depth maps, together with the cor-
responding color images, are fed to our refinement net, which generates refined
depth maps with high-frequency details. Shading, fidelity and smooth terms are
added to Ltotal. In the backward pass, the gradient of the loss Ltotal are back-
propagated through both network. All the weights λ are fixed during training.

There are two types of consumer depth camera data in our training and val-
idation set: structured light (K1) and time-of-flight (K2). We train the variants
of our model for 15 epochs with batch-size 32 on a TitanX GPU, on K1/K2
dataset respectively. To augment our training set, each RGB-D map are ran-
domly cropped, flipped and re-scaled to the resolution of 256× 256. Considering
that depth map is 2.5D in nature, the intrinsic matrix should be changed ac-
cordingly during data augmentation. This enables the network to learn more
object-independent statistics. For efficiency, we implement our d2n layer as a
single CUDA layer. We chooseAdam optimizer to compute gradients, with 0.9
and 0.999 exponential decay rate for the 1st and 2nd moment estimates. Base
learning-rate is set to 0.001. All convolution weights are initialized by Xavier
algorithm, and weight decay is used for regularization.

4 Experiments

4.1 Evaluation

In this section, we evaluate the effectiveness of our cascade depth denoising
and refinement framework, and analyze the contribution from each loss term.
To the best of our knowledge, there is no public dataset for human body that
contains raw and ground-truth depth maps with rich details from consumer
depth cameras. We thus will evaluate the performance of our method on our
own validation set, and also evaluate on other objects other than human to test
the generalization ability of our network, which can be seen in Figure 5. One can
see that although refined in an unsupervised manner, our results are comparable
to the high quality fused depth map [11] obtained using consumer depth camera
only, and preserve thin structures such as fingers and folds in clothes better.

4.2 Ablation Study

The Role of Cascade CNN. To verify the necessity of our cascade CNNs, we
replace our denoising net by a traditional preprocessing procedure, eg. bilateral
filter, and still keep the refinement net to refine the filtered depth. We call this
two-stage method as “Base+Ours refine”, and it is trained from scratch with
shading and fidelity loss. As we can see in the middle of Figure 6, “Base+Ours
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refine” is not able to preserve distinctive structures of clothes in the presence
of widespread structured noise. Unwanted high frequency noise leads to inaccu-
rate estimation of illuminance, therefore shading loss term will keep fluctuating
during training. This training process will end up with non-optimal model pa-
rameters. However, in our cascade design, denoising net sets a good initialization
for refinement net and achieves better result.

Supervision of Refinement Net. For our refinement net, there are two
choices for regularization depth map in fidelity loss formulation, using reference
depth map Dref or the denoised depth map Ddn. When using only output of
denoising net Ddn in an unsupervised manner, scene illumination is also estimat-
ed using Ddn. We denote this unsupervised framework as “Ours unsupervised”.
Output of these two choices are shown in Fig. 7. In the unsupervised case, re-
finement net could produce reasonable result, but Ddt may stray from input.

4.3 Comparison With Other Methods

Compared with other non-data-driven methods, deep neural networks allow us
to optimize non-linear loss and to add data-driven regularization, while keeping
the inference time constant. Besides, our method would also benefit from the
progress of deep-net-specific hardware, making it more promising both in terms
of run-time and quality. Fig. 8 shows examples of the qualitative comparison of
different methods for depth map enhancement. Our method outperforms other
methods by capturing better structure of the geometry with cleaner and high-
fidelity geometric details.

Quantitative Comparison. To evaluate our method and compare with
other methods quantitatively, we need a dataset with ground truth depth map.
Currently, multi-view stereo methods and laser scanner are able to capture static
scene with high resolution and quality. We thus obtain ground truth depth value
by multi-view stereo [32](for K1) and Mantis Visions F6 laser scanner(for K2).
Meanwhile, we simultaneously capture the RGB-D sequence of the same static
scene by a consumer depth camera to evaluate our enhancement method. The
size of validation set is limited due to the high scan cost. Therefore, we also con-
tribute a larger validation set labeled with the near-ground-truth depth obtained
using mentioned method in 3.1. We evaluate the error of the enhanced depth
map using our method and other methods on both validation set. Ground truth
densely scanned 3D model is rescaled and aligned with our 3D model, which is
recovered from the network output, using iterative closest point(ICP)[5]. Then
the root mean squared error(RMSE) and the mean absolute error (MAE) be-
tween these two point clouds are calculated in Euclidean space. We have trained
two sets of models on K1 data and K2 data respectively. Quantitative compar-
ison with other methods are summarized in Table 2 and Table 1 for two types
of data and model. Results shows that our method performs the best result in
terms of both metrics on the validation set.

Runtime Performance. At test time, our whole processing procedure in-
cludes data pre-processing and cascade CNN predicting. The listed preprocessing
steps include: depth-to-color alignment, dilating and eroding of raw depth map
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to fill some holes, and resampling color image if needed. Regressing all depth
map pixels using a TitanX Pascal graphics card is fast and takes only 10.8ms
(256 × 256 input) or 20.4ms (640 × 480 input). Same test is run for 182.56ms
(256 × 256 input) or for 265.8ms (640 × 480 input) per frame on an Intel Core
i7-6900K CPU with 3.20GHz(64G Ram). It is worth mentioning that without
denoising CNN, a variant of our method, ie. “Base+Ours refine” reaches a speed
of 9.6ms per frame for 640× 480 sized inputs.

Color Image Raw Depth Denoised Depth Refined Depth

Fig. 5. Qualitative results on validation set. From left to right in each row: aligned
RGB image, raw depth map, output of our denoising net Ddn and output of our re-
finement net Ddt with added high-frequency details. Ddn captures the low-dimensional
geometry without noise, Ddt shows fine-grained details. Although trained on human
body dataset, our model also produce high-quality depth map on general objects in
arbitrary scenes, eg. the backpack sequence. The last row shows typical failure case of
our network, which may suffer from non-Lambertian reflectance.



DDRNet 13

Table 1. Sequence average score in terms of RMSE on our K2 validation set obtained
by laser scanner. Our method achieves the best result on the validation set

Method seq.1 seq.2 seq.3 seq.4 seq.5

Wu et al. [44] 27.60 22.19 21.34 22.41 25.67

Ours Ddn 19.03 19.25 18.49 18.37 18.76

Ours Ddt 18.97 19.41 18.38 18.50 18.61

4.4 Limitation

Similar to other real-time methods, our real-time DDRNet considers simplified
light transport model. This simplification is effective but will impose intensity
image’s texture on depth map. With the learning-based framework, the texture-
copy artifacts can be alleviated due to the fact that our neural network can
balance the fidelity and shading loss term during training. Another limitation of
the simplified reflectance model comes with non-diffuse surface assumption. As
we only consider second order spherical harmonics representation, non-diffuse
surfaces are still challenging for our method.

Fig. 6. Left: normal map of Din.
Middle: Base+Ours refine, bilat-
eral filter can’t remove wavelet
noise, refinement result suffers
from high-frequency. Right: Ours.

Fig. 7. left: Cin and Din. middle: Ours un-
supervised, output depth does not match input
value in stripes area in the cloth. right: Ours
with more reliable result.

Table 2. Quantitative comparison results on K1 validation set. The error metrics are
in mm and are only computed on pixels where output depth map has value.

Method
Near-GT set GT set
MAE RMSE MAE RMSE

He et al. [15] 46.5 14.7 41.1 15.2

Wu et al. [44] 14.5 4.3 15.7 4.4

Ours 10.9 4.1 11.0 3.6

Base+Ours refine 15.7 4.1 15.8 4.4

Ours unsupervised 16.1 5.2 14.9 5.5
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Fig. 8. Comparison of color-assisted depth map enhancement between bilateral filter,
He et al. [15], Wu et al. [44] and our method. The closeup of the finger region demon-
strates the effectiveness of unsupervised shading term in our refinement net loss.

5 Applications

It is known that Real-time single frame depth enhancement is applicable for
low-latency system without temporal accumulation. We compare the impact of
using depth stream refined by our method with that using raw depth stream
captured by Kinect camera on Dynamic Fusion [11] and DoubleFusion[47]. The
temporal window in fusion systems would smooth out noise, but it will also
wipe out high-frequency details. The time in TSDF fusion blocks the whole
system from tracking detailed motions. However, our method can shorten the
smooth window and provide timely update of fast changing surface details (eg.
deformation of clothes and body gestures), as shown in red circles in Fig. 9
and the supplementary video. Moreover, a per-frame improved depth could help
general tracking and recognition tasks over dynamic scenes(eg. in interactive
scenarios).

Fig. 9. Application on DynamicFusion(left) and DoubleFusion(right) using our en-
hanced depth stream. Left: color image, Middle: fused geometry using raw depth
stream, Right: “instant” geometry using our refined depth stream.
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6 Conclusion

We presented the first end-to-end trainable network for depth map denoising and
refinement of RGB-D data captured with consumer depth cameras. We proposed
a near-groundtruth training data generation pipeline, based on the depth fusion
techniques. Enabled by the separation of low/high frequency parts in network
design, as well as the collected fusion data, our cascaded CNNs achieves state-
of-the-art result in real-time. Compared with available methods, our method
achieved higher quality reconstruction in terms of both low dimensional geome-
try and high frequency detailed components, which leads to superior performance
quantitatively and qualitatively. Finally, with the popularity of integrating depth
sensors into cellphones, we believe that our deep-net-specific algorithm is able
to run on these portable devices for various quantitative measurement and qual-
itative visualization applications.
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