
slimIPL: Language-Model-Free Iterative Pseudo-Labeling

Tatiana Likhomanenko Qiantong Xu Jacob Kahn Gabriel Synnaeve Ronan Collobert

Facebook AI Research
antares@fb.com

Abstract
Recent results in end-to-end automatic speech recognition have
demonstrated the efficacy of pseudo-labeling for semi-supervised
models trained both with Connectionist Temporal Classifica-
tion (CTC) and Sequence-to-Sequence (seq2seq) losses. Iter-
ative Pseudo-Labeling (IPL), which continuously trains a sin-
gle model using pseudo-labels iteratively re-generated as the
model learns, has been shown to further improve performance
in ASR. We improve upon the IPL algorithm: as the model
learns, we propose to iteratively re-generate transcriptions with
hard labels (the most probable tokens), that is, without a lan-
guage model. We call this approach Language-Model-Free IPL
(slimIPL) and give a resultant training setup for low-resource
settings with CTC-based models. slimIPL features a dynamic
cache for pseudo-labels which reduces sensitivity to changes
in relabeling hyperparameters and results in improved training
stability. slimIPL is also highly-efficient and requires 3.5-4x
fewer computational resources to converge than other state-of-
the-art semi/self-supervised approaches. With only 10 hours of
labeled audio, slimIPL is competitive with self-supervised ap-
proaches, and is state-of-the-art with 100 hours of labeled audio
without the use of a language model both at test time and during
pseudo-label generation.
Index Terms: deep learning, semi-supervised learning, pseudo-
labeling, self-training, speech recognition

1. Introduction
Recent work in deep learning has shifted towards methods which
can efficiently learn from large amounts of unlabeled data to im-
prove performance and decrease costs associated with labeling.
Semi-supervised learning [1] combines information from both
labeled and unlabeled data; the amount of unlabeled data typi-
cally exceeds the amount of labeled data. In automatic speech
recognition (ASR), while many recent semi-supervised methods
outperform a supervised baseline in a low-resource setting, a gap
between semi- and fully-supervised training remains. Further,
not all of the approaches are equally scalable as the amount of
labeled and unlabeled data increases, as is the case in recent
setups such as the Libri-Light benchmark [2].

Some of the earliest and simplest semi-supervised ap-
proaches use self-training [3]. Self-training employs a base
model trained with labeled data which acts as a “teacher” and
is used to label unlabeled data (the resulting labels are referred
as “pseudo-labels”, PLs). A “student” model is then trained
(typically from scratch) with both labeled and pseudo-labeled
data to yield a final model. For competitive results in ASR, a lan-
guage model (LM) was a key component of pseudo-labeling: it
is usually combined with the acoustic model via beam-search de-
coding [4, 5, 6] or through shallow fusion [7, 8, 9, 10] to generate
PLs. With this setting, however, acoustic models tend to over-fit
to the text training set of the LM used for pseudo-labeling [5, 9].

In this work, we show that competitive pseudo-labeling ap-
proaches rely neither on beam-search decoding nor on a lan-

guage model. In our setup, pseudo-labels are generated by
picking hard labels – tokens with the highest acoustic model
probability. Our approach is based on the recently-proposed
iterative pseudo-labeling algorithm (IPL) [5]: we continuously
train a single model using iteratively re-generated pseudo-labels
as model learns. We call our algorithm language-model-free IPL
(slimIPL) and give its overview in Section 4. We demonstrate
in Section 5 that this approach is effective for models trained
with Connectionist Temporal Classification (CTC) [11] in low-
resource settings and is competitive with current state-of-the-art
results. Ablation studies on different aspects of the proposed
algorithm in Section 5.6 show slimIPL provides training stability
and a robustness to hyperparameter settings.

2. Related Work
Self-training methods [3] still attract researchers: extensions to
self-training are numerous and include (a) selecting particular
subsets of pseudo-labeled data for student training, (b) the reiter-
ation of the PL procedure several times to progressively-improve
the teacher model, (c) the introduction of different types of noise
for student model training, and (d) sampling techniques and
schedules for training over labeled and pseudo-labeled datasets.
Many recent works on self-training propose and validate these
extensions, including those in computer vision [12, 13], natural
language processing [14, 15, 16, 17, 18, 19, 20], ASR [21, 7, 22,
8, 9], and speech translation [23].

One extension to the simple pseudo-labeling method consists
of continuously training a single model [24]. At the beginning
of training, a model is trained only on labeled data after which
training continues on data jointly-selected from both labeled and
unlabeled datasets. PL re-generation occurs after some number
of iterations, and a supervised loss is computed both on labeled
and pseudo-labeled data for each batch. An additional param-
eter determines the contribution of pseudo-labeled data to the
overall loss. The effectiveness of this iterative training for a
single model has been validated on tasks in vision [25], natural
language processing [18], and ASR [26, 5]. Below, we give an
overview of the most relevant approaches in ASR to our work.
Iterative pseudo-labeling (IPL) [5] algorithm follows prior
work [24] and uses augmentation of both labeled and unlabeled
data, and continuously trains a single model with iterative re-
generation of PLs by beam-search decoding with an LM, as the
model learns. Compared to IPL, we maintain a dynamic cache
with PLs and don’t use any beam-search decoding or an LM.
Noisy self-training [9] performs five iterations of student net-
work training, each time from scratch, with PLs generated by
a teacher network. In this approach, as is the case with IPL,
shallow fusion with an LM is used with a decoding procedure to
generate PLs, while slimIPL doesn’t use an LM at all.
Self-training [26] is the closest to our work: the authors con-
tinuously train a model with re-generated hard PLs after each
iteration. This work is more focused on studying the impact
of noise, and both SpecAugment [27] and speed perturbation

are applied for labeled and unlabeled data during training. Our
experiments show that re-generating PLs with hard labels after
each iteration causes training instability resulting in divergence,
whereas slimIPL exploits a dynamic cache mechanism to stabi-
lize training.
wav2vec [28]’s unsupervised pre-training gives a significant
boost in performance for low-resource settings. Training has
two steps: first, pre-training on unlabeled data by masking the
input audio in the latent space and solving a contrastive learning
task [29]; second, fine-tuning the model using labeled audio only.
Recently, one-step training [30] is proposed to directly optimize
a downstream task which simplifies hyperparameter tuning. One
of the known problems with contrastive training is a need of
large batches [28, 30].

3. Pseudo-Labeling
Let L = {xi,yi} be a labeled dataset and U = {xj} a
large unlabeled dataset. We consider a semi-supervised pseudo-
labeling approach where the acoustic model (AM)Mθ is contin-
uously trained on combination of a labeled set and an iteratively
re-generated pseudo-labeled set. Training minimizes the fol-
lowing loss function: L(θ) = LL(θ) + λLU (θ), λ ∈ R+,
where θ are the parameters of the AM, and λ is a tunable
parameter controlling the importance of unlabeled data. The
losses for labeled data LL and for unlabeled data LU are de-
fined as LL(θ) = −Ex,y∼p(x,y) log pθ(y|x), (x,y) ∈ L,
where p(x,y) is the empirical data distribution of samples
from L, pθ(y|x) is the conditional distribution defined byMθ ,
LU (θ) = −Ex∼p(x) log pθ(ŷ|x), x ∈ U, where p(x) is the
empirical data distribution of samples from U , and ŷ are the
pseudo-labels for utterance x ∈ U .

One key difference in existing pseudo-labeling approaches
is how the labels assignments ŷ are obtained for unlabeled data
x ∈ U . In the general literature, pseudo-labeling refers to the
hard label generation:

ŷ = argmax
y

log pθ(y|x). (1)

In machine translation and ASR domains, the model pθ(y|x) is
often sequence-to-sequence, and the solution of Eq. (1) may be
approximated with a beam-search decoding algorithm [31, 18, 8,
7, 5, 9, 23, 26]. Indeed, most recent work in ASR relies on an
LM plm(y) to generate PLs, and instead optimizes:

ŷ = argmax
y

log pθ(y|x) + α log plm(y), x ∈ U, (2)

where α is a hyperparameter controlling the amount of lan-
guage model regularization. Pseudo-labeling is also popular
in computer vision [24, 32]. Variants exist, such as “soft la-
bels” ŷ = pθ(y|x), variations on soft labeling [33, 34], ”hard
distillation” [35] and sampling [36, 37].

4. Language-Model-Free IPL
In the original IPL algorithm [5], PLs are generated with a beam-
search decoder leveraging an LM and approximating the solution
of Eq. (2). While the main motivation is to transfer the knowl-
edge of the LM into the AM, drawbacks exist: (i) generating PLs
is computationally intensive, and (ii) models easily over-fit to
LM knowledge. Regularization techniques are proposed in [5] to
overcome (ii), such that one can still benefit from the LM when
decoding at evaluation time.

Algorithm 1: slimIPL
Data: labeled L = {xi,yi} and unlabeled U = {xj}
Result: Acoustic modelMθ

1. TrainMθ on L with augmentation for M updates;
2. while cache is not full at size C do

- Draw a random batch from x ∈ U ;
- Generate its PL ŷ byMθ following Eq.(1);
- Store {x, ŷ} into the cache;
- TrainMθ on L with augmentation for 1 update;

end
3. Decrease model’sMθ dropout;
repeat

4. TrainMθ on L with augmentation for NL updates;
5. for NU updates do

- Draw a random batch B = {x, ŷ} from the cache;
- With probability p, B is removed from cache and

a new pair of random batch x′ ∈ U and its PL ŷ′

generated byMθ is added in;
- Apply augmentation to batch B and make an

optimization step to updateMθ .
end

until convergence or maximum iterations are reached;

We demonstrate that PLs do not need to rely on any LM
information at all. Algorithm 1 describes slimIPL. While it fol-
lows the IPL algorithm, PLs are generated by considering the top
prediction according to the AM as per Eq. (1). For CTC-based
acoustic models, this corresponds exactly to choosing the most
likely token at each time step. Our approach also imitates self-
training [26], but instead of re-generating PLs after each update
we exploit a dynamic cache to use PLs generated by the previous
model states (this can be viewed as models ensemble averaging
for PL generation). This stabilizes the optimization process and
avoids sudden model divergence as discussed in Section 5.6. In
addition, a regularization scheme is implemented via data aug-
mentation over the input (acoustic) data, both for labeled L and
unlabeled U samples. slimIPL has several hyperparameters: (i)
when PL generation begins M , (ii) the proportion of labeled and
unlabeled data λ = NU/NL, (iii) the dynamic cache size C and
the probability p of updating the cache.

5. Experiments

5.1. Data

All experiments are performed on the LibriSpeech dataset [40]
(contains 960 hours of training audio with paired transcriptions:
train-clean-100, train-clean-360, and train-other-500 parts) and
Libri-Light [2] labeled limited resource training subset train-10h
originally extracted from LibriSpeech. We consider two low-
resource scenarios with different amounts of labeled / unlabeled
data: (i) LL-10 / LS-960 uses train-10h as labeled data and
full LibriSpeech as unlabeled; (ii) LS-100 / LS-960 as labeled
data and train-clean-360 and train-other-500 as unlabeled. The
standard LibriSpeech validation sets (dev-clean and dev-other)
are used to tune all hyperparameters, as well as to select the best
models. Test sets (test-clean and test-other) are used only to
report final word error rate (WER) performance. We keep the
original 16kHz sampling rate and compute log-mel filterbanks
with 80 coefficients for a 25ms sliding window, strided by 10ms.
All features are normalized to have zero mean and unit variance
per input sequence before feeding them into the acoustic model.

Table 1: WER comparison of our supervised baselines with prior work: LL-10 (top) and LS-100 (bottom).

Method Stride Tokens Criterion LM Dev WER Test WER

clean other clean other

Libri-Light [2] 20 ms letters CTC word 4-gram 34 60.9 33.5 62.1

Ours 30ms letters CTC
- 31.9 52.3 32.6 52.4

word 4-gram 18.8 39.3 19.6 39.7
+ rescoring 17.1 38.2 17.9 38.9

RWTH [38] - - hybrid word 4-gram 5.0 19.5 5.8 18.6

DeCoAR [39] - phn. CTC - - - 6.1 17.4

Improved T/S [9] - 16k wp S2S - 5.3 16.5 5.5 16.9

Ours 30ms letter CTC
- 6.2 16.8 6.2 16.8

word 4-gram 4.1 12.4 4.5 12.7
+ rescoring 3.3 10.9 3.7 11.4

5.2. Acoustic Models

We consider CTC-based models. Architectures follow [8]: the
encoder is composed of a 1-D convolution with kernel size 7 and
stride 3 followed by 36 4-head Transformer blocks [41]. The
self-attention dimension is 768 and the feed-forward network
(FFN) dimension is 3072 (with 4 heads) in each Transformer
block. The output of the encoder is followed by a linear layer to
the output classes. We use dropout after the convolution, dropout
on the self-attention and on the FFN for all Transformer layers,
and layer drop [42], dropping entire layers at the FFN level.
Tokens Letters are used for all experiments. The letter set
consists of the 26 English alphabet letters augmented with the
apostrophe and a word boundary token.
Data augmentation Training is performed with SpecAug-
ment [27] only. We use two frequency masks with frequency
mask parameter F = 30, ten time masks with maximum time-
mask ratio p = 0.1 and time mask parameter T = 50; time
warping is not used. For LL-10/LS-960 we found that twenty
time masks with T = 25 improve performance.
Training For all experiments we use the Adagrad opti-
mizer [43] and decay learning rate by 2 each time the WER
reaches a plateau on the validation sets. All models architec-
tures, as well as slimIPL are implemented within the flashlight1

framework. Models are trained with dynamic batching (effective
average batch size is 14 per GPU) and mixed-precision compu-
tations on 16 GPUs (Volta 32GB) for 350-500k updates.

5.3. Beam-search Decoding and Rescoring

In all our experimental results, we report not only WER without
an LM, but also WER obtained with a one-pass beam-search
decoder leveraging an LM. Following the notation introduced in
Section 3, the beam-search decoder aims at maximizing:

log pθ(ŷ|x) + α log plm(ŷ) + β|ŷ|,

where α and β are hyperparameters to tune. We rely on the beam-
search decoder from the flashlight framework following [44]:
the lexicon-based beam-search decoder with a word-level LM.
LibriSpeech validation sets, dev-clean and dev-other, are used to
optimize the beam-search decoder hyperparameters, through ran-
dom search. We also report WER obtained by rescoring the beam
of hypothesis generated by the one-pass decoder. Rescoring is
performed with a strong word-level Transformer LM, following
the procedure described in [8]. We use open-sourced word-level

1https://github.com/facebookresearch/
flashlight

LMs trained on the LibriSpeech LM corpus: 4-gram [45] and
Transformer [8] LMs.

5.4. Supervised Baselines

The dropout and layer drop parameters of our acoustic models
were set to 0.5 (0.3) when trained on LL-10 (LS-100). Perfor-
mance in WER is reported in Table 1. Our supervised baseline
models trained on either LL-10 or LS-100 define a new state-
of-the-art both on test-clean and test-other with beam-search
decoding and further rescoring. On test-other these models are
state-of-the-art even without an LM.

5.5. Semi-Supervised Experiments

slimIPL architectures are identical to their supervised counter-
parts, except for their dropout and layer drop values which are
decreased after M (supervised-only) updates to 0.1 for both
settings, see Algorithm 1 step 3. Stronger regularization (via
high dropout) is critical to avoid over-fitting when training with
labeled-only data. These regularization parameters are then de-
creased to “increase” model capacity, as more data is involved
during the semi-supervised training (see ablation in Table 3 when
dropout is not changed during the training). slimIPL hyperpa-
rameters were tuned by performing a search over the following
ranges: M in 5k, 10k, 20k; NU :NL in 1:1, 1:2, 2:1, 3:1, 5:1,
10:1, 20:1; C in 10, 100, 1k; p in 0.1, 0.5, 1. The best configura-
tion results are presented in Table 2. On the LL-10/LS-960 setup,
slimIPL is the best performing pseudo-label-based technique,
on both test-clean and test-other, almost closing the gap with
wav2vec [28]. On LS-100/LS-860, we define a new state-of-
the-art for LM-free approaches on both test-clean and test-other,
while being similar to wav2vec with additional LM decoding.

5.6. Ablations

In Table 3, we study the robustness of slimIPL with respect to
the choice of its hyperparameters. First, we consider the pseudo-
labeling algorithm from [26], where PLs are generated from the
acoustic model without dropout, from the acoustic samples with-
out data augmentation, after each update (no cache, C = no).
We found in practice that this approach is unstable, prone to un-
predictable model divergence (generated transcriptions become
empty), which can be occasionally recovered . In contrast, slim-
IPL is robust thanks to its dynamic cache strategy – in practice
we observed no divergence if the cache size C ≥ 10. For runs
where the ”cache-free” approach converges, we observe similar
performance with slimIPL, as shown in Table 3. In addition,

Table 2: Comparison with other semi- and unsupervised methods: LL-10/LS-960 (top) and LS-100/LS-860 (bottom).

Method Stride Tokens Criterion LM Dev WER Test WER Compute Resources

clean other clean other Train Time (Days) # G/TPUs G/TPU-days

Libri-Light [2] 20 ms letters CTC word 4-gram 30.5 55.8 30.1 57.2 - - -

IPL [5] 80ms 5k wp CTC - 23.8 25.7 24.6 26.5 3 64 GPUs 192+ rescoring 23.5 25.5 24.4 26.0

wav2vec 2.0 [28] 20ms letter CTC
- 8.1 12.0 8.0 12.1

2.3 128 GPUs 294.4word 4-gram 3.4 6.9 3.8 7.3
word Transf 2.9 5.7 3.2 6.1

slimIPL 30ms letter CTC
- 11.4 14 11.4 14.7

4.7 16 GPUs 75.2word 4-gram 6.6 9.6 6.8 10.5
+ rescoring 5.3 7.9 5.5 9.0

IPL [5] 80ms 5k wp CTC - 5.5 9.3 6.0 10.3 3 64 GPUs 192+ rescoring 5.0 8.0 5.6 9.0

Improved T/S [9] - 16k wp S2S - 4.3 9.7 4.5 9.5 10 × 5 32 TPUs 1600LSTM 3.9 8.8 4.2 8.6

wav2vec 2.0 [28] 20ms letters CTC
- 4.6 9.3 4.7 9.0

2.3 128 GPUs 294.4word 4-gram 2.3 5.7 2.8 6.0
word Transf. 2.1 4.8 2.3 5.0

slimIPL 30ms letter CTC
- 3.7 7.3 3.8 7.5

5.2 16 GPUs 83.2word 4-gram 2.7 5.5 3.1 6.2
+ rescoring 2.2 4.6 2.7 5.2

Table 3: Ablations study on slimIPL hyperparameters reporting
validation WER: LL-10/LS-960 (top) and LS100/LS-860 (bot-
tom). ”Naive” approach [26] is referred as C = no; ”x” refers
to the values from a baseline (grey) model.

dropout C p
M/

λ
no LM 4-gram LM

WER-other clean other clean other

0.5→0.1 1000 0.1 20k/60 10/1 11.4 14.0 6.6 9.6

0.5 x x x x 12.0 17.7 6.9 11.7

x - - x x diverges
x 10 x x x 17.8 20.7 9.0 12.8
x 100 x x x 13.0 15.3 7.4 10.0

x x 0.5 x x 12.3 15.8 7.0 10.1
x x 1 x x 13.8 17.5 7.2 10.7

x x x 5k/91 x 54.3 56.8 30.1 35.0
x x x 10k/73 x 23.7 26.5 9.6 13.8
x x x 40k/55 x 10.7 13.7 6.7 9.8

x x x x 1/1 11.3 15.0 6.6 10.3
x x x x 5/1 11.6 14.6 6.8 9.7
x x x x 20/1 11.9 14.7 6.5 9.8

0.3→0.1 100 0.1 20k/33 1/1 3.6 7.5 2.9 5.9

0.3 x x x x 4.1 8.1 3.1 6.3

x - - x x 3.9 7.5 3.1 5.9
x 10 x x x 3.9 7.7 2.9 5.9
x 1000 x x x 3.8 7.5 2.8 5.9

x x 0.5 x x 3.8 7.3 3.0 5.9
x x 1 x x 4.1 8.1 3.1 6.1

x x x 5k/80 x 3.9 7.8 2.9 5.9
x x x 10k/53 x 3.9 7.6 2.9 5.9
x x x 50k/23 x 3.9 7.8 2.9 5.9

x x x x 1/2 4.2 8.5 3.1 6.4
x x x x 2/1 3.7 7.3 2.7 5.6
x x x x 3/1 3.7 7.3 2.8 5.6
x x x x 4/1 3.7 7.3 2.7 5.5

lowering the cache update probability p allows to re-generate
PLs more rarely in slimIPL than in cache-free approaches, which
leads to faster training. slimIPL is robust to the cache size C and
cache update probability p. However, for limited supervision the

small cache setting C = 10 performs worse.
The starting update M for involving unlabeled data in the

training process is critical for the low-resource labeled data set-
ting LL-10/LS-960. In the case of LS-100/LS-860, slimIPL
recovers even when starting from high WER supervised models.
To prevent quick over-fitting over supervised data for LL-10/LS-
960, the ratio λ between the number of unsupervised and super-
vised updates should be greater than 1, with little variations in
WER for any λ > 1. For LS-100/LS-860 this hyperparameter
is less critical, with λ = 4/1 found to be optimal, and slower
convergence observed for λ < 1.

Overall, with enough labeled data, slimIPL is robust to hy-
perparameter changes. When labeled data is limited, C, M and
λ should be large enough to avoid over-fitting to labeled data.

5.7. Efficiency

Table 2 shows the reported training time of different semi- and
unsupervised methods to fully converge. slimIPL has a clear
advantage in training time and resource consumption. Among
other things, we attribute this to the dynamic pseudo-label cache
and the stability of the algorithm.

6. Conclusion
We revisit a key component of recent pseudo-labeling success in
ASR, beam-search decoding with an LM, and propose slimIPL,
in which a single model iteratively re-generates hard pseudo-
labels with a dynamic cache to stabilize optimization. slimIPL
is robust to hyperparameter changes and substantially simplifies
training compared to other semi/unsupervised approaches, while
delivering competitive performance for low-resource settings on
LibriSpeech test sets. For inference, slimIPL is less prone to LM
over-fitting than methods which use an LM for PL generation.

7. Acknowledgement
We thank Alex Rogozhnikov for insightful discussions about the
algorithm and experiments, and Gil Keren for results discussions.

8. References
[1] O. Chapelle and B. Schölkopf, “Alexanderzien. semi-supervised

learning,” 2006.

[2] J. Kahn et al., “Libri-light: A benchmark for asr with limited or no
supervision,” in ICASSP. IEEE, 2020, pp. 7669–7673.

[3] H. Scudder, “Probability of error of some adaptive pattern-
recognition machines,” IEEE Transactions on Information Theory,
vol. 11, no. 3, pp. 363–371, 1965.

[4] W.-N. Hsu, A. Lee, G. Synnaeve, and A. Hannun, “Semi-
supervised speech recognition via local prior matching,” arXiv
preprint arXiv:2002.10336, 2020.

[5] Q. Xu et al., “Iterative pseudo-labeling for speech recognition,”
Proc. Interspeech 2020, pp. 1006–1010, 2020.

[6] ——, “Self-training and pre-training are complementary for speech
recognition,” arXiv preprint arXiv:2010.11430, 2020.

[7] J. Kahn, A. Lee, and A. Hannun, “Self-training for end-to-end
speech recognition,” in ICASSP. IEEE, 2020, pp. 7084–7088.

[8] G. Synnaeve et al., “End-to-end asr: from supervised to semi-
supervised learning with modern architectures,” arXiv preprint
arXiv:1911.08460, 2019.

[9] D. S. Park et al., “Improved noisy student training for automatic
speech recognition,” Proc. Interspeech 2020, pp. 2817–2821, 2020.

[10] Y. Zhang et al., “Pushing the limits of semi-supervised learning for
automatic speech recognition,” arXiv preprint arXiv:2010.10504,
2020.

[11] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks,” in Proceedings of the 23rd
international conference on Machine learning, 2006, pp. 369–376.

[12] I. Z. Yalniz, H. Jégou, K. Chen, M. Paluri, and D. Mahajan,
“Billion-scale semi-supervised learning for image classification,”
arXiv preprint arXiv:1905.00546, 2019.

[13] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with
noisy student improves imagenet classification,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 10 687–10 698.

[14] D. Yarowsky, “Unsupervised word sense disambiguation rivaling
supervised methods,” in 33rd annual meeting of the association
for computational linguistics, 1995, pp. 189–196.

[15] D. McClosky, E. Charniak, and M. Johnson, “Effective self-
training for parsing,” in Proceedings of the Human Language
Technology Conference of the NAACL, Main Conference, 2006, pp.
152–159.

[16] R. Reichart and A. Rappoport, “Self-training for enhancement and
domain adaptation of statistical parsers trained on small datasets,”
in Proceedings of the 45th Annual Meeting of the Association of
Computational Linguistics, 2007, pp. 616–623.

[17] Z. Huang and M. Harper, “Self-training pcfg grammars with latent
annotations across languages,” in EMNLP, 2009, pp. 832–841.

[18] J. He, J. Gu, J. Shen, and M. Ranzato, “Revisiting self-training
for neural sequence generation,” in International Conference on
Learning Representations, 2020.

[19] N. Ueffing, “Using monolingual source-language data to improve
mt performance,” in International Workshop on Spoken Language
Translation (IWSLT) 2006, 2006.

[20] J. Zhang and C. Zong, “Exploiting source-side monolingual data
in neural machine translation,” in EMNLP, 2016, pp. 1535–1545.

[21] S. Novotney and R. Schwartz, “Analysis of low-resource acoustic
model self-training,” in Tenth Annual Conference of the Interna-
tional Speech Communication Association, 2009.

[22] S. H. K. Parthasarathi and N. Strom, “Lessons from building acous-
tic models with a million hours of speech,” in ICASSP. IEEE,
2019, pp. 6670–6674.

[23] J. Pino et al., “Self-training for end-to-end speech translation,”
Proc. Interspeech 2020, pp. 1476–1480, 2020.

[24] D.-H. Lee, “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in Work-
shop on challenges in representation learning, ICML, vol. 3, no. 2,
2013.

[25] E. Arazo et al., “Pseudo-labeling and confirmation bias in deep
semi-supervised learning,” in 2020 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.

[26] Y. Chen, W. Wang, and C. Wang, “Semi-supervised asr by end-to-
end self-training,” Proc. Interspeech 2020, pp. 2787–2791, 2020.

[27] D. S. Park et al., “Specaugment: A simple data augmentation
method for automatic speech recognition,” Proc. Interspeech 2019,
pp. 2613–2617, 2019.

[28] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,”
arXiv preprint arXiv:2006.11477, 2020.

[29] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748,
2018.

[30] C. Talnikar et al., “Joint masked cpc and ctc training for asr,” arXiv
preprint arXiv:2011.00093, 2020.

[31] R. Sennrich, B. Haddow, and A. Birch, “Improving neural ma-
chine translation models with monolingual data,” in Proceedings
of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2016, pp. 86–96.

[32] K. Sohn et al., “Fixmatch: Simplifying semi-supervised learning
with consistency and confidence,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[33] D. Berthelot et al., “Mixmatch: A holistic approach to semi-
supervised learning,” in Advances in Neural Information Process-
ing Systems, 2019, pp. 5049–5059.

[34] ——, “Remixmatch: Semi-supervised learning with distribu-
tion alignment and augmentation anchoring,” arXiv preprint
arXiv:1911.09785, 2019.

[35] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” arXiv preprint arXiv:2012.12877, 2020.

[36] K. Imamura, A. Fujita, and E. Sumita, “Enhancement of encoder
and attention using target monolingual corpora in neural machine
translation,” in Proceedings of the 2nd Workshop on Neural Ma-
chine Translation and Generation, 2018, pp. 55–63.

[37] S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding
back-translation at scale,” in EMNLP, 2018, pp. 489–500.

[38] C. Lüscher, E. Beck, K. Irie, M. Kitza, W. Michel, A. Zeyer,
R. Schlüter, and H. Ney, “Rwth asr systems for librispeech: Hybrid
vs attention,” Proc. Interspeech 2019, pp. 231–235, 2019.

[39] S. Ling, Y. Liu, J. Salazar, and K. Kirchhoff, “Deep contextualized
acoustic representations for semi-supervised speech recognition,”
in ICASSP. IEEE, 2020, pp. 6429–6433.

[40] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
an asr corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2015, pp. 5206–5210.

[41] A. Vaswani et al., “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[42] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on
demand with structured dropout,” in International Conference on
Learning Representations, 2020.

[43] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,” Journal of
machine learning research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[44] R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-
to-end convnet-based speech recognition system,” arXiv preprint
arXiv:1609.03193, 2016.

[45] T. Likhomanenko, G. Synnaeve, and R. Collobert, “Who needs
words? lexicon-free speech recognition,” Proc. Interspeech 2019,
pp. 3915–3919, 2019.

