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Abstract

Profile-guided binary optimization has proved to be an im-

portant technology to achieve peak performance, particu-

larly for large-scale binaries that are typical for data-center

applications. By applying the profile data at the same repre-

sentation where sampling-based profiling is collected, binary

optimizers can provide double-digit speedups over binaries

compiled with profile-guided optimizations using similarly

collected profile data. The main blocker for adoption of bi-

nary optimizers in practice is the overhead that they add

to the already long and demanding build pipelines used for

producing highly optimized binaries, which already include

aggressive compiler optimizations guided by profile data and

also link-time optimizations. This paper addresses the over-

heads of binary optimizers in the context of BOLT, a modern

and powerful open-source binary optimizer. More specifi-

cally, this paper describes Lightning BOLT, which is an im-

proved version of the BOLT binary optimizer that drastically

reduces BOLT’s processing time and memory requirements,

while preserving BOLT’s effectiveness in improving the final

binary’s performance. Using a set of real-world data-center

and open-source applications, we show that Lightning BOLT

speeds up BOLT’s processing by an average of 4.71× and

reduces BOLT’s memory consumption by 70.5% on average.

Furthermore, Lightning BOLT also provides an adjustable

mechanism to further reduce BOLT’s overheads at the cost

of some lost performance for the final binary.
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1 Introduction

A binary optimizer is a special flavor of a compiler that trans-

forms an input binary into a more performant output binary.

Binary optimization has proved to be a powerful approach

to achieve peak performance [12, 15, 22]. Previous work has

demonstrated that significant, double-digit speedups can be

achieved via binary optimization on top of highly optimized

binaries compiled with mature compilers like GCC [10] and

Clang [14], even when these compilers are empowered with

link-time optimizations (LTO) and profile-guided optimiza-

tions (PGO) [22]. In particular, binary optimizers are well

positioned to perform code-layout optimizations with much

greater accuracy than compilers can achieve with profile-

guided optimizations. As Panchenko et al. [22] clearly iden-

tified, these opportunities arise from the compilers’ intrinsic

inaccuracy and limitations of mapping profile data collected

at the machine-instruction level back to their intermediate

representations, where optimizations are applied.

Unfortunately, the benefits of employing a binary opti-

mizer come with a cost. Even though profile data collection

can be made essentially free [24], binary optimization still

incurs extra processing overheads in the binary-building

†Artifact available at: https://doi.org/10.5281/zenodo.4451492
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pipeline. These overheads, in terms of build time and mem-

ory usage, can be significant to the point that they prevent

the use of binary optimizers in real production environments,

despite providing significant speedups to widely deployed

applications [26, 28].

To address these scalability concerns about binary opti-

mization, this paper studies techniques to reduce the pro-

cessing overheads in the context of BOLT [22], a modern,

production-quality, open-source binary optimizer. Specifi-

cally, this paper shows how BOLT’s overheads can be greatly

reduced by employing two techniques: parallel processing

and selective optimizations.

Parallel compilers have been studied and employed be-

fore. However, they require significant engineering effort. In

general, this effort is only justified in dynamic compilation

systems, where the benefits of quickly producing optimized

code are bigger due to less time spent executing interpreted

or less optimized code [5, 17, 18, 21]. On the static com-

pilation domain, mainstream compilers are still sequential

applications due to the engineering challenges in paralleliz-

ing them [3, 4]. Instead, build systems leverage process-level

parallelism by compiling independent files concurrently [2].

However, binary optimizers, by processing a single linked

binary, do not have the luxury of leveraging such parallelism.

This paper describes our approach to parallelizing BOLT.

The second technique we employ to reduce the overhead

of binary optimization is to selectively apply optimizations.

BOLT’s original design processed all the functions in the in-

put binary. In this paper, we demonstrate how that overhead

can be significantly reduced by restricting BOLT’s optimiza-

tions to only a portion of the binary. Although straightfor-

ward at the high level, this approach requires careful en-

gineering because even the portions of the binary that are

not optimized still require patching to account for the opti-

mized portions of the binary. This paper also describes how

Lightning BOLT leverages this technique to increase BOLT’s

robustness and applicability, allowing processing of binaries

even when they cannot be correctly disassembled.

By combining parallel processing and selective optimiza-

tions, this paper demonstrates how Lightning BOLT reduces

BOLT’s processing time andmemory overheads by 78.8% and

70.5%, respectively, when optimizing real-world data-center

and open-source workloads. Overall, this paper makes the

following contributions:

1. It describes how parallel processing and selective opti-

mization can be applied on a state-of-the-art binary op-

timizer to drastically reduce its processing overheads.

2. It provides extensive evaluation demonstrating the

impact of the studied techniques when optimizing real

large-scale data-center workloads.

3. It points to future directions for further reducing the

overheads of binary optimizers.

Function Discovery

Read Debug Info

Disassembly

CFG Construction

Read Profile Data

Local Optimizations

Global Optimizations

Emit and Link Functions

Update Debug Info

Rewrite Binary File

Figure 1. Overview of BOLT pipeline. Highlighted are the

steps parallelized in Lightning BOLT.

The rest of this paper is organized as follows. Section 2

reviews the architecture of binary optimizers in general and

BOLT in particular. After that, Section 3 and Section 4 re-

spectively describe how we have enhanced BOLT with par-

allel processing and selective optimizations. Section 5 then

presents the results of our extensive evaluation demonstrat-

ing the impact of this work on large-scale applications. Fi-

nally, Section 6 discusses related work and Section 7 con-

cludes the paper.

2 Background

This section gives an overview of the architecture of the

BOLT binary optimizer [22]. Although we focus on BOLT

here, this general architecture is common to other binary

optimizers [7, 12, 15, 25].

Figure 1 illustrates a block diagram of BOLT’s binary

rewriting pipeline. BOLT starts by identifying all the func-

tions in the binary by leveraging ELF’s symbol table. In case

the binary was compiled with debug information, BOLT

then reads this information. After that, BOLT proceeds to

disassemble the functions and to create an in-memory repre-

sentation of the functions using a control-flow graph (CFG)

with basic blocks containing sequences of machine instruc-

tions. This is the single internal representation of the binary

code in which BOLT’s optimizations are applied. Next, BOLT
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Table 1. BOLT’s optimization pipeline.

Optimization Description Local PGO

1. strip-rep-ret Strip repz from repz retq instructions
used for legacy AMD processors

✓

2. icf Identical code folding

3. icp Indirect call promotion ✓ ✓

4. peepholes Simple peephole optimizations ✓

5. simplify-ro-loads Replace loads from read-only data sec-
tion with moves of immediate values

✓

6. icf Identical code folding (second pass)

7. plt Remove indirection from PLT calls ✓

8. reorder-bbs Reorder basic blocks and split hot/cold
blocks into separate sections

✓ ✓

9. peepholes Simple peephole optimizations (second
pass)

✓

10. uce Unreachable code elimination ✓

11. fixup-branches Fix basic block terminator instructions
to match the CFG and the current layout

✓

12. reorder-functions Reorder functions to improve locality ✓

13. sctc Simplify conditional tail calls ✓

14. align-functions Assign alignment values to functions ✓

15. frame-opts Remove unnecessary caller-saved regis-
ter spilling

16. shrink-wrapping Moves callee-saved register spills closer
to where they are needed if profitable

✓

reads the profile data used to drive its optimizations and an-

notates it onto the CFG representation. After this, BOLT has

all the representation of the code annotated with profile data

in memory and can apply its various optimizations. Once

the optimizations are finished, BOLT finally emits the opti-

mized version of the code and rewrites the final binary. If

debug information was available in the binary, BOLT will

also update it to reflect the effect of the optimizations.

We now briefly describe the optimizations that BOLT ap-

plies to the input binary to improve its performance. Table 1

lists the optimizations currently implemented in BOLT in the

order they are applied. As Panchenko et al. [22] demonstrate,

the most powerful of these optimizations are the code layout

optimizations, namely basic-block and function reordering.

For these optimizations, BOLT implements state-of-the-art

algorithms, including ExtTSP [16] for basic-block reordering

and C3 [20] for function reordering. In the third column,

Table 1 notes which optimizations are local to each function,

i.e. they can be applied to each function independently. As

the table shows, most of the optimizations in BOLT are func-

tion local. This observation allows for a general approach to

parallelize BOLT’s optimizations by leveraging parallelism

available at the function granularity. Section 3 demonstrates

how Lightning BOLT leverages these parallelization oppor-

tunities. Finally, the fourth column in Table 1 notes which

optimizations are guided by profile information.While BOLT

only applies these optimizations for functions with profile

data, the other optimizations are applied to all functions

in the binary indistinctively. This provides an opportunity

to reduce BOLT’s processing overheads without degrading

performance of the final binary. Section 4 discusses how

Lightning BOLT leverages this opportunity.

3 Parallel Processing

Compilation of large projects in parallel is mandatory in

modern systems. However, parallelization in compilers is

usually achieved at the build-system level, invoking the com-

piler multiple times in separate processes, as it is easier to

track dependencies across artifacts specified in build files.

Parallelizing the compiler’s internals, on the other hand, is

a daunting task that involves updating and understanding

legacy code, its dependencies and how it interacts with data,

and making sure that all global structures are accessed safely.

There is enough parallelism at the build system level to well

utilize the system resources in a balanced way, making the

parallelization at the compiler level avoidable, with the ex-

ception of cases where the user does not break up the project

into separate compilation units or if monolithic LTO [13] is

used.

When it comes to binary optimizers, parallelization at the

same level used by most compilers is not an option since

binary optimizers consume a single large binary. Binary op-

timizers lack the human help done at the source code level to

break up the project into separate translation units that can

be independently processed, and their scalability is further

threatened by the hefty sizes of binaries used in data centers.

This warrants the additional work and maintenance over-

head required to parallelize binary optimizers with threads.

Lightning BOLT focuses on parallelizing the most expen-

sive steps of a binary optimizer, which are highlighted in

Figure 1. Here, each pass is parallelized individually with a

synchronization point before the start of the next pass. This

design is a good compromise on efficiency and maintainabil-

ity, since the state of the intermediate representation of the

whole program is well defined between two passes, making

it easy to debug issues. This is also efficient as long as each

pass has enough work to be done to load the thread pool. Not

every pass is expensive, so light passes or passes that require

heavy synchronization do not run in parallel. Also, since the

number of input functions can be quite large for data-center

binaries, there is enough work to distribute among threads

and obtain meaningful speedups.

One important caveat of running passes in parallel is that

they might result in non-deterministic output. Lightning

BOLT will never generate non-deterministic output, as it can

be disastrous to build systems and infrastructure that rely

on build artifacts having the same contents as long as inputs

do not change. If the overhead of ensuring determinism

offsets the speedup brought by parallelism, we stick with the

sequential version of that pass.

3.1 General Changes

This section presents Lightning BOLT’s general changes that

are used by parallelized passes.

Common interface to run passes in parallel. Several

parallelizable loops in BOLT are built around performing
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the same work on each function. Passes that run local op-

timizations iterate on a subset of functions of interest and

require, most of the time, trivial changes to run in parallel.

For this class of optimizations, the interactions with global

and shared variables are minimal. Yet, some more involved

global passes can be broken up into subtasks that exhibit

this pattern.

We wrote an API that captures the intent to run such

passes in parallel with the following interface. The user spec-

ifies a work function and a predicate function. The work

function will concurrently run on each BinaryFunction (a

function, in BOLT IR’s terminology) that satisfies the pred-

icate function. The API implementation manages a set of

threads through an LLVM thread pool class that is kept alive

throughout BOLT’s lifetime and is re-used by this API each

time a pass invokes it. Figure 2 shows an example of a pass

(reorder basic blocks) implemented using this idea.

auto workLambda = [&](BinaryFunction &F) {

modifyFunctionLayout(F);

if (F.hasLayoutChanged()) {

++ModifiedFuncCount; // atomic variable

}

};

auto applyPredicate = [&](const BinaryFunction &F) {

return shouldOptimize(F);

};

runOnEachFunction(

Context, SchedulingPolicy::SP_BB_LINEAR,

workLambda, applyPredicate, "ReorderBasicBlocks");

Figure 2. A pass implementation using the interface for

parallel execution.

In order to reduce the scheduling overhead, multiple Bina-

ryFunction objects can be batched together to be processed

by one thread. This is ideal for the common case where the

number of functions is high, but the pass finishes each func-

tion quite fast. While this works best in a scenario where

the workload of each batch is roughly the same, the pro-

cessing time to finish them is not always proportional to

the number of functions within a block of work as function

sizes observe a high variance for typical inputs. We miti-

gate this with the option scheduling policy that is used to

model the runtime of the work function when applied to

BinaryFunction objects, which we rely on to better balance

work across threads. The policy estimates the relationship

between pass runtime and size of input function in the num-

ber of instructions (SP_INST prefix) or basic blocks (SP_BB

prefix). In the example of Figure 2, the runtime of the re-

order basic blocks pass is linearly proportional to the number

of basic blocks in the function, which justifies the use of

SchedulingPolicy::SP_BB_LINEAR as its policy. The im-

plementation of the API then honors this request by dividing

the list of all input functions into blocks that sum up an

equal number of basic blocks and sends these to thread work-

ers. Other scheduling policies include SP_BB_QUADRATIC,

SP_INST_LINEAR and SP_INST_QUADRATIC. The granularity

of the scheduled blocks can be changed using an optional

parameter TasksPerThread, which can be used to control the

total number of tasks created and hence the size of each task.

Allocations. The twomost common patterns of accessing

shared resources in passes are (1) using LLVM’s MCContext

object to create new labels that manage local references and

(2) performing heap allocations using a memory pool shared

globally. The former is itself an IR object allocator used

by LLVM that we cannot easily change without impacting

LLVM core libraries. Accessing it is therefore handled with a

shared lock. The latter, on the other hand, is in BOLT’s con-

trol and we can tune it to account for a thread-friendly allo-

cation. For that, we used two changes: first, jemalloc [9] was

chosen as the default memory manager because it showed a

better performance than glibc’s malloc, making not only the

sequential requests faster but also boosting parallelization

speedups. Second, we created a pool of allocators to hold

pass annotations to BOLT’s IR instructions.

Temporary pass-generated information in BOLT is stored

as annotations that are attached to the instructions as extra

operands. These annotations are allocated using a special

bump allocator that is not thread-safe and is heavily used in

passes that rely on data flow analysis, such as shrink wrap-

ping. Using locks to manage accesses to this bump allocator

adds an unacceptable overhead. To work around this issue

and allow lock-free annotation allocation, we rely on a set

of multiple annotation allocators that are assigned to each

thread. This is supported via a variant of the parallel pass

API mentioned earlier, which provides the work function

with a bump allocator that is guaranteed not to be used by

any other workers at the same time.

3.2 Parallelized Passes

This section presents the passes that were parallelized in

Lightning BOLT in the order they appear in the processing

pipeline.

CFG construction. After a binary function is disassem-

bled, a control-flow graph construction pass takes place

by partitioning instructions into basic blocks and creating

edges. During this construction, synchronization on LLVM’s

MCContext is required to allow creation of labels, and the

bump allocators are used to store instruction-level informa-

tion using our distributed allocation scheme.

Local optimizations. Local optimization passeswere par-

allelized with additional usage of locks. The following passes

were converted to use the parallel API:
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• Aligner pass;

• Reorder basic blocks;

• Eliminate unreachable blocks.

Identical code folding. Identical code folding (ICF) is a

global optimization that scans all functions and eliminates

identical functions by preserving only one copy for each

equivalence class. The pass runs in two stages. First, input

functions are clustered together into buckets of functions

that share a preliminary level of similarity. Identical func-

tions must satisfy this similarity property, but non-identical

functions may appear similar at this stage. The check for

functions’ similarity is done through a quick linear scan

across the function space, looking at contents of each func-

tion at a shallow level that, among other information, ig-

nores the destination of functions calls. Clustering is then

accomplished by computing a hash of these contents for

each function. The runtime of this first stage is dominated by

the hashing process, which is proportional to the total size

of the binary, while the actual clustering is proportional to

the number of functions. This was parallelized in a lock-free

fashion by first pre-computing hashes in parallel and then

clustering sequentially.

The second stage of ICF runs on each cluster of similar

functions and proceeds by performing a more precise com-

parison to narrow down on identical functions, folding them

until convergence is reached. This loop runs in parallel where

each thread handles separate clusters of similar functions.

When a set of functions is found to be identical, the pass

needs to update the global state by deleting some functions

and updating their callers to reference the elected single copy

that will remain. Locks are used to manage this state update.

Frame optimizations and shrinkwrapping. These are

good examples of a set of expensive global optimizations

that were parallelized. They are responsible for removing or

changing the position of loads and stores of both callee- and

caller-saved registers. The former is accomplished by shrink

wrapping, while the latter is done by frame optimizations.

Both of these optimizations start with a frame analysis pass

that is performed at a whole-program level, building a call

graph and gathering information on how the entire program

uses registers and stack slots. During this step, an expensive

substep is the stack-pointer analysis, which is a dataflow

analysis that reconstructs the value of the stack pointer at

each point of the program. This dataflow step was rearranged

to be precomputed earlier and cached rather than being

calculated on-demand, allowing it to run in parallel at the

function granularity while its cached results can be used

later during the sequential analysis step. At the end of these

optimizations, many temporary annotations are cleared in

addition to the cached stack-pointer analysis. Unfortunately,

removing annotations has a non-trivial runtime cost as well

but it is a necessary step to save memory. This step was

delayed to the very end, to avoid being interleaved with

sequential steps, and then parallelized.

Shrink wrapping in particular performs multiple local

dataflow analyses, and each dataflow analysis uses the bump

allocator extensively for IR annotation. With the help of in-

dependent bump allocators, shrink wrapping was converted

to run with function-level parallelism using our regular API

described earlier.

3.3 Future Opportunities

There are additional parallelization opportunities in BOLT

that have not been explored yet. Table 4 in Section 5 shows

the runtime distribution of BOLT doing both a sequential and

a threaded run while processing Clang as an input binary.

Two expensive and currently sequential phases are disassem-

bly and emit and link, taking about half of the total processing

time. Even though parallelizing these passes could have a

significant impact, they also introduce additional challenges

in reproducibility and in dealing with LLVM code that is

outside the scope of BOLT. Emitting and linking assembly

code in-memory using LLVM’s MCStreamer is expensive,

but it is almost entirely handled by LLVM core libraries. The

emission and linking phase iterates on each function at a

time, emitting symbols, instructions and data while LLVM’s

in-memory assembly builds a picture of the layout of the

final program.

Even though function disassembly could conceptually be

done in parallel, there are complications that come from

functions that reference code inside other functions, requir-

ing synchronization among threads to agree on established

entry points for a function.

4 Selective Optimizations

This section describes how Lightning BOLT extends BOLT

with selective optimizations to both reduce BOLT’s process-

ing overheads and improve its robustness and applicability.

As described in Section 2, the original BOLT design applied

its suite of optimizations to all the functions in the binary.

The only exception to this were function-local profile-guided

optimizations (c.f. Table 1), which were only applied to the

functions with profile data. This approach used by BOLT

of aggressively optimizing the input as much as possible

is common to static compilers and optimizers. The reason-

ing behind this approach is that compilers usually lack the

knowledge about what portions of the code will execute

more often in practice, thus fully optimizing the entire ap-

plication ensures that the hot portions of the application are

fully optimized.

However, a profile-guided binary optimizer can do better

than that by not applying its optimizations to the entire bi-

nary, while still maintaining the peak performance of the

final binary. Contrary to static compilers, a profile-guided
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binary optimizer is well positioned to selectively apply op-

timizations, for two main reasons. First, a profile-guided

binary optimizer can leverage its input profile data to de-

cide what portions of the binary are worth optimizing. In

other words, the same profile data that it uses to decide how

to optimize each function can also be used to decide what

functions are worth optimizing. We note that this approach

can also be used by profile-guided static compilers. However,

the same difficulty in mapping profile data back to a com-

piler’s intermediate representation that prevent compilers

from fully benefiting from profile data, which was observed

by Panchenko et al. [22], can also prevent the compiler from

accurately determining what functions are worth optimizing.

For this reason, static compilers typically aggressively opti-

mize the entire binary, even when profile data is available.

The second advantage that a binary optimizer has over a

static compiler to leverage selective optimizations is the fact

that its input and output languages are the same: both are

binary machine code. Because of this, a binary optimizer

can avoid the overhead of processing a given function al-

most entirely if it decides not to process that function. The

input machine code provides a natural and reasonably well

optimized fallback in such cases.

Lightning BOLT applies the insight described above to

greatly reduce BOLT’s processing time and memory over-

heads in two different modes, one that maximizes perfor-

mance of the final binary and one that trades some perfor-

mance for further overhead reductions. Lightning BOLT’s

first mode ensures that the performance of the final binary

is the same as the one obtained by BOLT by skipping all op-

timizations for functions with absolutely no profile data. As

long as the profile data is representative of the actual binary

usage in the field, this mode results in no performance degra-

dation compared to BOLT. The second Lightning BOLTmode

further reduces the processing overheads by also skipping

some functions with profile data. In this mode, BOLT sorts

the functions in decreasing order of CPU time assigned to

them according to its input profile, and only the top functions

are optimized. There are two options available to control the

amount of functions that are processed, one specifying the

maximum absolute number of functions to be processed and

another specifying the percentage of functions with profile

to be processed.

As mentioned above, by not optimizing a function, most

of the overhead of processing it can be avoided, but not all.

Note that unoptimized functions may reference optimized

functions, which may be moved in memory (e.g. due to func-

tion reordering or identical code folding). Because of that,

unoptimized functions still need to be loaded in memory

and disassembled for minimal processing. This processing

is fairly fast compared to full disassembly with CFG recon-

struction, as it only consists of scanning the function for

references to optimized functions and updating them. The

references are updated in-place, which allows reducing pro-

cessing time and memory by skipping the code emission

phase for such functions.

Since the references that BOLT scans and updates are

located in the cold part of the code that is rarely or never

executed, it is natural to assume that updating them will not

affect the application’s performance. In practice, we have

seen this assumption be broken for applications that contain

startup code that initializes pointers to frequently executed

callback functions. For example, this can happen when the

application’s functionality is controlled via a configuration

file or command-line option. The initialization code is only

run once and thus unlikely to become registered with sample-

based profiling. If the reference in the initialization function

is not updated, then the runtime will invoke the original

function via the original function pointer. Thus, without

knowing the specifics of the application, Lightning BOLT by

default scans and patches all function references.

Note that function references discovered during the scan-

ning phase are often available to BOLT via relocations saved

in the binary by the linker. However, there are cases where

the necessary relocations are absent in the object files and

thus not exposed to the linker. Examples of these include

some program-counter-relative relocations used for call in-

structions. When a call instruction destination is present in

the same object file as the call instruction and its binding

rules are strict, the compiler may decide to process the re-

location internally and omit it from the object file. In such

case, neither the linker nor BOLT may know if the function

has a missing relocation and hence BOLT has to rely on

its scanning algorithm for all functions in the input binary.

If BOLT had the information about the original object file

section boundaries, it could use that to entirely skip such

sections if they contained no functions with profile data,

because references to functions external to these sections

must be visible to the linker. Unfortunately, the information

about input sections is not preserved by the linker.

Although the primary motivation for selective optimiza-

tions in Lightning BOLT was to reduce its processing time

andmemory overheads, this approach also helped to increase

Lightning BOLT’s robustness and applicability compared to

BOLT. BOLT sometimes is unable to optimize a binary, for

example, due to data embedded in the middle of the code1

or the use of new or exotic machine instructions that are

not supported by the disassembler yet. In such cases, BOLT

fails to disassemble the input binary and exits with an error

message pointing to the problematic piece of code. In con-

trast, Lightning BOLT is able to leverage its ability to skip

functions in the binary to successfully optimize the binary

even in cases it cannot properly disassemble some functions.

1For ARM processors, for which data is commonly embedded in the code,

the ABI requires the programs to clearly mark all data-in-code in the symbol

table, and BOLT relies on this information to correctly process ARMbinaries.
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Naturally, Lightning BOLT can skip processing those func-

tions, similar to how it skips functions regarded not worth

optimizing. However, a complication arises because these

functions still need to be scanned to update their references

to optimized functions, but this is not possible if the function

cannot be correctly disassembled. Lightning BOLT solves

this issue in the following way. For functions that are op-

timized, Lightning BOLT still preserves their original code

and patches entries with an unconditional jump to their new,

optimized location. This solution not only guarantees that

references in functions that cannot be correctly disassembled

and scanned still properly work, but it also ensures that, in

case such a reference is used to call the unoptimized version

of a function, the execution goes back to the optimized por-

tion of the binary. However, if the body of the function is

comparable to cache line size, BOLT can skip patching its

entries and keep two copies of the function. The reasoning

behind this logic is that, by the time the CPU has reached

the original entry point, it has already fetched most of the

function code from memory, and the benefit of executing the

optimized version will likely be lost completely or become

insignificant. When Lightning BOLT decides to keep both

copies of the function, skipping the patching process, it has

to duplicate the metadata for the function.

5 Evaluation

This section evaluates the impact of Lightning BOLT versus

BOLT, breaking down the impact of parallelization and selec-

tive optimizations. Furthermore, a study of Lightning BOLT’s

mechanism to trade performance of the output binary for

extra savings is also presented.

5.1 Workloads and Experimental Setup

We evaluated Lightning BOLT on both open-source work-

loads and very large binaries deployed at Facebook. As open-

source benchmarks, we used GCC 10 bootstrapped (built

with itself) and Clang 11 bootstrapped. The profiles for these

workloads were collected while using them to build Clang 11.

Lightning BOLT has already been upstreamed into the BOLT

project, so we built it using a recent BOLT rev (fab6ae4a2)

with Clang 11 and linked against jemalloc. Our experiments

were performed on an Intel Broadwell machine with 56 logi-

cal cores and 256 GB of RAM. All experiments that investi-

gate parallelism use 56 threads.

For data-center workloads, we used five binaries that are

widely deployed across Facebook’s data centers. The first

is Proxygen, a load balancer used to route requests coming

from outside the data center [23]. The second is Multifeed,

used to select what is shown in the Facebook News Feed.

The third is AdIndexer, used to select ads. The fourth is TAO,

a data caching service [6]. The last one is HHVM, the Hack

virtual machine that serves web requests for a large part of

2Available at https://github.com/facebookincubator/BOLT/commit/fab6ae4a.

Table 2. Statistics of input binaries used for evaluation.

Binary Code Hot code Functions Hot functions

Proxygen 222 MB 9 MB 435,281 12,469

Multifeed 570 MB 34 MB 633,943 31,628

AdIndexer 573 MB 24 MB 673,854 21,049

TAO 163 MB 6 MB 257,728 4,860

HHVM 107 MB 21 MB 194,763 16,574

GCC 18 MB 8 MB 39,965 10,629

Clang 49 MB 16 MB 79,021 16,737

Facebook’s products [1]. These binaries were selected be-

cause they are some of the largest ones built for Facebook’s

server fleet and better suited to study the scalability of BOLT

with respect to the size of the input. The open-source coun-

terparts, GCC and Clang, were selected because they are

large enough to suffer from problems of high i-cache misses

and branch mispredictions and therefore benefit from BOLT.

Table 2 shows the static code size and other statistics for this

set of applications.

5.2 Processing Time and Memory

The graphs in Figure 3 and Figure 4 present speedups in wall

time and reductions in peak memory consumption when

running Lightning BOLT with parallelization, with selective

optimizations and with both. The BOLT flags used for this

evaluation were the following:

-reorder-blocks=cache+ -reorder-functions=hfsort

-split-functions=3 -split-all-cold -icf=1

-split-eh -frame-opt=hot -no-threads -lite=0

For the Parallelization data set, we removed -no-threads;

for Selective Optimizations, we removed -lite=0; and for

Both, we removed both options. For example, for Proxygen,

Figure 3 shows that, compared to BOLT, Lightning BOLT

results in a 1.56× speedup using parallelization, 6.99× us-

ing selective optimizations, and a 8.51× speedup using both

techniques. Also for Proxygen, Figure 4 shows that there is

a small memory overhead of 1.2% in resident set size (RSS)

in order to support execution with multiple threads, but a

large 81.1% reduction in memory RSS once selective opti-

mizations are turned on. Overall, we observe an average

memory reduction of 70.5% and wall-time speedup of 4.71×

for Lightning BOLT when compared with BOLT across our

set of applications.

Table 2 helps to explain the gains observed from selec-

tive optimizations. For example, while Proxygen contains

435,281 functions that would need to be fully disassembled

and stored in memory, selective optimizations will only pro-

cess the 12,469 hot functions. This is a difference of 34.9×

in the number of functions processed, which translates to

Lightning BOLT being 6.99× faster while using about 1/5

of peak memory. The table also shows the size of all code

in the binary and the size of hot code, meaning how many

bytes of code are processed by BOLT versus Lightning BOLT.
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Figure 3. Wall time speedups when separately evaluating

the Lightning BOLT techniques of Parallelization, Selective

Optimizations, and Both. Baseline is regular BOLT.

For example, even though HHVM has an 11.7× reduction in

number of functions, the hot functions are larger than the

ones that are cold, so the ratio of total code size over hot

code size that is processed is 5×. Lightning BOLT can skip

processing these cold functions and cold bytes, but it still

has important work that cannot be skipped, such as reading

the full symbol table and identifying limits of every function

in the binary. Lightning BOLT also needs to scan references

from cold code to hot code that got optimized and update

these references as well. In Proxygen, for example, scanning

references can take up to 30% of the total time. This explains

why we do not necessarily observe the same reduction of

compute resources with respect to the reduction in number

of processed functions or bytes, although the scanning of

references can be optionally disabled (see Section 5.4 for a

comparison of tradeoffs).

Table 3 shows absolute numbers for average wall time and

peak memory RSS when using Lightning BOLT. This data

confirms that Lightning BOLT is able to process very large

binaries, containing up to 500MB of code, such as AdIndexer,

faster than the time required to run the compiler (thin)LTO

for these builds, which is in the order of tens of minutes and

up to one hour, depending on how engineers tune knobs

that control optimization passes. Currently, it takes about

30 minutes for Clang’s thinLTO to process AdIndexer and

about 10 minutes for GCC’s WHOPR to process HHVM. For

comparison, the time for LLD (a linker) to process Clang is 7s

with 470MB of peak RSS, although the linker is doing much

less work compared to BOLT.
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Figure 4. Memory reduction when separately evaluating

the Lightning BOLT techniques of Parallelization, Selective

Optimizations, and Both. Bars are calculated by 1 minus the

ratio of RSS of a specific mode over baseline BOLT.

Table 3. Absolute overheads for Lightning BOLT, with both

parallelization and selective optimizations.

Input binary Avg. wall time Avg. peak Memory RSS

Proxygen 72.6s 6.7 GB

Multifeed 168.3s 14.0 GB

AdIndexer 161.3s 12.9 GB

TAO 51.0s 4.6 GB

HHVM 54.7s 5.7 GB

GCC 19.5s 2.1 GB

Clang 29.8s 3.4 GB

5.3 Parallelization of Individual Passes

Figure 5 shows the speedups from parallelizing individual

passes in Lightning BOLT’s pipeline. The distribution of

time spent in each pass for a run while optimizing Clang in

sequential mode (regular BOLT) is shown in Table 4. From

this table, we gather that the most expensive pass in BOLT

is emit and link, which is responsible for calling LLVM’s

in-memory assembler to create an object file and ORC’s

runtime linker to link and resolve references in this object

file in memory. This pass cannot be easily parallelized. The

next most expensive pass is building CFGs for all functions

of the input, taking 16% of the execution time of BOLT for

this input, followed by ICF, taking 14%. Both of these are

parallelized and their speedups are reported in Figure 5. For

example, for Clang, we observe that parallelization brings a

2.2× speedup for ICF. The table also shows the distribution of

time after parallelization. Passes that cannot run in parallel
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Figure 5.Wall time speedups for selected passes when eval-

uating parallelization alone.

Table 4. Distribution of time spent in each step of BOLT in

a sequential run of 100.6s while optimizing Clang compared

with Lightning BOLT with parallelization alone. Passes that

did not execute for a significant portion of time are omitted.

Pass Wall time sequential Wall time threads

(% of total) (% of total)

Discover functions† 3% 5.4%

Disassemble functions† 8% 17%

Build CFG 16% 15.5%

Identical code folding 14% 10.5%

Reorder basic blocks 5% 0.5%

Split functions 5% 2.5%

Reorder functions† 1% 1.4%

Aligner 4% 0.25%

Frame analysis & opts. 12% 9.1%

Shrink wrapping 9% 1.4%

Emit & link† 21% 36.2%

†Pass is not parallelized

take a larger percentage of the total time and become larger

bottlenecks.

Reorder basic blocks is both expensive and easy to par-

allelize, so this pass observes bigger speedups in Figure 5.

Passes that run very fast or that frequently need synchro-

nizations observe smaller speedups. Very fast passes cannot

offset the overhead of distributing the work across threads.

With threads, one important resource that needs to be syn-

chronized in BOLT is access to LLVM’s MCContext, which

internally runs an allocator to store IR objects. Therefore,

passes that perform operations requiring instantiation by

MCContext suffer higher contention.

5.4 Trading Output Binary Performance for

Reduced Processing Overheads

This section evaluates Lightning BOLT’s mechanism to fur-

ther reduce its processing overheads by processing fewer

functions in the binary, and how this affects the performance

of the final binaries.

For this evaluation, we used the Clang-7 compiler as a

benchmark. The version of Clang used was bootstrapped in

default Release build mode. The resulting binary contained

37.53 MB of code. To measure the performance of the bi-

nary, we used a pre-processed C++ input file consisting of

over 268,000 lines of code and 7.34 MB in size. The file was

compiled with Clang-7 compiler using -std=c++11 -O2 -c

options, and the runtime was measured using Linux’s time

utility recording the elapsed real time. We collected Clang-7

profile when compiling the file, and used it and the following

options to optimize the compiler with BOLT:

-reorder-blocks=cache+ -reorder-functions=hfsort

-split-functions=1 -split-all-cold.

The runtime and memory of the BOLT command was

again measured with the time command recording elapsed

real time and maximum memory RSS. The new BOLTed

Clang-7 binary compiles the same input about 41% faster

compared to the bootstrapped Clang-7. We then added op-

tion -lite-threshold-pct=<N> to the set of BOLT options.

This option controls how many functions with profile data

are processed. The higher the threshold, the fewer functions

are processed and optimized. We gradually increased the

threshold, measuring Lightning BOLT’s processing time and

memory and running Clang-7 benchmark for every thresh-

old setting. The results are plotted in Figure 6. The baseline

is Lightning BOLT running without any threshold, i.e. pro-

cessing all functions with profile data. As the threshold in-

creases, the relative number of functions that are processed

is reduced, which is reflected on the X-axis of the graph.

Lightning BOLT’s runtime and memory decrease and reach

just below 50% of the baseline when 95% of the functions are

left unprocessed, or only 5% of functions are processed. The

graph in Figure 7 shows the speedup of the resulting Clang-7

binary. The more functions get dropped from processing,

the smaller the speedup is, reaching just 15% when only the

top 5% of functions are optimized. The curve shows a well-

defined knee around 65%. To further reduce processing time

and memory, we also introduced the -no-scan Lightning

BOLT option that disables the pass responsible for updat-

ing function references in unprocessed code. As a result,

all calls from unoptimized to optimized code incur an extra

jump overhead. The performance of Clang-7 binary opti-

mized in no-scan mode is only about 1% worse compared to

standard Lightning BOLT, i.e. when there is no optimization
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Figure 6. Improvements in Lightning BOLT runtime and

memory by gradually reducing the percentage of processed

functions. Colder functions are dropped first. No-Scan met-

rics measure disabling Lightning BOLT’s patching of unpro-

cessed functions to refer to the new location of optimized

functions.

threshold. As the percentage of processed functions drops,

the performance of no-scan binaries decreases noticeably

faster compared to the scan binaries. This trend is expected

as more and more calls to optimized code are executed from

unoptimized but profiled functions.

This experiment demonstrates how Lightning BOLT may

run almost twice faster while still producing a binary with

nearly identical performance. Trading off performance for

processing speed can be important in memory-constrained

environments that may prevent executing Lightning BOLT

in the default mode.

6 Related Work

This section describes previous work that more closely re-

lates to ours.

Previous work on static binary optimizers have focused

on the performance of the resulting binary, but not in the

performance of the binary optimizer themselves [7, 12, 15, 22,

25]. In this paper, we aimed at improving the performance of

binary optimization. Our work was motivated by large-scale,

data-center applications, which tend to be very large binaries

and challenging to build and optimize [13, 20]. Although we

have conducted our study in the context of BOLT [22], we

believe that our approach, based on parallelism and selective

optimizations, can also be used to improve the performance

of other binary optimizers.

Earlier research work on static compilers has leveraged

parallelism to speedup the compilation process, including

Gross et al. [11] and Wortman et al. [29]. Despite that, main-

stream compilers like GCC [10] and LLVM [14] are still

single-threaded, relying purely on process-level parallelism

0 20 40 60 80 100
0

10

20

30

40

% Hot Functions Not Processed

%
S
p
ee
d
u
p

Regular

No-Scan

Figure 7. Input binary (Clang) speedups over a version not

optimized by BOLT as we gradually reduce Lightning BOLT

coverage as a percentage of functions dropped from process-

ing. Colder functions are ignored first. No-Scan metrics mea-

sure Lightning BOLT disabling patching of colder functions

to refer to the new location of hot and optimized functions.

arising from the concurrent compilation of independent

source files [2]. Within the GCC project, the Parallel GCC

project aimed at speeding up compilation by leveraging mul-

tiple threads [3]. This effort has resulted in modest speedups

(9% using 8 cores), and it attests to the difficulties in paral-

lelizing an application as complex as a production-quality

compiler. Bernardino et al. [4] discusses in more detail some

of the difficulties faced in the Parallel GCC project.

In the context of dynamic compilation, previouswork have

relied on parallel compilation to reduce their overhead [5, 18,

21]. In dynamic-compilation systems, the compilation over-

head is extremely important because, until optimized code is

produced, the execution proceeds much slower by running

either unoptimized code or even an interpreter [18, 21]. In

these systems, compilation typically leverages multiple in-

dependent compilation units (typically methods) to exploit

parallelism, akin to the approach used in our work.

In addition to parallel compilation, our work also lever-

ages selective compilation to reduce compilation overheads.

Selective optimization is a common practice in dynamic com-

pilers because of the importance of compilation overheads

at runtime. For example, dynamic compilers typically have

multiple compilation tiers, so that the code is recompiled in

more optimized manners the more it executes [8, 18, 19, 21].

However, selective optimization is uncommon in static com-

pilers, where quality of the optimized code is regarded much

more important than the compilation overhead. The insight

of our work is that, for a static binary optimizer, selective

optimizations can effectively reduce compilation overheads

without degrading the quality of the resulting binary. This

advantage of binary optimizers over source-code compilers
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comes from the fact that a baseline version of the code is

readily available, so the binary optimizer can just fall back

to that. Special patching of the code that is not optimized

is still performed (as discussed in Section 4), but the over-

head of patching is much smaller than fully processing those

functions through the main optimization pipeline.

Motivated by BOLT [22], another project called Propeller

was recently started [28]. Tallam [26] reported significant

performance improvements from BOLT for Google’s large-

scale binaries. However, they also reported significant pro-

cessing time and memory overheads while applying BOLT to

their large-scale binaries. Propeller’s goal is to bring BOLT’s

optimizations to Google by leveraging their distributed build

system and link-time optimization framework [13]. In order

to do basic-block reordering at link time, Propeller requires

new basic-block sections, which require recompilation of the

application with special flags and linker changes, and can

also bloat the binary [26]. We believe that these are more in-

vasive changes andmake Propeller less applicable than BOLT,

because they are tied to a specific compiler (LLVM). Still, Pro-

peller proposes an interesting alternative design to reduce

BOLT’s processing overheads. Unfortunately, we have not

been able to properly optimize any interesting application

using Propeller. This appears to be because Propeller is still

under development and not ready for general use yet [27].

Although it will be interesting to perform direct compar-

isons between Propeller and Lightning BOLT at some point,

our work demonstrated that Lightning BOLT significantly

reduces BOLT’s overheads.

7 Conclusion

This paper described Lightning BOLT, an enhanced version

of the open-source, production-quality BOLT binary opti-

mizer. Lightning BOLT drastically reduces BOLT’s process-

ing time and memory overheads, while keeping the same

performance benefits provided by BOLT. To achieve this,

Lightning BOLT extends the BOLT binary optimizer with

parallel processing and selective optimizations. Our eval-

uation, using a collection of data-center and open-source

applications, demonstrates that Lightning BOLT provides

an average 4.71× speedup over BOLT, while also reducing

memory consumption by an average of 70.5%. Besides that,

Lightning BOLT also provides a controlled mechanism to

trade some performance of the optimized binary for further

reductions in processing overhead. Our evaluation showed

that this mechanism may further double the performance of

Lightning BOLT with minimal impact on the performance

of the resulting binary. Finally, in addition to the drastic

reductions in processing overheads, Lightning BOLT also

increases BOLT’s robustness and applicability, by enabling

the optimization of binaries even when they contain code

that cannot be correctly disassembled.
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