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Abstract—Data centers employ batteries for uninterruptible
operation during maintenance and power failures, for example,
when switching to diesel generator power after a utility power
failure. Depleted batteries start to recharge once the input
power is back, creating a sudden power spike in the power
hierarchy. If not properly controlled, a sustained power overload
can potentially trip circuit breakers, leading to service outages.
Power overloads due to battery recharging are even more likely
in oversubscribed data centers where the power infrastructure is
aggressively provisioned for high utilization. The problem caused
by simultaneous recharging of batteries in a data center has not
been extensively studied and no real-world solutions have been
proposed in the literature.

In this paper, we identify the problem due to battery recharg-
ing with case studies from Facebook’s data centers. We describe
the solutions we have developed to coordinate charging of
batteries without exceeding the circuit breaker power limit.
We explain in detail, the variable battery charging algorithm
built into the distributed battery charger hardware deployed
in Facebook data centers, and the system design considerations
necessary on a large scale. The new variable charger is able to
reduce battery recharge power by up to 80%. We further leverage
individual battery charging control mechanism to coordinate the
charging process such that we charge the batteries according
to priorities of applications running on the servers supported
by the batteries. We evaluate our coordinated priority-aware
battery charging algorithm by building a prototype in a Facebook
production data center as well as through simulation experiments
using production power traces. Our results show that we are able
to meet reliability service level agreements by using our battery
recharging algorithm, while satisfying given power constraints.

I. INTRODUCTION

The increasing popularity of Internet services such as social
media, search, online shopping, and content streaming, as well
as the industry’s migration towards cloud-based services has
accelerated the demand for data centers. Data centers need to
be highly reliable as services running on them are expected to
be always available and a power outage can incur significant
service interruption [17]. Indeed, redundant backup power
infrastructure, such as diesel generators and uninterruptible
power supply (UPS) with batteries, are built into the data
center to ensure that power to the IT equipment (servers,
storage, and network switches) inside the data center is always
available.

In case of a utility power failure, the switch over from
utility to diesel generator generally takes 10 to 20 seconds.
Such brief power failures also happen during maintenance,
when switching from a normal power source to a reserve

power source, in data centers with redundant power supply
devices for higher reliability (tier III/IV data centers [3]).
Batteries are designed to power the IT equipment without
any interruption during such transitions. Batteries may be
centrally located at the generator level or distributed across
the power hierarchy as in the case with modern data centers.
For example, Facebook [37], Google [50], and Microsoft
[12], [44] data centers have distributed batteries at the rack
level. Advantages of having distributed batteries, in contrast
to having a centralized UPS is that they are more efficient
(no AC-DC-AC double conversions), more fault tolerant (no
single point of failure), and scale naturally with the number of
IT equipment/racks deployed. Batteries ensure that there is no
downtime during brief power source switches or failures. Once
the input power is back, the depleted batteries start to recharge.
The additional power draw to recharge the battery can create a
sudden power spike in the data center power hierarchy. In the
case of Facebook data centers, we have found that the battery
recharge power spike can be up to 25% of the server power
consumption and last for more than 30 minutes. If the power
consumption by servers is already high, the power spike due to
battery recharging can create a sustained power overloading
(power draw exceeding the power limit) of circuit breakers,
potentially tripping them. For example, a 30% power overdraw
at a circuit breaker for more than 30 seconds could trip it
[47] causing a serious power outage and service disruption.
Interestingly, batteries which are supposed to prevent power
outages can themselves be the cause of subsequent power
outages.

An approach to account for battery recharge power is to
statically allocate and reserve the power hierarchy for the
anticipated worst-case battery recharge scenario. However, this
is expensive (data center power infrastructure usually costs
$10-$20 per Watt [10], [20] to build) and wasteful as we
may have to allocate 25% of the data center power budget
for battery recharge power which will be stranded most of the
time. In contrast, since data center power is a scarce resource,
power is generally oversubscribed to increase the average
utilization of the power infrastructure and better amortizes
the high capital expense as well as time overhead of building
the data center [9], [21], [36], [47]. Power oversubscription
refers to the deployment of more IT equipment under a circuit
breaker than allowed by its power limit. The problem due to
battery recharge is even more severe in oversubscribed data



centers where power utilization is generally high.

Another approach to this problem is to reduce the server
power during the battery recharge period, for example, through
power capping of servers [19], [33] or by suspending low
priority jobs [36], to make room for the battery recharge
power. However, such server power reduction leads to service
performance degradation. Alternative to server power capping,
we have developed a new variable battery charging mechanism
into our distributed batteries whereby the batteries recharge
at a rate proportional to the energy discharged from them.
In addition, we have also developed a control mechanism
into the battery chargers to manually override the charging
current. This allows software control policies to be developed
for coordinated charging of distributed batteries.

Existing works that have explored battery charging and dis-
charging in the data center have mostly focused on peak power
shaving [1], [2], [5], [12], [13], [18], [26], [27], [40]. These
works dual-purpose the battery, that was originally designed
to provide backup power during brief power failures, to be
used during peak power demand for cost savings. However,
the problem due to battery recharging has been largely ignored
in the literature. In this paper, we tackle the problem of battery
recharging and make the following main contributions:

1) We identify the problem created by recharging of dis-
tributed batteries, especially in aggressively oversub-
scribed data centers.

2) We design a new variable battery charger hardware
mechanism, which reduces the battery charging power
significantly while meeting the charging time con-
straints.

3) We deploy and evaluate the variable battery charger in
real production data centers.

4) Finally, we propose a first software-based coordinated
priority-aware battery charging algorithm, which takes
data centers’ power availability as well as service pri-
orities into consideration, and evaluate it by building
a prototype as well as through simulations using real
production power traces.

II. BACKGROUND

In this section, we describe the data center power hierarchy
and its oversubscription. We then define/discuss about open
transition and how they result into the battery recharge prob-
lem along with a couple of case studies.

A. Data Center Power Hierarchy

We describe the power hierarchy of a typical data center
at Facebook built according to the Open Compute Project
[29] design. As shown in Fig. 1, power from the local utility
arrives at an on-site substation where high-voltage to medium-
voltage transformation takes place. Medium-voltage switch
gears (MSG) then distributes power to different buildings (a
site typically can have several data center buildings). Each data
center building is designed for 30 MW of critical power (for
IT load) and is divided into four suites (server rooms), each of
7.5 MW capacity, which has servers, storage, and networking
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Fig. 1. Power hierarchy of a typical Facebook data center.

equipment arranged in rows of racks. A suite has multiple
levels of circuit breakers, forming a power hierarchy tree, to
distribute power to individual racks. At the top level is the
main switch board (MSB) which has input from the utility
(via a medium-to-low-voltage transformer), a backup diesel
generator, and a reserve MSB (MSB-R). A typical suite is
powered by several MSBs, each rated at 2.5 MW of critical
power. The backup diesel generator is automatically used in
case the utility power fails. The MSB-R is used in case an
MSB needs to be disconnected from the critical power path
for maintenance or in case the MSB fails. An MSB supplies
power to 2 to 4 switch boards (SB) rated at 1.25 MW of critical
power. The MSB-R also powers the reserve SBs (SB-R).
MSB-R and SB-R are redundant components (providing N+1
redundancy), generally used during maintenance to isolate
other circuit breakers from the power path.

SBs in turn provide power to 190 kW reactor power panels
(RPP) located at the end of each row which supplies power to
the row through an overhead busway. Racks (rated at 12.6 kW)
in a row connect to the overhead busway through a tap box.
A rack has two independent power zones, each with a power
self containing 3 power supply units (PSU). PSU converts the
input AC power to DC power appropriate for the IT equipment
in the rack. Each PSU is also connected to a battery backup
unit (BBU) below it, which is utilized when the input power
to the rack fails. PSU starts charging the discharged batteries
once the input power is back. BBUs are sized to provide up
to 90 seconds of power to the rack.

B. Power Oversubscription and Dynamo

Allocating the power budget of a data center according to
the nameplate rating (maximum power draw) of servers is
wasteful since servers do not consume peak power all the
time. Server power varies with its utilization which generally



exhibit diurnal and weekly cycles. The probability of a group
of servers reaching the aggregate peak power (every server
consuming peak power simultaneously) is even lower because
of statistical multiplexing of individual server power [8], [36].
Furthermore, data centers are expensive and time consuming to
build. These factors motivate a data center operator to over-
subscribe their facility. For example, Facebook data centers
are built for 30 MW of IT load. Given that a rack is rated
at 12.6 kW, a data center can accommodate only 2,380 racks.
However, we aggressively deploy much more racks into these
data centers due to the rapid growth in computing needs over
the last several years. Looking at the 20 largest Facebook data
centers, we find that we have, on average, 47% more racks
inside the data center, with one data center oversubscribed by
as high as 70%.

Power oversubscription enables efficient use of our data
centers. However, there is always a risk of reaching different
“choke points” of the power infrastructure [36] — for example,
overloading circuit breakers (MSB, SB, and RPP) and tripping
them. Some kind of peak power capping system is required
to prevent peak aggregate power and ensure safe power over-
subscription. In our data centers, we use Dynamo [47], a real-
time power monitoring and control system, to prevent tripping
of circuit breakers that leads to extended power outages.
Dynamo monitors the power consumption of each server as
well as all the circuit breakers at multiple levels in a data
center. Upon detecting a power overload at a particular circuit
breaker, Dynamo automatically caps the power consumption
of servers (according to priority of services running on those
servers) under the overloaded circuit breaker, protecting it
from tripping. Interested readers can refer to [47] for further
details regarding Dynamo.

C. Open Transition and Power Outage

Typical tier IIT and tier IV data centers (most of the commer-
cial data centers, including Facebook data centers) have redun-
dancy built into the power infrastructure for high availability
of power [3]. In addition to diesel generators providing backup
power during utility failure, each level of the power delivery
hierarchy can have redundant components (an alternate power
path) which enables maintenance of different power devices
without any downtime. For example, at Facebook data centers,
MSG are 2N redundant while MSB and SB are N+1 redundant.
During the maintenance of an MSB (or SB/RPP), it is removed
(de-energized) from the critical power path and replaced by
MSB-R (or SB-R). The switch over from the primary power
device to the reserve power device (and vice versa), causes
a brief power unavailability for the subset of racks that draw
power from the component undergoing maintenance. We refer
to the short power unavailability, usually caused by the transfer
of electrical power from one source to another, as open
transition.

During an open transition, the input power is not available
and IT equipment must rely on energy storage devices, such as
batteries, for continuous power supply. Once the input power
is back, the depleted batteries need to recharge which can

2 « ke duoto
=70 r battery recharge
é 68
Seo |
£ g4 | Drief utility outage

62

60 . .

6:00 PM
Time

7:00 PM 8:00 PM

Fig. 2. A brief utility outage in a data center region causes the batteries in
the entire region to recharge leading to a sudden power spike of 9.3 MW.

be a source of sudden power spike in the power hierarchy,
lasting for several minutes (as discussed next in our case
studies). In concurrently maintainable data centers, there are
open transitions due to planned preventive/corrective mainte-
nance, or unexpected utility power failures. Open transition
can occur at different levels (RPP, SB, MSB, MSG, etc.) in
the power hierarchy, or even at multiple data center levels
during utility failure or substation maintenance (transient loss
of utility power or switching over from the utility feed to
the generators). If a newly constructed data center building
is being added to an existing site, MSG/substation level
open transitions are usually needed on remaining buildings to
“merge” the load. Furthermore, open transitions are frequent
events. Power devices undergo annual preventive maintenance,
as well as any corrective maintenance if an immediate fix is
needed. For example, with hundreds of MSB across Facebook
data centers, an MSB level open transition takes place almost
every workday. Hence, open transitions are the norm rather
than an exception in large scale data centers.

An open transition, which generally lasts for under a minute,
is different from a power outage. Power outages are rare
instances (such as, tripping of circuit breakers, or, diesel
generators failing to start during an open transition) when the
IT equipment in the racks lose power, potentially leading to
service disruption. Similar to open transition, power outages
can also occur at different levels in the power hierarchy,
however, unlike open transition, power outages are production
impacting incidents and generally last for hours.

D. Battery Recharging Case Studies

We discuss two recent events where battery recharging has
caused problems in our data centers.

Case I - Utility outage during a thunderstorm: In August
of 2019, a series of thunderstorms in one of the Facebook data
center regions caused a brief utility power failure. The utility
had a brief voltage sag for less than one second (a very short
black out) so no diesel generators were engaged. However,
during the brief loss of AC power, racks in three data centers
fell back to battery power and started charging them after the
utility power was back. Fig. 2 shows the total IT load of the
region during the time period. The power consumption was
61.6 MW just before the utility outage. We can see in Fig. 2,
a sudden power spike of about 9.3 MW (15% increase) due
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Fig. 3. Charging of a battery backup unit (BBU) after a full 90 seconds
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to the recharging of batteries (we explain why this happens
when we describe the battery charger in Section III) occurred
immediately after the utility outage, which lasted for about 25
minute. Multiple circuit breakers within the three data centers
reached their power limit, but Dynamo immediately capped
servers under the overloaded circuit breakers to prevent them
from tripping, preventing a potential regional outage.

Case II — Substation maintenance gone wrong: During
a planned maintenance in September of 2019, at a substation
of a data center region, maintenance personnel misidentified
the component to work on and accidentally tripped a circuit
breaker feeding power to one of the data center buildings.
Due to the loss of utility feed, all MSBs within the data
center carrying the IT load, automatically switched to their
corresponding backup diesel generators. Battery recharging
after the open transition caused the power on each MSB to
suddenly increase by more than 20% from their existing levels.
Once again, Dynamo had to step in and prevent a potential data
center outage. More than ten thousand servers had to be power
capped (causing large service degradation) to prevent circuit
breakers at different levels from tripping.

In both of the case studies above, a recurring theme is
that an open transition causes power consumption to spike
due to recharging of batteries. The power spike is significant
enough to trip circuit breakers. Fortunately, the safety net
provided by Dynamo prevents such outages by power capping
servers. However, throttling of servers causes degradation in
their performance. In the next section, we discuss in detail
the battery recharging process and a new variable charger
we designed and deployed to tackle this problem. The new
variable charger reduces battery recharging power according to
the depth of battery discharge. It also allows software control
of the battery charging rate, such that, in case of a power
overload due to battery recharging, we can throttle the battery
recharging power, rather than the server power, to prevent
outages without any impact on service performance.

III. BATTERY DESIGN

A. Original Battery Charger

The server racks at Facebook data centers are designed
for a maximum IT load of 12.6 kW according to the Open
Compute Project’s Open Rack V2 design specification [30].
The rack is divided into two identical power zones, each of
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Fig. 4. Recharge power versus time for different depth of discharge (DOD)
of the BBU.

which is powered by 3 power supply units (PSU) connected
to corresponding 3 battery backup units (BBU) in a 2+1
redundant architecture. BBUs are designed to handle open
transitions (generally less than 45 seconds). When the rack
input power is lost (mostly caused by open transitions), BBUs
are discharged by the PSUs to maintain the IT load, for up to
90 seconds. The service level agreement (SLA) that the BBU
needs to meet is to be able to power the racks for up to 90
seconds in the worst-case discharge scenario of peak power
draw by the servers.

We use Li-ion batteries to meet our battery requirement,
due to their high-power discharge, high energy density, and
long cycle life [34]. The charging and discharging of BBU is
done by the corresponding PSU. Li-ion batteries are generally
charged using a two-step, constant current-constant voltage
(CC-CV), method [39]. The battery is initially charged using
a constant current (CC) up to a predefined voltage and then
charged using a constant voltage (CV) until the charging
current drops below a predefined current. Fig. 3 shows the
charging process of a BBU after a full discharge'. We can
see that the charger in the PSU initially charges the BBU at
a constant 5 A charging current in the CC mode until the
BBU voltage increases to 52 V. This takes about 20 minutes.
The design choice of a constant 5 A charging current for the
CC mode of BBU recharging was based on the fact that it
is an ideal charge rate for the Li-ion cells and a simple Li-
ion battery charger would suffice to charge the BBU. After
the CC mode, the charger transitions to the CV mode where
it maintains a constant voltage of 52.5 V until the charging
current drops below 400 mA. The charging current decays
rapidly in the CV mode and the entire charging sequence is
complete in about 36 minutes as shown in Fig. 3.

The BBU recharge power profile over time for different
depth of discharge (DOD) is shown in Fig. 4. As expected,
the time to fully charge the BBU decreases with its DOD. Two
interesting observations can be made here:

1) The decrease in total charge time is primarily due to
the shortening of the CC phase of the charging process
while the difference in time spent in the CV phase, for
different DOD, is small (less than 4 minutes).

I'We refer to the discharge of a BBU at 3,300 W of IT load for 90 seconds
as a full discharge or 100% depth of discharge (DOD). In our lab experiments,
we vary the DOD of BBU (energy discharged from BBU) by varying the time
we discharge it.
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2) The initial charging power is about 260 W and is
independent of the DOD of the battery. This is because
the charger always starts charging in the CC mode before
transitioning to the CV mode.

The initial recharge power for a rack can be up to 1.9 kW
(6 BBUs per rack and including electrical losses), which is
25% of the power budget for most racks (all racks have an
assigned statistically expected “power budget” according to the
number/type of servers and services running on them, which
is usually lower than the maximum power consumption of
12.6 kW). Furthermore, the fact that charging always starts at
the maximum rate, even for short discharge (as shown in Fig.
4), result in the worst-case battery recharge power every time.
Budgeting for the battery recharge power at each rack would
require up to 25% more data center power capacity, which
would have been left stranded most of the time.

In practice, we usually do not encounter a full BBU dis-
charge due to (1) shorter discharge time: almost all open
transitions are less than 45 seconds long, and (2) lower
discharge rate: battery discharge rate depends on rack IT
load during the discharge event which may be lower than
the peak power. But the fact that battery recharge power
peaks despite the DOD causes problems. Thus, we revisit
our original battery charger design to develop a new variable
charger which charges according to the DOD of the battery.

B. Variable Charger Design

A problem with the original battery charger is that the BBU
is charged at the maximum power (5 A current) regardless of
the amount of energy discharged from the BBU. Since a static
power budget allocation for BBU recharge power is expensive
and wasteful, we do not budget for the battery recharge power
into the rack power budget. The power to recharge the BBU
may not be available (due to high power utilization from IT
load) at the time when the battery begins to charge after a
power loss. The additional recharge power can overload the
circuit breaker, leading to server power capping as illustrated
in our case studies in Section II-D. Next, we explore charging
batteries with lower charging current in an effort to decrease
the battery recharge power.

In our lab, we experiment with different initial CC mode
charging current of the BBU to study its impact on charging
time and recharge power. We find that the maximum recharge
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Fig. 6. (a) Flowchart of the variable current CC-CV charging logic for BBU.
(b) Selection of the CC mode charging current according to the depth of
discharge of the BBU as given by Eq. (1).

power decreases in proportion to the decrease in charging
current with the trade-off that the time to fully charge the
BBU is increased. Fig. 5 shows the charging time for different
DOD of BBU when using a charging current from 1 A to 5 A.
We observe that the time to charge a BBU decreases with
(1) the decreasing DOD of the BBU and (2) the increasing
charging current. We further observe that the charging time
remains constant below a certain DOD (for example, below
22% DOD). This is due to the fact that BBUs are charged in
mostly CV mode for lower DOD where change in charging
time is very small. We also observe that 1 A charging current
has a considerably high charging time since we are charging
at a very low rate. We do not experiment with charging current
less than 1 A as it is the lower end of the recommended
constant current charging range for Li-ion batteries [6].

In our experiments, we found that the worst-case charge
time for the original 5 A charger is within 45 minutes. We
proceed to design the new variable charger with the objective
to always charge the battery within the 45 minutes time period.
Experiment results in Fig. 5 show that, to keep the charging
time within 45 minutes, we can use a lower charging current if
the DOD is less than the fully discharged case. For example,
if the BBU is 70% discharged, a 4 A charging current could
charge the BBU back in 40 minutes, while if the BBU was
less than 50% discharged, a 2 A charging current would suffice
to charge it back at around the same time. Based upon this
observation, we come up with a linear formula to calculate the
initial charging current depending upon the depth of discharge
of the BBU, such that the charging time is within the 45
minutes bound, as

I {2 + (DOD — 0.5) x 6 if DOD > 50%

. (D
2 if DOD < 50%.

where I is the charging current (in Ampere) and DOD is the
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depth of discharge of the BBU. We limit the charging current
to a minimum of 2 A for DOD less than 50% and linearly
increase the charging current up to 5 A for DOD greater than
50% as shown in Fig. 6 (b). The overall variable charging
logic is shown in the flowchart in Fig. 6 (a) where I¢ and Vo
are the charging current and voltage respectively.

Manual override: The new variable charger calculates the
energy discharged from the BBU during a discharge event
and automatically sets the charging current between 2 A to
5 A depending on the DOD of the battery. The recharge
power is decreased by as much as 60% (if DOD is less than
50%). In addition to the automatic behavior, we add a manual
override feature to the battery charger to set the charging
current between 1 A and 5 A, whereby a power monitoring
and control system (like Dynamo) can set the charging current.

Production validation: To validate the functionality of the
variable charger, the RPP circuit breaker powering a test row
was manually opened for 60 seconds and closed back, causing
an open transition for all the 14 racks in the row. The power
consumption of the RPP (sum of input power to the racks)
during the test is shown in Fig. 7. Since the BBUs in the racks
were discharged by less than 50% (20% DOD on average),
they started charging at 2 A. The power use increased by
about 10 kW due to the recharging of the BBUs. If it had
been the original charger, the power spike would have been
more than 26 kW. The new variable charger was able to
reduce the battery recharging power by 60% while charging
the BBUs back in about 45 minutes. We have already deployed
the variable charger to our production data centers and it has
helped us in carrying out regular data center maintenance with
much greater ease.

IV. COORDINATED BATTERY CHARGING

The new variable charger is able to lower the battery
recharge power for most cases. However, the decision to select
the BBU charging current is made locally at the rack level
by measuring the DOD of the battery, independent of the
aggregated power use at the circuit breakers. We need a higher-
level coordination for two major reasons. First, the locally
selected charging current can still overload the circuit breakers.
We need coordination to charge the rack batteries by taking
the power constraint at circuit breakers into consideration,
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Fig. 8. (a) State transition diagram of batteries in the rack. (b) Major
components in the critical power path to a rack.

such that we avoid power overloading or capping as much as
possible. Second, different racks can have different priorities
due to the importance of services running on them. For
example, racks running stateful workloads (such as database
servers) require much stronger power availability guarantee,
preferably having battery backup power source ready all
the time. On the contrary, racks running stateless compute
workloads (such as web services) may not require such strong
guarantee. If we have to reduce the battery charging current
to avoid overloading of circuit breakers, we may want to
reduce or even postpone charging current of lower priority
racks before impacting higher priority racks.

We categorize racks into three priorities, P1 (high), P2
(medium), and P3 (low) based upon the services running on
them. Rather than charging all the racks the same way, we
define different charging time SLA for the racks based upon
their priority, to meet certain reliability goals.

A. Reliability of Racks

A key question we need to answer is: How does the charging
time of batteries impact the reliability of racks? Services at
Facebook are designed around the BBU being able to power
the racks for 90 seconds in case of a power loss. For example,
if the input power to a rack is lost and not restored within
45 seconds, services prepare for the power outage, such as,
by flushing kernel buffers to disk, re-routing web requests, or
promoting master database shard away from affected servers.
If batteries are in the charging process, meeting the SLA of
90 seconds of power is not guaranteed in case of an open
transition or a power outage, which can lead to the services
being in an inconsistent state. Hence, for the rack to have
battery redundancy, the battery must be fully charged. We
quantify this through the availability of redundancy (AOR)
metric, the fraction of time the rack battery is fully charged.

BBU in the racks could be in one of the four states, fully
charged, charging, discharging, or fully discharged, and the
transition between these states is as shown in Fig. 8 (a). To
measure AOR, we would need to know the time spent in each
state, which depends upon (1) the frequency of rack input



power loss, (2) the duration of the power loss, and (3) the
time to charge the battery. Major components in the critical
power path to the rack are shown in Fig. 8 (b) and a rack will
lose power if any of the components fail. Next, we measure the
mean time between failure (MTBF)?> and mean time to repair
(MTTR) for the different ways in which the components in
the power path may fail by studying the past maintenance and
outage data from 2017 to 2019. The failure of rack input power
can be categorized into the following four major types.

1) Utility failure: Whenever the utility power fails, racks
lose power during the open transition from the utility to
the diesel generator and again during the back transition
(from the diesel generator to the utility), once the utility
power is back. We use the MTBF and MTTR of the
industrial utility supply from the IEEE standards [16].

2) Corrective maintenance: Corrective maintenance work
at various levels in the data center power hierarchy is
needed to ensure smooth and safe operation. Most of
the power devices in Facebook data center have N+1
redundancy and maintenance work requires an open
transition from the primary to the reserve power device
with another back transition to the primary power device
after the maintenance is complete.

3) Annual maintenance: In addition to corrective mainte-
nance, periodic preventive maintenance is carried out
annually for MSB, SB, and RPP.

4) Power outages: While all three failure types described
above result in brief rack input power loss, the servers
are unaffected as batteries power them during the open
transition. However, there are rare power outages for the
IT equipment causing service disruption. Power outages
usually happen at the MSB, SB, or RPP level (failures
above MSB would cause the generators backing the
MSB to take over the load).

The MTBF and MTTR of the different components per
failure type is summarized in Table I.

Monte Carlo simulation: Considering each component and
failure type as an independent block in a series system, we
can simulate the state transition diagram in Fig. 8 (a) through
Monte Carlo methods to calculate the AOR of rack power as
the fraction of time we are in the fully charged state. We use
the failure/repair data in Table I to model rack input power
failures/repairs. We assume that all failures and repairs are
independent and exponentially distributed as done in prior
research [11], [41], except for annual maintenance, which we
model as normally distributed with ;1 = 1 year and 0% = 41
days (from maintenance dataset). Note that utility failure and
maintenance results in at least two open transitions, one when
the utility fails/maintenance starts, and another when the utility
is back/maintenance completes, while power outages result
in an extended period of rack input power loss until repair

2All MTBEF are calculated by normalizing the number of failures observed
by the total number of components during the observation period. For
example, if 1 out of 10 MSB fails during an observation period of 1 year,
MTBF for MSBs will be 10 years.

TABLE I
COMPONENT FAILURE AND REPAIR TIMES.

Failure type Component MTBF MTTR
(hours) (hours)
Utility failure Utility [16] 6.39 x 103 0.6
Sub/MSG 5.87 x 10* 8.0
Corrective MSB 4.12 x 104 20.2
maintenance SB 1.51 x 10° 8.7
RPP 6.31 x 10° 5.5
Annual MSB 8.76 x 103 12.8
maintenance SB 8.76 x 103 7.4
RPP 8.76 x 103 9.9
MSB 2.93 x 10° 6.4
Power outage SB 5.20 x 10° 4.6
RPP 6.25 x 106 10.9
. g 99.98% <6
>< 99.94% £ P1 (30 min)
= 3 99.90% £4r P2 (60 min)
_§§ 99.86% o ) )
23 99.82% | S X
[ 99.78% i i i g o P3 (90 min)
0 05 1 15 2 0% 25% 50% 75% 100%

Battery charging time (hours) Depth of discharge

(@) (b)

Fig. 9. (a) Availability of redundancy (AOR) of rack power for different
battery charging times. (b) Charging current required to satisfy the SLA for
the three rack priorities, according to the depth of discharge of the BBU.

is complete. We assume open transitions to be exponentially
distributed with a mean of 45 seconds.

We simulate failures and repairs for 10° years and repeat
the simulation for different battery charge times. Results are
shown in Fig. 9 (a) where we can observe that the AOR
decreases linearly as battery charging time increases. With this
observation, we assign each rack priority a target AOR value
and the corresponding battery charging time SLA as shown
in Table II. For example, P1 racks are the highest priority
and the SLA is to charge the batteries within 30 minutes
which will ensure that the racks will meet AOR of 99.94%.
Our choice of the AOR value for the racks is limited by the
current battery charger design (hardware limitation), which can
charge between the range of 1 A and 5 A charging current. In
the future, we plan to explore postponing of battery charging,
which would allow us to further relax the AOR for lower

TABLE II
CHARGING TIME SLA FOR DIFFERENT RACK PRIORITY.

Rack priority AOR Loss of redundancy  Charging
(hr/year) time SLA
P1 (high) 99.94%  5.26 30 minutes
P2 (normal) 99.90% 8.76 60 minutes
P3 (low) 99.85% 13.14 90 minutes




priority racks. The general solution framework presented in
this paper would apply to future cases, regardless of the AOR
values or the number of rack priority levels.

We can calculate the charging current required to meet the
charging time SLA for the three rack priorities, according to
the DOD of BBU, by linearly interpolating the BBU charging
time data in Fig. 5, as shown in Fig. 9 (b).

B. Coordinated Control Architecture

In an effort to coordinate the battery charging process, we
add functionality to the existing Dynamo architecture. Dynamo
primarily consists of a light-weight agent, which runs on
every server, and a set of distributed controllers mirroring
the power hierarchy, which monitors the power form every
server as well as circuit breakers in the power hierarchy.
Dynamo agents can read server power as well as perform
power capping/uncapping upon request. The lowest level of
controllers, the leaf-controller, is responsible for protecting the
RPP (lowest level circuit breaker). There is a leaf-controller for
every RPP that directly communicates with agents under that
RPP to continuously monitor the aggregate server power (as
well as read directly from the RPP power meter) and compare
against the power limit of RPP to detect overloading. Upper-
level controllers (that protect MSB and SB) communicate with
leaf-controllers to aggregate power at the corresponding circuit
breaker. Whenever a controller detects a power overload, it
issues server power capping requests to agents under the circuit
break to prevent it from tripping. Following functionality and
control logic were added to the Dynamo architecture, such
that, in the case of power overloading caused due to battery
charging, we can reduce the battery recharge power as a first
line of defense before taking the more aggressive step of
capping servers that impact service performance.

Dynamo agent: We built a new type of Dynamo agent that
runs on the top-of-rack (TOR) switch in each rack. It can
communicate with the power supply units (PSU) in the rack
to read the input and output power (IT load) of the rack as
well as charging/discharging power of BBU. The agent can
also issue a manual override command to the PSU to change
the charging current between 1 A and 5 A, as allowed by the
new variable charger. The agent by itself does not perform any
action but acts as a request handler waiting for the controller
to issue the read/write commands.

Dynamo controller: The leaf-controller reads in additional
information, such as, rack power and BBU recharging power,
from the agents running on the TOR switch. The controller
can detect loss of input power during open transition and the
power BBUs recharge at. The DOD of the battery is estimated
from the length of the open transition and IT load of the rack
during the power loss. Additionally, all controllers also keep
track of the priority of racks under the circuit breaker.

C. Priority-aware Charging Algorithm

Our goal is to meet the charging time SLA for all the
racks, during a battery charging event. Fig. 9 (b) shows the
current a rack needs to be charged at, to meet the charging

time SLA, depending upon the DOD of the battery as well as
the rack priority. However, more importantly, we need to also
make sure that we do not overload the circuit breaker when
charging the rack batteries. Hence, we design a new priority-
aware control policy to satisfy the charging time SLA for the
racks as long as there is available power to meet the demand
(we refer to the difference between the power limit and the
power use of a circuit breaker as available power).

During a battery discharge event, due to rack input power
loss, the leaf-controller monitors the IT load of the racks and
calculates the energy discharged (DOD of batteries) from each
rack under it. At the beginning of the charging sequence, the
controller calculates the SLA charging current for all racks
based upon the DOD of the battery and the rack priority
as shown in Fig. 9 (b). Starting from the rack with the
highest priority and lowest DOD, we satisfy the SLA charging
current for the rack as long as there is available power. This
order ensures that SLA for higher priority racks are met
first while maximizing the number of racks that meet the
SLA within the same priority group (since a rack with the
lowest DOD will require the lowest charging current to meet
the SLA). Our highest-priority-lowest-discharge-first battery
charging algorithm is summarized in Algorithm 1. Finally, the
charging current overrides are sent to the corresponding racks.

The initial charging current calculation (using Algorithm 1)
and setting of charging current would be done by the leaf-
controller. However, the leaf-controllers as well as the upper-
level controllers would all monitor the power use of their
corresponding circuit breaker for the entire charging period.
If a power overload is detected, the controller starts setting
the charging current to the minimum of 1 A for racks in the
reverse (lowest-priority-highest-discharge-first) order. In the
extreme event that the overloading of circuit breakers cannot
be avoided even after charging all the racks at the minimum
charging current, as a last resort, we start capping servers to
reduce the IT load and prevent circuit breakers from tripping.

Algorithm 1 Highest-priority-lowest-discharge-first battery
charging algorithm
Input: Available power, Battery DOD/priority of all racks
Qutput: Charging current for all racks
1: for all racks do
2:  Initialize the charging current to the minimum of 1 A
3:  Calculate the SLA charging current from DOD and rack
priority as shown in Fig. 9 (b)
end for
Sort the racks according to priority and then by DOD
while available power > 0 do
Satisfy the SLA for the rack with the next highest
priority and lowest energy discharge by setting its
charging current as calculated in step 3
8: end while
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Fig. 10. Battery recharge power of 17 racks in a test row after an open
transition.

V. EVALUATION

We have built a working prototype system in a production
data center (which will be deployed across all data centers after
further testing and validation). We present results from this real
prototype system. Furthermore, we evaluate our priority-aware
battery charging algorithm through simulation using real rack
power traces from a production data center.

A. Prototype Experiment

The Dynamo agent that runs on the TOR switch of every
rack can read different types of power readings from the
PSUs in the rack. In racks with the new variable battery
charger, the agent can also override the charging current for
the BBUs. In this experiment, we demonstrate the working of
a prototype Dynamo controller that we have built. We have
an experimental Dynamo controller setup in a data center
suite whose SBs are going to be transferred from the reserve
MSB to the normal MSB after the completion of a planned
maintenance.

Fig. 10 shows the battery recharging power of racks in a
row being monitored by a leaf-controller. The leaf-controller
is monitoring and protecting an RPP that powers the row.
This particular row has 9 P1 racks, 5 P2 racks, and 3 P3
racks, for a total of 17 racks. The open transition occurred
at 09:43 AM for about 5 seconds and the DOD of BBU in
the racks was less than 5%. All 17 racks started charging at
the 2 A charging current, the default current selected by the
new variable charger. However, almost immediately, the leaf-
controller calculates the SLA charging current for all the racks
according to their priority, which in this case is 2 A for P1
racks and 1 A for P2 and P3 racks (from Fig. 9 (b)). Since,
the power consumption at RPP is not constrained, the leaf-
controller overrides all racks with the calculated SLA charging
current. As shown in Fig. 10, P1 racks are charging at 2 A
(about 700 W recharge power) while P2 and P3 racks are
charging at 1 A (about 350 W recharge power). Also, the P1
racks complete the charging process in about 30 minutes while
the P2 and P3 racks are fully charged within an hour.

A more fine-grain power reading of BBU recharge power
from one of the racks that gets overridden with 1 A charging
current is shown in Fig. 11. The open transition starts at 35
seconds, which is detected by the leaf-controller from the rack
input power going to zero (not shown in the figure). Upon
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Fig. 11. Battery recharge power of a rack undergoing override of the BBU
charging current from the leaf-controller.

detecting the first BBU recharge power, the leaf-controller
performs the SLA charging current calculation and overrides
the BBU charging current. We can see that the BBU power
stabilizes to the override value after about 20 seconds of the
command being issued.

B. Simulation Experiment

The prototype experiment we carried out above during a
planned maintenance event, represents a normal operation
scenario. However, many corner case scenarios (for example,
scenarios leading to deeper battery discharge, or extreme
power constraints) rarely happen in production data center
environments and are difficult and/or risky to recreate in a
production environment. Thus, through simulation, we perform
a more comprehensive evaluation and also compare the results
of the original 5 A charger, the new variable charger, and the
coordinated priority-aware charging.

1) Experimental setup: We simulate a Dynamo controller
and open transitions at the MSB level. We perform sensitivity
analysis of the charging algorithm under different power con-
straints (available power), DOD of batteries, and rack priority
distribution.

Production rack power trace: We collect rack power trace
at 3 second granularity for racks under an MSB and replay the
power trace in our simulation. This particular MSB has 89 P1
racks, 142 P2 racks, and 85 P3 racks, for a total of 316 racks.
The actual power limit for the MSB is 2.5 MW, however,
we experiment with different power limits in our simulation
to study the effect of varying available power under different
possible utilization and oversubscription scenarios. We vary
power limit only for the MSB and assume that all lower-level
circuit breakers have enough available power to charge the
batteries (for latest Facebook data centers power is normally
constrained at the MSB level because of generator capacity).
The aggregate power consumption of the MSB for a week
is shown in Fig. 12, where we can observe that the power
use exhibits diurnal cycles between the range of 1.9 MW to
2.1 MW. We simulate open transitions at the first peak in the
trace as this is when the available power for battery recharging
is most constrained.

BBU charging power profile: Batteries charge in the CC-
CV two-step process. We consider the CC phase of the BBU
as having a constant power draw (proportional to the charging
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Fig. 13. MSB power use in the case of the original charger, new variable
charger, and priority-aware charging for varying power limit and battery
discharge.

current), while we found that the CV phase can be approxi-
mated by fitting an exponential function of the form Ae”*. For
example, for a fully discharged rack batteries charging at 5 A
charging current, CC power would be a constant 1.9 kW and
the CV power would be approximated with the 1.9¢ =018 kW
function. We use the battery charging times for different DOD
and charging current from our lab experiment in Section III-B
(Fig. 5). The DOD of batteries depend upon the IT load of
the rack and the length of open transition. In our simulation,
we vary the DOD of the batteries by varying the length of
open transition. We experiment with three levels of battery
discharge: (1) low discharge, (2) medium discharge, and (3)
high discharge, where the average DOD of the BBU is 30%,
50%, and 70%, respectively.

2) Coordinated battery charging results: The primary pur-
pose of the coordinated priority-aware battery charging al-
gorithm is to protect the circuit breakers from overloading
due to the battery recharge power spike. The original 5 A
charger and the new variable charger work locally at the rack

TABLE III
MAXIMUM SERVER POWER CAPPING REQUIRED FOR THE SIX CASES IN
FI1G. 13 (A)—(F).

Case  Original charger Variable Priority-aware
charger
(a) 149 kW (7%) 0 kW (0%) 0 kW (0%)
(b) 349 kW (17%) 45 kW (2%) 0 kW (0%)
© 178 kW (9%) 0 kW (0%) 0 kW (0%)
(d) 378 kW (18%) 68 kW (3%) 0 kW (0%)
(e) 205 kW (10%) 0 kW (0%) 0 kW (0%)
(f) 405 kW (20%) 171 kW (8%) 0 kW (0%)

level without any coordination. We compare the coordinated
priority-aware charging with the original 5 A charger and
the new variable charger to demonstrate why coordination is
necessary. We experiment with a high power limit of 2.5 MW
(the actual power limit) and a low power limit of 2.3 MW
(a probable scenario of low available power) at three levels
of battery discharge. Results for the six cases are shown in
Fig. 13. We can see that the original charger would cause
power overloading of the MSB for all of the cases since the
initial power spike is very high. The new variable charger
is better in the sense that the initial power spike is reduced
by 60% for most of the cases (if BBUs are less than 50%
discharged). However, for the low power limit cases, even the
new variable charger would cause overloading of the circuit
breaker. Server power capping is required in such cases to
reduce the IT load. Table III shows the maximum server power
capping required (magnitude and percentage of IT load) for
the six cases, under the different deployment scenarios. Both
the original charger as well as the variable charger would
lead to server power capping (as high as 20%), resulting
in performance degradation. The problem gets worse when
battery discharge is higher and/or power limit is lower.

On the other hand, the coordinated priority-aware charg-
ing algorithm would avoid power loading (no server power
capping) in all the six cases. This is due to the fact that we
constantly monitor the available power of the circuit breaker
and lower the battery charging rate if power overloading is
detected. Only during the extreme case that power overloading
would occur even after all the batteries are charging at their
minimum rate, would we resort to server power capping.
In this particular experiment, server power capping would
begin if the available power was less than 120 kW (power
limit was below 2.2 MW). Thus, coordinated charging can
prevent circuit breakers from overloading while minimizing
the performance degradation from power capping. The trade-
off is that our solution would slow down the battery charging
process and compromise the redundancy. However, we prefer
to relax the redundancy provided by the batteries to minimize
performance degradation.

3) Priority-aware battery charging results: Our battery
charging algorithm not only protects the circuit breakers from
overloading, but also does it in a priority-aware way. Whenever
power is constrained, the battery charging rate of lower priority
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Fig. 14. Performance of priority-aware charging algorithm and global
charging algorithm in terms of number of racks whose charging time SLA
are met for different battery discharge.

racks are reduced first before impacting the higher priority
racks. We compare the priority-aware charging algorithm with
a baseline global charging algorithm. The global charging
algorithm only looks at the available power during a charging
event and charges all the racks at the same rate to prevent
power overload. While the global charging algorithm also
coordinates charging of racks to prevent circuit breakers from
overloading, it does not consider the priority (or battery DOD)
of racks. We compare the priority-aware charging algorithm
with the global charging algorithm in terms of the number of
racks that can meet the charging time SLA for varying power
limits.

Different battery discharge: Fig. 14 shows the number
of racks (disaggregated by priority) that meet the SLA for
medium and high battery discharge cases when the power
limit is gradually decreased from 2.6 MW to 2.2 MW. We can
observe that our priority-aware charging algorithm satisfies the
charging time SLA for P1 racks as long as possible when the
power limit is decreased. P3 racks are the ones affected first
before reducing the charging current for P2 and P1 racks as
seen in Fig. 14 (c). Note that in Fig. 14 (a), P2 racks seems
to be affected before P3 racks because, even though the P3
racks are charging at the minimum rate (due to the current
hardware limitation), their SLAs are met. On the contrary,
P1 racks are the first ones to get penalized by the global
charging algorithm, followed by P2 racks. This is because
higher priority racks have higher charging current demand (to
meet stricter SLA), but all racks are charged with the same
charging current regardless of their priority.

Different rack priority distribution: We repeat the same
experiment by varying the rack priority distribution. Once with
evenly distributed priority (each third of the racks has PI,
P2, and P3 priority) and another with all racks having the
same P1 priority. Fig. 15 shows the result for the case of
medium battery discharge. The result for the evenly distributed
rack priority is similar to the previous experiment (again, P3
rack SLA is satisfied even when charging at the minimum
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Fig. 15. Performance of priority-aware charging algorithm and global
charging algorithm in terms of number of racks whose charging time SLA
are met for different rack priority distribution.

rate). In the case of all racks having the same P1 priority,
our priority-aware charging algorithm performs superior to the
global charging algorithm. For example, the average number
of racks that meet the SLA for priority-aware charging in Fig.
15 (c) is 208, about three times higher than the baseline in Fig.
15 (d). This is due to the fact that the lowest-discharge-first
order selects racks with the lowest DOD (which require the
lowest charging current to meet the SLA) to be satisfied first.
This maximizes the number of racks that meet the SLA for
the given available power.

VI. RELATED WORK

Various works in the literature have looked at controlling the
charging or discharging of batteries in data centers. Govindan
et al. [10] were among the first to propose using UPS batteries
in data centers for peak power shaving. The basic idea is
to charge the battery using utility power when the power
demand is low and use it to supplement the utility power
when the power demand is high. The benefit of peak power
shaving is twofold. (1) Saving on capital expenses (Cap-
Ex) [1], [2], [12], [13], [18]: existing power infrastructure
can be oversubscribed (under-provisioned) by installing more
IT equipment to save on Cap-Ex. (2) Saving on operational
expenses (Op-Ex) [5], [26], [27], [40]: we can save on Op-Ex
by hiding peak demands to the utility, since the electricity cost
includes a significant peak power use component in addition
to the energy usage component. These works are orthogonal to
server throttling or workload scheduling techniques for peak
power shaving which impact performance.

Another line of work looks at minimizing the total data cen-
ter electric bill by utilizing the batteries [14], [15], [43], [48],
[49]. The basic idea is to use battery power when/where the
electricity price is high while charging the battery when/where
the electricity price is low. Electricity price differences may be
in time (utility charging a varying real-time price) or location
(many utilities charging varying prices to geographically dis-
tributed data centers). A related area of research explores using



batteries to participate in demand response programs [22]—
[25], [28], whereby a utility is actively offering incentives to
reshape consumer’s demand. These works study the feasibility
of demand response participation and its impact on availability
of the batteries. There are also works that focus on integrating
on site production of intermittent renewable energy [4], [7],
[35], [38], [42], such as, solar and wind using batteries.

All of the above works have mainly focused on repurposing
the batteries from its original intended use of providing backup
power during an open transition. Our work differs from them
since we focus on the primary use of the battery to serve as
a fail-over mechanism. Additional work exists that look into
a multitude of factors, such as, UPS battery placements [11],
appropriate sizing of batteries [44], alternate energy storage
technologies [45], using batteries in colocation data centers
[31], and battery aging issue [20]. However, all prior works
have ignored the problem caused by simultaneous recharging
of batteries, which is a common phenomenon. There are
control solutions proposed for the conventional centralized
UPS systems [32], [46], but they do not directly apply to
the case of distributed power supply/batteries since the power
constraint is at an upstream power device.

To the best of our knowledge, our work is the first to
identify and highlight the importance of the problem caused
by distributed battery recharging. Furthermore, we describe
our solution in detail, the mechanism as well as the policy,
which we have successfully tested in our data centers.

VII. CONCLUSION

In this paper, we have identified the problem caused by
recharging of distributed batteries in oversubscribed data cen-
ters after an open transition, with case studies of past events
that have occurred in Facebook data centers. Rather than
statically allocate the data center power budget for battery
recharge power, we proposed a novel variable battery charger
which allows us to efficiently utilize and allocate the power
budget for IT equipment. We have designed, developed, and
implemented the variable battery charger in production to
reduce the impact of power spike from battery recharging.

Lastly, we developed and evaluated a priority-aware charg-
ing algorithm which utilizes the manual override feature of the
new battery charger to coordinate the battery charging process.
Our coordinated priority-aware battery charging algorithm
was shown to minimize performance degradation (obviates
the need for up to 20% server power capping) as well as
maximizes the number of highest priority racks that satisfy
the charging time SLA without exceeding the power limit of
circuit breakers.
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