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Abstract
Using self-supervised learning methods to pre-train a network
on large volumes of unlabeled data followed by fine-tuning for
multiple downstream tasks has proven vital for advancing re-
search in natural language representation learning. However,
the speech processing community lacks a similar setup that
systematically measures the quality of learned representations
across a wide range of downstream speech applications. To
bridge this gap, we introduce the Speech Understanding and
Performance Benchmark (SUPERB). SUPERB is a leaderboard
to benchmark the performance of learned speech representa-
tions on ten speech processing tasks. We present a complete
framework for learning and evaluating specialized prediction
heads for each task given the pre-trained speech representa-
tions. Our results on many publicly-available self-supervised
models demonstrate their generalization abilities to multiple
speech tasks with limited supervised and minimal architecture
changes. All the materials are open-sourced and reproducible
in the s3prl toolkit to facilitate future research in speech repre-
sentation learning.
Index Terms: Self-Supervised Learning, Representation
Learning, Model Generalization, Benchmark, Leaderboard,
Evaluation

1. Introduction
Starting from ELMo [1] and BERT [2] in natural language
processing (NLP), the effectiveness of Self-supervised learning
(SSL) is evident in various domains [3, 4]. It is becoming a
new paradigm to solve problems by pretraining a shared net-
work with self-supervision using a large amount of unlabeled
data to encode general-purpose knowledge, and adapting the
network to various downstream tasks with limited labeled ex-
amples. This paradigm achieves state-of-the-art (SOTA) perfor-
mance in many applications.

In addition to the performance, the paradigm is desirable
for its re-usability across tasks to democratize deep learning to
more application scenarios. Developing deep neural networks is
expensive nowadays in terms of data collection, modeling, com-
puting power, and training time, and repeating the same process
for each specific use case is prohibitively costly for both aca-
demic and industrial researchers. SSL can significantly speed
up and lower the entry barrier for model development in Speech,
as using a shared pretrained model and limited finetuning on
downstream tasks has been shown to consistently outperform
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purely supervised methods in NLP [2] and CV [5]. A well-
established benchmark is essential to evaluate the re-usability
and generalizability of pretrained models across a wide range
of downstream tasks. Thus, GLUE [6] was proposed in NLP
and VISSL [7] is leveraged in CV. These benchmarks contain
a group of tasks to generally evaluate the model’s capability
on text or image processing and fuel the latest SSL research
progress.

SSL has been explored in speech, including pretraining
with generative loss [8, 9, 10] or discriminative loss [11, 12],
and pretraining for short segments [8] or the entire utter-
ances [9, 10, 11, 12, 13]. The ways researchers pretrain and use
the learned models are diverse. [8] extracted fixed-dimension
segmental representation for query-by-example; [9, 10, 13]
demonstrated a sequence of extracted representations for entire
utterances can capture phonetic, speaker, or emotion character-
istics; [12, 14, 15, 16] showed that SSL can establish new prin-
ciples to solve ASR problem. Researchers have investigated
these pretrained models’ capabilities on tasks including speaker
verification [17], language identification [17], emotion recog-
nition [13], speech translation [9] and spoken language under-
standing [18]. While these works showed promising results on
various speech processing tasks, unlike CV or NLP areas, the
works were investigated with different datasets and experimen-
tal setups. Absence of a shared benchmark makes it hard to
compare, and to draw insights across the techniques. Further-
more, tasks evaluated in these works mostly require complex
and specialized downstream settings with cumbersome training
of the entire networks [19, 12, 15]. Both factors limit the impact
of SSL on speech processing in research and industry.

We introduce Speech Understanding and Performance
Benchmark (SUPERB) to address the problem. SUPERB col-
lects ten benchmark tasks in speech processing that have com-
mon real-world applications. We further propose a simple
framework to solve the ten tasks with a general-purpose pre-
trained network and lightweight prediction heads specialized
for each task. The pretrained network has parameters shared
across tasks and is used as a representation extractor; each
head is finetuned with limited labeled data for the correspond-
ing task. With SUPERB, one can readily compare the effec-
tiveness of different model structures, and pretraining corpora
across tasks. There are existing benchmark corpora [20, 21]
proposed to evaluate representation learned with SSL. As com-
pared to the existing efforts that focus on analyzing fine-grained
characteristics of the learned representation, SUPERB evaluates
in a task-oriented fashion and examines the generalizability of
networks across tasks. Our experiment results show that the



proposed framework yields competitive performance in most
tasks, and the SSL learned representations outperforms classic
features used in speech domains by a large margin. Despite the
promising results, our framework does not achieve SOTA in all
of the SUPERB tasks, suggesting the space for future research.
Thus, we present SUPERB as a challenge with a leaderboard1.
We welcome researchers to participate in the challenge via our
open-sourced evaluation toolkit2, which supports benchmarking
most of the existing SSL methods and any customized model,
to drive the SSL research frontier.

2. Self-Supervised Pretrained Models
In this section, we describe the SSL pretrained methods investi-
gated in this paper. We summarize the methods in Table 1, and
categorize them into two classic modeling approaches: genera-
tive modeling and discriminative modeling.

2.1. Generative Modeling

Generative modeling has long been a prevailing approach for
learning speech representation and has been shown effective
in many domains [8, 9, 10]. Instances of generative mod-
eling investigated here include APC [9], VQ-APC [22], and
TERA [19]. APC adopts the language model-like training
scheme on a sequence of acoustic features with unidirectional
RNN. APC optimizes the model to generate future frames con-
ditioning on past frames. VQ-APC further applies vector-
quantization (VQ) layers to the representation of APC. This
method imposes a bottleneck that forces the model to learn com-
pact and low bit-rate representations. TERA adopts the BERT-
like [2] masked pretraining on Transformer encoders by mask-
ing timestamps and the frequency bins of input acoustic features
and generating the masked parts.

2.2. Discriminative Modeling

Contrastive learning as a branch of discriminative modeling for
SSL receives great attention recently, and the methods studied
here include CPC [11], wav2vec [12], vq-wav2vec [14], and
wav2vec 2.0 [15]. CPC learns to discriminate the correlated
positive samples from negative samples with InfoNCE loss. The
loss is inspired by classic NCE loss and designed to maximize
the mutual information between the raw data and the repre-
sentation. wav2vec follows the same loss while using deeper
networks for both the feature encoder and the context network
in CPC. vq-wav2vec learns BERT-like speech representations
through a two-stage training pipeline, where a VQ module is
inserted between the feature encoder and the context network
in wav2vec. In the first stage, the same InfoNCE loss is em-
ployed, and the speech signal is discretized to a sequence of to-
kens. Tokens then are used as pseudo-text to train the standard
BERT model for contextualized representations in the second
stage. wav2vec 2.0 improves upon vq-wav2vec, where the two-
stage training is merged into one end-to-end training scheme,
by applying time masking in the latent space and replacing the
token classification softmax with InfoNCE discrimination. Hu-
BERT [23] is trained with a masked prediction task similar to
BERT [2] but with masked continuous audio signals as inputs.
The targets are obtained through unsupervised clustering of raw
speech features or learned features from earlier iterations, mo-
tivated by DeepCluster.
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3. Speech Understanding and Performance
Benchmark

We propose a set of 10 downstream tasks to jointly benchmark
the capability of SSL approaches and learned representations.
The tasks are collected by speech communities for various as-
pects to comprehensively examine the approaches. We also
build a framework to leverage SSL approaches and solve the
tasks. As a heavyweight downstream adaptation is cumbersome
in model development, we freeze the SSL pretrained model to
extract fixed representation for the downstream usage, and limit
the parameters and network architectures utilized for task fine-
tuning. Having the downstream adaptation lightweight benefits
the efficiency in data usage, computation, and development. We
categorize the ten tasks into two tracks, linear separability and
advanced applications, and discuss the details of tasks and the
application of proposed frameworks to each problem.

3.1. Linear Separability

Following the conventional evaluation protocol [11, 9, 19], we
probe representations with linear models in 5 tasks, Phoneme
Recognition, Keyword Spotting, Intent Classification, Speaker
Identification, and Emotion Recognition. These tasks serve as
a direct indication of representations’ capability without any
dependency on specific downstream models. The default set-
ting for these tasks is a mean-pooling of representations from
pretrained networks followed by a linear layer as the down-
stream model. The model is optimized by Adam with batch
size 32 and cross-entropy loss. We use the standard train-
ing/validation/testing splits in each dataset and accuracy (ACC)
as the evaluation metric.

Phoneme Recognition, PR classifies each frame on the
smallest content units. In [9, 10, 19], phoneme classifica-
tion is conducted with force-aligned frame-wise phoneme la-
bels. We avoid the potential inaccurate alignment by offloading
the alignment to the downstream model and CTC loss. The
downstream model is the same frame-wise single linear layer
as in [9, 10, 19]. We use LibriSpeech [24] train-clean-100,
dev-clean, and test-clean subsets for training/validation/testing.
Phoneme transcriptions are obtained from the LibriSpeech of-
ficial grapheme-to-phoneme model g2p-model-5 and the con-
version script from Kaldi librispeech s5 recipe. The reported
metric is phone error rate (PER).

Keyword Spotting, KS is to detect specific keywords from
utterances with minimal effort without transcribing the utter-
ances. KS formulates the problem by classifying utterances
into a predefined set of words. The task is usually performed
on-device for the fast response time. Thus, accuracy, model
size, and inference time are crucial. We utilize the widely used
Speech Commands dataset v1.0 [25] for evaluation. The dataset
consists of ten classes of keywords, a class for silence, and an
unknown class to include the false positive.

Intent Classification, IC aims to infer high-level seman-
tics from speech and is a crucial component in common Spo-
ken Language Understanding (SLU) systems We design our IC
task on top of previous end-to-end literatures [26], where in-
tent labels are predicted directly from speech. We use the Flu-
ent Speech Commands [26] dataset for our experiments, where
each utterance is tagged with three labels: action, object, and
location. In our downstream model, three separate linear layers
projecting a single mean pooled latent vector are used for the
respective three labels.

Speaker Identification, SID classifies each utterance for
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its speaker identity. SID is a conventional evaluation task for
SSL representation [11, 9, 10, 19, 13]. Instead of using Lib-
riSpeech or Wall Street Journal, we opt for a more challenging
dataset from the community, VoxCeleb1 [27]. The dataset com-
prises utterances from 1251 speakers collected in the wild.

Emotion Recognition, ER predicts emotion in each utter-
ance. We adopt ER as one of the evaluation tasks because it is
interesting to study the paralinguistics learned by SSL beyond
the content and speaker properties. We utilize the most widely
used ER dataset IEMOCAP [28], and follow the conventional
evaluation protocol: we drop the unbalance emotion classes to
leave the final four classes with a similar amount of data points
and cross-validates on five folds of the standard splits.

3.2. Advanced Applications

We further examine the capability of SSL approaches and
learned representations in 5 real-world problems, Automatic
Speech Recognition, Query by Example Spoken Term Detec-
tion, Slot Filling, Automatic Speaker Verification, and Speaker
Diarization. Although complex and task-specific model archi-
tectures are common to push the SOTA performance in these
problems, when designing our models, we choose to follow the
principle to keep downstream models as lightweight and gen-
eral as possible while achieving competitive performance. The
principle is essential to focus our comparison on the representa-
tions learned by different SSL approaches, and to examine the
generalizability, accessibility, and re-usability of each approach
and the system built upon it. We describe the five problems and
our models in detail below. We also summarize our experiment
datasets. The standard training/validation/testing splits in each
dataset are used if not explicitly mentioned.

Automatic Speech Recognition, ASR is the most studied
application in SSL, where [12, 15, 16, 19] all show promising
results of utilizing pretrained models in different ways. Usually,
complicated designs are required to achieve SOTA performance
for a classic ASR system. However, we aim at exploring how
easy ASR can be when leveraging powerful speech representa-
tions. We adopt a simple 2-layer 1024-unit bidirectional LSTM
for the downstream model, which is also used in [16]. We
train the downstream model by CTC loss on letters and decode
with the official LibriSpeech 4-gram language model powered
by KenLM and flashlight toolkit for faster inference. The Lib-
riSpeech train-clean-100/dev-clean/test-clean subsets are used
for training/validation/testing. Preliminary results show that the
LSTM model is prone to overfit; hence we also apply SpecAug-
ment. The reported metric is word error rate (WER).

Query by Example Spoken Term Detection, QbE is to
search for a spoken term (query) in an audio database (docu-
ments), without speech-to-text conversion. QbE has no depen-
dency on ASR systems and relies more on the feature extrac-
tion and the detection algorithm. We mostly follow the sys-
tem proposed by GTTS-EHU for QUESST at MediaEval 2014
[29], but replace the conventional supervised phoneme posteri-
orgram with SSL representations. Representations are extracted
for every utterance and normalized along each feature dimen-
sion. We apply Dynamic Time Warping (DTW) to the repre-
sentations with the package: dtw-python and obtain a score for
each query-document pair. The scores belonging to each query
are normalized separately. Experiments are conducted on the
non-native English subset of QUESST 2014 [30] because all
SSL representations were pretrained on English corpora. Com-
binations of distance functions and step functions are treated as
hyperparameters and tuned with validation set. The evaluation

metrics is maximum term weighted value (MTWV).
End-to-End Slot Filling, SF is another essential task in

SLU, where a sequence of semantic slot-types are predicted
from raw audio with or without an intermediate natural lan-
guage understanding (NLU) module [18]. Note that in contrast
to IC, a SF model should predict a slot-type sequence basing on
the predicted text sequence [18]. To gauge the effectiveness of
SSL in inferring semantics directly from raw audio, we adopt
one of the baseline models in [18], where slot-type labels are
represented as special tokens in transcriptions to re-formulate
SF as an ASR problem. The training scheme is the same as in
our ASR task, except for the pre-processing and post-processing
of the transcriptions to include the slot-type labels. The met-
rics include slot-type F1 score and slot-value CER [31]. The
slot-type F1 score is computed to evaluate the predicted slot-
types’ correctness without considering the slot-values. For each
ground-truth slot, a predicted slot with the same slot-type is
chosen, and CER between their slot-values is further computed
to ensure whether the model is predicting the correct slot-type
grounded on the correct content.

Automatic Speaker Verification, ASV verifies whether
the speakers of a pair of enrollment and testing utterances
match. The speakers in the testing set may not appear in the
training. As compared to SID, where the speakers of training
and testing sets are identical, ASV is an open-set and more chal-
lenging problem. We adopt the well-known x-vector [32] as
the downstream model by only replacing the statistical pooling
with attentive pooling, and we train on VoxCeleb1 without noise
augmentation to stick to our lightweight-downstream principle.
The metric is equal error rate (EER) with cosine backend.

Speaker Diarization, SD targets to address the who spoken
when problem. Different from SID and ASV, SD is conducted
under frame level. Representations have to be rich in speaker
characteristics for each frame and compatible with mixtures of
signals, which is not presented as pretraining data for existing
SSL approaches. For our lightweight-downstream principle, we
employ the end-to-end speaker diarization with permutation-
invariant training (PIT) loss [33] instead of the clustering-based
methods, and use only a single-layer 512-unit LSTM for the
downstream model. We adopt LibriMix [34] for diarization.
The time-coded speaker labels were generated using alignments
from Kaldi Librispeech ASR model. Diarization error rate
(DER) is used as the evaluation metric.

4. Policy and Experiment
To keep a fair and easy evaluation policy for all the SSL repre-
sentations, we limit the space for downstream hyper-parameter
tuning. In this paper, we search the best learning across 1.0E-1
to 1.0E-7 in log-scale for each representation/downstream pair.
More downstream hyper-parameters will be available to search
in the final release of the challenge, but they can not be many in
principle.

The results are presented in table 2. First, for the linear
separability tasks in the left half part of the table, it is almost
impossible for FBANK to work on any task and SSL represen-
tations all perform well to some degree. Their capability differs
a lot though. wav2vec 2.0 is the best in phonetics, while Hu-
BERT performs best across KS, IC, and ER. On the other hand,
TERA ranks the first place on SID.

As for advanced applications, HuBERT outperforms all the
existing representations on ASR greatly, which makes training
an ASR system much easier than before. FBANK becomes a
competitive feature that its WER is not much higher than many



Method Network #Params Stride Input Feature Pre-train Learning Style
FBANK - 0 10ms 80-dim + delta 2 - -
APC [9] 3-GRU 4.06M 10ms 80-dim log Mel LS 360 hr autoregressive generation
vq-APC [22] 3-GRU 4.06M 10ms 80-dim log Mel LS 360 hr autoregressive generation + VQ
TERA [19] 3-Trans 21.33M 10ms 80-dim log Mel LS 960 hr masked reconstruction
CPC [11, 35] 5-Conv 1-Trans 1.84M 10ms waveform LL 60k hr contrastive
wav2vec [12] 19-Conv 29.39M 10ms waveform LS 960 hr contrastive
vq-wav2vec [14] 20-Conv 6.04M 10ms waveform LS 960 hr contrastive + VQ
wav2vec 2.0 Base [15] 7-Conv 12-Trans 95.04M 20ms waveform LS 960 hr contrastive + latent masking
wav2vec 2.0 Large [15] 7-Conv 24-Trans 317.38M 20ms waveform LS 960 hr contrastive + latent masking
HuBERT Base [23] 7-Conv 12-Trans 94.68M 20ms waveform LS 960 hr masked pseudo-label prediction
HuBERT Large [23] 7-Conv 24-Trans 316.61M 20ms waveform LL 60k hr masked pseudo-label prediction

Table 1: Details of baseline features and recent SSL methods. LibriSpeech and LibriLight are denoted as LS and LL, respectively.

PR KS IC SID ER ASR QbE SF SV SD
PER ↓ Acc ↑ Acc ↑ Acc ↑ Acc ↑ w/o ↓ w/ LM ↓ MTWV ↑ F1 ↑ CER ↓ EER ↓ DER ↓

FBANK 82.01 8.63 9.10 6.0E-4 35.39 23.18 15.21 0.0043 69.64 52.94 11.171 10.05
APC [9] 42.22 91.24 75.06 22.42 59.81 21.61 15.09 0.0267 71.26 50.76 10.625 11.29
VQ-APC [22] 42.87 90.68 71.92 16.54 59.26 21.72 15.37 0.0224 65.72 58.60 10.699 10.49
TERA [19] 47.53 88.64 50.94 55.19 58.16 18.45 12.44 1.29E-4 63.28 57.91 18.791 10.71
CPC [11, 35] 41.66 92.02 65.01 31.38 55.57 20.02 13.57 0.0056 74.18 46.66 11.770 11.00
wav2vec [12] 34.45 94.32 80.04 29.43 61.10 16.40 11.30 0.0307 77.52 41.75 11.574 10.79
vq-wav2vec [14] 55.12 92.79 62.04 21.42 57.88 18.70 12.69 0.0302 70.57 50.16 11.845 10.70
wav2vec 2.0 Base [15] 29.84 92.24 56.79 40.52 56.68 9.57 6.30 8.77E-4 79.94 37.81 11.622 7.58
wav2vec 2.0 Large [15] - - - - - 16.54 10.41 3.58E-4 - - - -
HuBERT Base [23] - 95.98 95.94 - 63.96 6.74 4.93 0.0759 86.24 28.52 - 6.76
HuBERT Large [23] - 93.15 98.37 - 66.98 3.67 2.91 0.0360 88.68 23.05 - 6.23

Table 2: Evaluating various SSL representations on various downstream tasks. Phoneme recognition is denoted as PR, keyword
spotting as KS, intent classification as IC, speaker identification as SID, emotion recognition as ER, automatic speech recognition as
ASR, query-by-example as QbE, slot filling as SF, speaker verification as ASV, and speaker diarization as SD.

SSL representations despite it totally fails in PR. The ranking
on PR aligns with ASR to some degree but not completely. VQ-
APC surpasses TERA in PR while this is not reflected on ASR.
However, we can observe that the significant improvement on
phonetics still transfers to ASR, like wav2vec and wav2vec 2.0.

While wav2vec 2.0 performs competitively in ASR, it is
at the last second place and even worse than FBANK in QbE,
which requires representation to be rich in content by simple
distance metrics between queries and documents. HuBERT
ranks the top one. The most widely used feature in this task
is supervised-pretrained phoneme posteriorgram (PPG). Since
our focus is on English here, we implement it with TIMIT
which contains ground-truth phoneme boundaries. The result of
TIMIT PPG is 0.052 in MTWV, which suggests that HuBERT
turns out to be a competitive representation in this task and also
ranks high in others concurrently.

As for SF, HuBERT takes the first place, and the improve-
ment is significant for both slot-type F1 and slot-value CER.
While TERA achieves the third place for ASR on LibriSpeech,
it fails to generalize to SNIPS dataset.

The results of SV does not align with the linear evaluation
on SID. TERA performs the best in SID but it is not strong
enough in a classic x-vector system. FBANK fails under the
standard linear evaluation while is competitive after some non-
linear transforms.

As the final speaker task, SD suggests the similar situation,
that FBANK surpasses APC, VQ-APC, TERA, and wav2vec in
the real-world application. Furthermore, as SD is a complicated
task where mixtures of signals are introduced, the results show
that most of the SSL representations are not robust enough to

deal with signal mixtures. HuBERT dominates this task and
the improvement is significant. The decomposition of the DER
shows that it has much lower false alarm rate than other up-
stream methods.

Despite there is a specific SSL pretrained model outper-
forming all the others in each task, they fail to generalize well
to all the tasks with the exception of HuBERT which is best
in ASR, SF, KS, IC, ER, QbE, and SD. On the other hand,
only APC and VQ-APC can surpass FBANK in SV, demon-
strating the research possibilities for developing more powerful
and more generalizable SSL pretrained models.

5. Conclusion
We present Speech Understanding and PERformance Bench-
mark (SUPERB), a ten-task challenge to generally benchmark
the capability of SSL pretrained models on speech process-
ing. We also propose a simple framework to solve the tasks
jointly. The framework utilizes a shared SSL network to ex-
tract representations and infers with prediction heads finetuned
for each task. We impose constraints to the heads on the ar-
chitectures, finetuning labels, and computation. The constraints
guarantee the simplicity of model development and the gener-
alizability and accessibility of our framework for various tasks.
Our results suggest that the framework yields competitive per-
formance in most tasks, and the research direction is promis-
ing and of great opportunities. We open-sourced the evaluation
toolkit and datasets as a challenge and will release the detailed
challenge policy on the leaderboard website. We welcome the
community to participate and drive the research frontier.
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