
Adversarial Inference for Multi-Sentence Video Description

Jae Sung Park1, Marcus Rohrbach2, Trevor Darrell1, Anna Rohrbach1

1 University of California, Berkeley, 2 Facebook AI Research

Abstract

While significant progress has been made in the image
captioning task, video description is still in its infancy due
to the complex nature of video data. Generating multi-
sentence descriptions for long videos is even more chal-
lenging. Among the main issues are the fluency and coher-
ence of the generated descriptions, and their relevance to
the video. Recently, reinforcement and adversarial learning
based methods have been explored to improve the image
captioning models; however, both types of methods suffer
from a number of issues, e.g. poor readability and high re-
dundancy for RL and stability issues for GANs. In this work,
we instead propose to apply adversarial techniques during
inference, designing a discriminator which encourages bet-
ter multi-sentence video description. In addition, we find
that a multi-discriminator “hybrid” design, where each dis-
criminator targets one aspect of a description, leads to the
best results. Specifically, we decouple the discriminator to
evaluate on three criteria: 1) visual relevance to the video,
2) language diversity and fluency, and 3) coherence across
sentences. Our approach results in more accurate, diverse,
and coherent multi-sentence video descriptions, as shown
by automatic as well as human evaluation on the popular
ActivityNet Captions dataset.

1. Introduction

Being able to automatically generate a natural language
description for a video has fascinated researchers since the
early 2000s [27]. Despite the high interest in this task and
ongoing emergence of new datasets [13, 29, 75] and ap-
proaches [67, 69, 76], it remains a highly challenging prob-
lem. Consider the outputs of the three recent video descrip-
tion methods on an example video from the ActivityNet
Captions dataset [3, 29] in Figure 1. We notice that there
are multiple issues with these descriptions, in addition to the
errors with respect to the video content: there are seman-
tic inconsistencies and lack of diversity within sentences,
as well as redundancies across sentences. There are mul-
tiple challenges towards more accurate and natural video
description. One of the issues is the size of the available

Figure 1: Comparison of the state-of-the-art video descrip-
tion approaches, Transformer [76], VideoStory [13], Move-
ForwardTell [67], and our proposed Adversarial Inference.
Our approach generates more interesting and accurate de-
scriptions with less redundancy. Video from ActivityNet
Captions [3, 29] with three segments (left to right); red/bold
indicates content errors, blue/italic indicates repetitive pat-
terns, underscore highlights more interesting phrases.

training data, which, despite the recent progress, is lim-
ited. Besides, video representations are more complex than
e.g. image representations, and require modeling temporal
structure jointly with the semantics of the content. More-
over, describing videos with multiple sentences, requires
correctly recognizing a sequence of events in a video, main-
taining linguistic coherence and avoiding redundancy.

Another important factor is the target metric used in the
description models. Most works still exclusively rely on the
automatic metrics, e.g. METEOR [31], despite the evidence
that they are not consistent with human judgments [24, 57].
Further, some recent works propose to explicitly optimize
for the sentence metrics using reinforcement learning based
methods [35, 46]. These techniques have become quite
widespread, both for image and video description [1, 67].
Despite getting higher scores, reinforcement learning based
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methods have been shown to lead to unwanted artifacts,
such as ungrammatical sentence endings [15], increased ob-
ject hallucination rates [47] and lack of diverse content [36].
Overall, while informative, sentence metrics should not be
the only way of evaluating the description approaches.

Some works aim to overcome this issue by using the ad-
versarial learning [9, 53]. While Generative Adversarial
Networks [14] have achieved impressive results for image
and even video generation [21, 43, 63, 77], their success in
language generation has been limited [55, 71]. The main
issue is the difficulty of achieving stable training due to the
discrete output space [4, 5]. Another reported issue is lack
of coherence, especially for long text generation [20]. Still,
the idea of learning to distinguish the “good” natural de-
scriptions from the “bad” fake ones, is very compelling.

Rather than learning with adversarial training, we pro-
pose a simpler approach, Adversarial Inference for video
description, which relies on a discriminator to improve the
description quality. Specifically, we are interested in the
task of multi-sentence video description [48, 70], i.e. the
output of our model is a paragraph that describes a video.
We assume that the ground-truth temporal segments are
given, i.e. we do not address the event detection task, but
focus on obtaining a coherent multi-sentence description.
We first design a strong baseline generator model trained
with the maximum likelihood objective, which relies on a
previous sentence as context, similar to [13, 67]. We also
introduce object-level features in the form of object detec-
tions [1] to better represent people and objects in video. We
then make the following contributions:

(1) We propose the Adversarial Inference for video de-
scription, where we progressively sample sentence candi-
dates for each clip, and select the best ones based on a
discriminator’s score. Prior work has explored sampling
with log probabilities [12], while we show that a specifi-
cally trained discriminator leads to better results in terms of
correctness, coherence, and diversity (see Figure 1).

(2) Specifically, we propose the “hybrid discriminator”,
which combines three specialized discriminators: one mea-
sures the language characteristics of a sentence, the sec-
ond assesses its relevance to a video segment, and the third
measures its coherence with the previous sentence. Prior
work has considered a “single discriminator” for adversar-
ial training to capture both the linguistic characteristics and
visual relevance [53, 9]. We show that our “hybrid discrim-
inator” outperforms the “single discriminator” design.

(3) We compare our proposed approach to multiple base-
lines on a number of metrics, including automatic sentence
scores, diversity and repetition scores, person correctness
scores, and, most importantly, human judgments. We show
that our Adversarial Inference approach leads to more accu-
rate and diverse multi-sentence descriptions, outperforming
GAN and RL based approaches in a human evaluation.

2. Related Work

We review existing approaches to video description, in-
cluding recent work based on reinforcement and adversar-
ial learning. We then discuss related works that also sample
and re-score sentence descriptions, and some that aim to de-
sign alternatives to automatic evaluation metrics.

Video description. Over the past years there has been an
increased interest in video description generation, notably
with the broader adoption of the deep learning techniques.
S2VT [58] was among the first approaches based on LSTMs
[19, 11]; some of the later ones include [38, 49, 52, 68,
72, 73]. Most recently, a number of approaches to video
description have been proposed, such as replacing LSTM
with a Transformer Network [76], introducing a reconstruc-
tion objective [59], using bidirectional attention fusion for
context modeling [61], and others [7, 13, 33].

While most works focus on “video in - one sentence out”
task, some aim to generate a multi-sentence paragraph for
a video [48, 54, 70]. Recently, [69] propose a fine-grained
video captioning model for generating detailed sports nar-
ratives, and [67] propose the Move Forward and Tell ap-
proach, which localizes events and progressively decides
when to generate the next sentence. This is related to the
task of dense captioning [29], where videos are annotated
with multiple localized sentences but the task does not re-
quire to produce a single coherent paragraph for the video.

Reinforcement learning for caption generation. Most
deep language generation models rely on Cross-Entropy
loss and during training are given a previous ground-truth
word. This is known to cause an exposure bias [42], as
at test time the models need to condition on the predicted
words. To overcome this issue, a number of reinforcement
learning (RL) actor-critic [28] approaches have been pro-
posed [45, 46, 74]. [35] propose a policy gradient optimiza-
tion method to directly optimize for language metrics, like
CIDEr [57], using Monte Carlo rollouts. [46] propose a
Self-Critical Sequence Training (SCST) method based on
REINFORCE [66], and instead of estimating a baseline, use
the test-time inference algorithm (greedy decoding).

Recent works adopt similar techniques to video descrip-
tion. [40] extend the approach of [42] by using a mixed loss
(both cross-entropy and RL) and correcting CIDEr with an
entailment penalty. [65] propose a hierarchical reinforce-
ment learning approach, where a Manager generates sub-
goals, a Worker performs low-level actions, and a Critic de-
termines whether the goal is achieved. Finally, [32] propose
a multitask RL approach, built off [46], with an additional
attribute prediction loss.

GANs for caption generation. Instead of optimizing for
hand-designed metrics, some recent works aim to learn
what the “good” captions should be like using adversarial
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training. The first works to apply Generative Adversarial
Networks (GANs) [14] to image captioning are [53] and
[9]. [53] train a discriminator to distinguish natural human
captions from fake generated captions, focusing on caption
diversity and image relevance. To sample captions they rely
on Gumbel-Softmax approximation [22]. [9] instead rely on
policy gradient, and their discriminator focuses on caption
naturalness and image relevance. Some works have applied
adversarial learning to generate paragraph descriptions for
images/image sequences. [34] propose a joint training ap-
proach which incorporates multi-level adversarial discrim-
inators, one for sentence level and another for coherent
topic transition at a paragraph level. [64] rely on adver-
sarial reward learning to train a visual storytelling policy.
[60] use a multi-modal discriminator and a paragraph level
language-style discriminator for their adversarial training.
Their multi-modal discriminator resembles the standard dis-
criminator design of [9, 53]. In contrast, we decouple the
multi-modal discriminator into two specialized discrimina-
tors, Visual and Language, and use a Pairwise discriminator
for sentence pairs’ coherence. Importantly, none of these
works rely on their trained discriminators during inference.

Two recent image captioning works propose using dis-
criminator scores instead of language metrics in the SCST
model [6, 36]. We implement a GAN baseline based on this
idea, and compare it to our approach.

Caption sampling and re-scoring. A few prior works
explore caption sampling and re-scoring during inference
[2, 18, 56]. Specifically, [18] aim to obtain more image-
grounded bird explanations, while [2, 56] aim to generate
discriminative captions for a given distractor image. While
our approach is similar, our goal is different, as we work
with video rather than images, and aim to improve multi-
sentence description with respect to multiple properties.

Alternatives to automatic metrics. There is a growing in-
terest in alternative ways of measuring the description qual-
ity, than e.g. [39, 31, 57]. [8] train a general critic network
to learn to score captions, providing various types of cor-
rupted captions as negatives. [51] use a composite metric, a
classifier trained on the automatic scores as input. In con-
trast, we do not aim to build a general evaluation tool, but
propose to improve the video description quality with our
Adversarial Inference for a given generator.

3. Generation with Adversarial Inference
In this section, we present our approach to multi-

sentence description generation based on our Adversarial
Inference method. We first introduce our baseline genera-
tor G and then discuss our discriminator D. The task of
D is to score the descriptions generated by G for a given
video. This includes, among others, to measure whether
the multi-sentence descriptions are (1) correct with respect

to the video, (2) fluent within individual sentences, and (3)
form a coherent story across sentences. Instead of assigning
all three tasks to a single discriminator, we propose to com-
pose D out of three separate discriminators, each focusing
on one of the above tasks. We denote this design a hybrid
discriminator (see Figure 3).

While prior works mostly rely on discriminators for joint
adversarial training [9, 53], we argue that using them dur-
ing inference is a more robust way of improving over the
original generator. In our Adversarial Inference, the pre-
trained generatorG presentsD with the sentence candidates
by sampling from its probability distribution. In its turn, our
hybrid discriminator D selects the best sentence relying on
the combination of its sub-discriminators. The overview of
our approach is shown in Figure 2.

3.1. Baseline Multi-Sentence Generator: G

Given L clips [v1, v2, ..., vL] from a video v, the task of
G is to generateL sentences [s1, s2, ..., sL], where each sen-
tence si matches the content of the corresponding clip vi.
As the clips belong to the same video and are thus contex-
tually dependent, our goal is to not only generate a sentence
that matches its visual content, but to obtain a coherent and
diverse sequence of sentences, i.e. a natural paragraph.

Our generator follows a standard LSTM decoder [11, 19]
to generate individual sentences si with encoded represen-
tation of vi as our visual context. Typically, for each step
m, the LSTM hidden state him expects an input vector that
encodes the visual features from vi as well as the previous
word wim−1. For our visual context, we use motion, RGB
images, and object detections as features for each video
clip, and follow the settings from [62, 67] to obtain a sin-
gle vector representation of each feature using a temporal
attention mechanism [68]1. The three vectors are concate-
nated to get the visual input v̄im. To encourage coherence
among consecutive sentences, we additionally append the
last hidden state of the previous sentence hi−1 as input to
the LSTM decoder [13, 67]. The final input to the LSTM
decoder for clip vi at time step m is defined as follows:

him = LSTM(v̄im, w
i
m−1, h

i−1),

with h0 = 0,
(1)

We follow the standard Maximum Likelihood Estima-
tion (MLE) training for G, i.e. we maximize the likelihood
of each word wim given the current LSTM hidden state him.

3.2. Discriminator: D

The task of a discriminator D is to score a sentence s
w.r.t. a video v as D(s|v) ∈ (0, 1), where 1 indicates a
positive match, while 0 is a negative match. Most prior

1For details, please, see the supplemental material.
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Figure 2: The overview of our Adversarial Inference approach. The Generator progressively samples candidate sentences for
each clip, using the previous sentence as context. The Hybrid Discriminator scores the candidate sentences, and chooses the
best one based on its visual relevance, linguistic characteristics and coherence to the previous sentence (details in Figure 3).

works that perform adversarial training for image caption-
ing [6, 9, 36, 53], rely on the following “single discrimi-
nator” design. D is trained to distinguish human ground-
truth sentences as positives vs. sentences generated by G
and mismatched ground truth sentences (from a different
video) as negatives. The latter aim to direct the discrimina-
tor’s attention to the sentences’ visual relevance.

For a given generator G, the discriminator D is trained
with the following objective:

max
1

N

N∑
j=1

LD(vj), (2)

where N is the number of training videos. For a video vj

a respective term is defined as:

LD(vj) = Es∈Svj [log(D(s|vj))] +

µ · Es∈SG [log(1−D(s|vj))] +

ν · Es∈S\vj [log(1−D(s|vj))],
(3)

where Svj is the set of ground truth descriptions for vj ,
SG are generated samples from G, S\vj are ground truth
descriptions from other videos, µ, ν are hyper-parameters.

3.2.1 Hybrid Discriminator

In the “single discriminator” design, the discriminator is
given multiple tasks at once, i.e. to detect generated “fakes”,
which requires looking at linguistic characteristics, such
as diversity or language structure, as well the mismatched
“fakes”, which requires looking at sentence semantics and
relate it to the visual features. Moreover, for multi-sentence
description, we would also like to detect cases where a sen-
tence is inconsistent or redundant to a previous sentence.

To obtain these properties, we argue it is important to
decouple the different tasks and allocate an individual dis-

criminator for each one. In the following we introduce our
visual, language and pairwise discriminators, which jointly
constitute our hybrid discriminator (see Figure 3). We use
the objective defined above for all three, however, the types
of negatives vary by discriminator.

Visual Discriminator. The v isual discriminator DV de-
termines whether a sentence si refers to concepts present in
a video clip vi, regardless of fluency and grammatical struc-
ture of the sentence. We believe that as the pre-trained gen-
erator already produces video relevant sentences, we should
not include the generated samples as negatives for DV . In-
stead, we use the mismatched ground truth as well as mis-
matched generated sentences as our two types of negatives.
While randomly mismatched negatives may be easier to dis-
tinguish, hard negatives, e.g. sentences from videos with the
same activity as a given video, require stronger visual dis-
criminative abilities. To improve our discriminator, we in-
troduce such hard negatives, after trainingDV for 2 epochs.

Note, that if we use an LSTM to encode our sentence
inputs to DV , it may exploit the language characteristics to
distinguish the generated mismatched sentences, instead of
looking at their semantics. To mitigate this issue, we replace
the LSTM encoding with a bag of words (BOW) representa-
tion, i.e. each sentence is represented as a vocabulary-sized
binary vector. The BOW is further embedded via a linear
layer, and thus we obtain our final sentence encoding ωi.

Similar toG,DV also considers multiple visual features,
i.e. we aggregate features from different misaligned modal-
ities (video, image, objects). We individually encode each
feature f using temporal attention based on the entire sen-
tence representation ωi. The obtained vector representa-
tions v̂if are then fused with the sentence representation ωi,
using Multimodal Low-rank Bilinear pooling (MLB) [25],
which is known to be effective in tasks like multi-modal re-
trieval or VQA. The score for visual feature f and sentence
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Figure 3: An overview of our Hybrid Discriminator. We
score a sentence si for a given video clip vi and a previous
sentence si−1.

representation ωi is obtained as follows:

pif = σ(tanh(UT v̂if )� tanh(V Tωi)), (4)

where σ is a sigmoid, producing values in (0, 1), � is the
Hadamard product, U , V are linear layers. Instead of con-
catenating features v̂if as done in the generator, here we de-
termine the scores pif between the sentence and each modal-
ity, and learn to weigh them adaptively based on the sen-
tence. The intuition is that some sentences are more likely
to require video features (“a man is jumping”), while oth-
ers may require e.g. object features (“a man is wearing a
red shirt”). Following [37], we assign weights λif to each
modality based on the sentence representation ωi:

λif =
ea
T
f ω

i∑
j e
aTj ω

i
, (5)

where aj are learned parameters. Finally, the DV score
is the sum of the scores pif weighted by λif :

DV (si|vi) =
∑
f

λifp
i
f . (6)

Language Discriminator. Language discriminator DL

focuses on language structure of an individual sentence si,
independent of its visual relevance. Here we want to ensure
fluency as well as diversity of sentence structure that is lack-
ing in G. The ActivityNet Captions [29] dataset, that we
experiment with, has long (over 13 words on average) and
diverse descriptions with varied grammatical structures. In

initial experiments we observed that a simple discriminator
is able to point out a obvious mismatches based on diversity
of the real vs. fake sentences, but fails to capture fluency or
repeating N-grams. To address this, in addition to generated
sentences from G, DL is given negative inputs with a mix-
ture of randomly shuffled words or with repeated phrases
within a sentence.

To obtain a DL score, we encode a sentence si with a
bidirectional LSTM, concatenate both last hidden states, de-
noted as h̄i, followed by a fully connected layer and a sig-
moid layer:

DL(si) = σ(WLh̄
i + bL). (7)

Pairwise Discriminator. Pairwise discriminator DP

evaluates whether two consecutive sentences si−1 and si

are coherent yet diverse in content. Specifically, DP scores
si based on si−1. To ensure coherence, we include “shuf-
fled” sentences as negatives, i.e. the order of sentences in a
paragraph is randomly changed. We also design negatives
with a pair of identical sentences (si = si−1) and option-
ally cutting off the endings (e.g. “a person enters and takes
a chair” and “a person enters”) to avoid repeating contents.

Similar to DL above, we encode both sentences with a
bidirectional LSTM and obtain h̄i−1 and h̄i. We concate-
nate the two vectors and compute the DP score as follows:

DP (si|si−1) = σ(WP [h̄i−1, h̄i] + bP ). (8)

Note, that the first sentence of a video description para-
graph is not assigned a pairwise score, as there is no previ-
ous sentence.

3.3. Adversarial Inference

In adversarial training for caption generation, G and D
are first pre-trained and then jointly updated, where the dis-
criminator improves the generator by providing feedback to
the quality of sampled sentences. To deal with the issue of
non-differentiable discrete sampling in joint training, sev-
eral solutions have been proposed, such as Reinforcement
Learning with variants of policy gradient methods or Gum-
bel softmax relaxation [6, 9, 53]. While certain improve-
ment has been shown, as we discussed in Section 1, GAN
training can be very unstable.

Motivated by the difficulties of joint training, we present
our Adversarial Inference method, which uses the discrim-
inator D during inference of the generator G. We show
that our approach outperforms a jointly trained GAN model,
most importantly, in human evaluation (see Section 4).

During inference, the generator typically uses greedy
max decoding or beam search to generate a sentence based
on the maximum probability of each word. One alterna-
tive to this is sampling sentences based on log probability
[12]. Instead, we use our Hybrid Discriminator to score
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the sampled sentences. Note, that we generate sentences
progressively, i.e. we provide the hidden state representa-
tion of the previous best sentence as context to sample the
next sentence (see Figure 2). Formally, for a video clip
vi, a previous best sentence si−1∗ and K sampled sentences
si1, s

i
2, ...s

i
K from the generator G, the scores from our hy-

brid discriminator can be used to compare the sentences and
select the best one:

si∗ = siargmaxj=1..KD(sij |vi,s
i−1
∗ ))

, (9)

where sij is the jth sampled sentence. The final discrimi-
nator score is defined as:

D(sij |vi, si−1∗ ) = α ·DV (sij |vi) +

β ·DL(sij) + γ ·DP (sij |si−1∗ ),
(10)

where α, β, γ are hyper-parameters.

4. Experiments
We benchmark our approach for multi-sentence video

description on the ActivityNet Captions dataset [29] and
compare our Adversarial Inference to GAN and other base-
lines, as well as to state-of-the-art models.

4.1. Experimental Setup

Dataset. The ActivityNet Captions dataset contains 10,009
videos for training and 4,917 videos for validation with
two reference descriptions for each2. Similar to prior work
[76, 13], we use the validation videos with the 2nd refer-
ence for development, while the 1st reference is used for
evaluation. While the original task defined on ActivityNet
Captions involves both event localization and description,
we run our experiments with ground truth video intervals.
Our goal is to show that our approach leads to more correct,
diverse and coherent multi-sentence video descriptions.

Visual Processing. Each video clip is encoded with 2048-
dim ResNet-152 features [17] pre-trained on ImageNet [10]
(denoted as ResNet) and 8192-dim ResNext-101 features
[16] pre-trained on the Kinetics dataset [23] (denoted as
R3D). We extract both ResNet and R3D features at every
16 frames and use a temporal resolution of 16 frames for
R3D. The features are uniformly divided into 10 segments
as in [62, 67], and mean pooled within each segment to
represent the clip as 10 sequential features. We also run
the Faster R-CNN detector [44] from [1] trained on Visual
Genome [30], on 3 frames (at the beginning, middle and end
of a clip) and detect top 16 objects per frame.We encode the
predicted object labels with bag of words weighted by de-
tection confidences (denoted as BottomUp). Thus, a visual

2The two references are not aligned to the same time intervals, and even
may have a different number of sentences.

representation for each clip consists of 10 R3D features, 10
ResNet features, and 3 BottomUp features.

Language Processing. The sentences are “cut” at a maxi-
mum length of 30 words. The LSTM cells’ dimensionality
is fixed to 512. The discriminators’ word embeddings are
initialized with 300-dim Glove embeddings [41].

Training and Inference. We train the generator and dis-
criminators with cross entropy objectives using the ADAM
optimizer [26] with a learning rate of 5e−4. One batch con-
sists of multiple clips and captions from the same video, and
the batch size is fixed to 16 when training all models. The
weights for all the discriminators’ negative inputs (µ, ν in
Eq. 3), are set to 0.5. The weights for our hybrid discrimi-
nator are set as α = 0.8, β = 0.2, γ = 1.0. Sampling temper-
ature during discriminator training is 1.0; during inference
we sample K = 100 sentences with temperature 0.2. When
training the discriminators, a specific type of a negative ex-
ample is randomly chosen for a video, i.e. a batch consists
of a combination of different types of negatives.

Baselines and SoTA. We compare our Adversarial Infer-
ence (denoted MLE+HybridDis) to: our baseline genera-
tor (MLE); multiple inference procedures, i.e. beam search
with size 3 (MLE+BS3), sampling with log probabili-
ties (MLE+LP) and inference with the single discriminator
(MLE+SingleDis); Self Critical Sequence Tranining [46]
which optimizes for CIDEr (SCST); GAN models built off
[6, 36] with a single discriminator3, with and without a cross
entropy (CE) loss (GAN, GAN w/o CE). Finally, we also
compare to the following state-of-the-art methods: Trans-
former [76], VideoStory [13] and MoveForwardTell [67],
whose predictions we obtained from the authors.

4.2. Results

Automatic Evaluation. Following [67], we conduct our
evaluation at paragraph-level. We include standard met-
rics, i.e. METEOR [31], BLEU@4 [39] and CIDEr-D [57].
However, these alone are not sufficient to get a holistic view
of the description quality, since the scores fail to capture
content diversity or detect repetition of phrases and sen-
tence structures. To see if our approach improves on these
properties, we report Div-1 and Div-2 scores [53], that mea-
sure a ratio of unique N-grams (N=1,2) to the total num-
ber of words, and RE-4 [67], that captures a degree of N-
gram repetition (N=4) in a description4. We compute these
scores at video (paragraph) level, and report the average
score over all videos. Finally, we want to capture the degree
of “discriminativeness” among the descriptions of videos
with similar content. ActivitiyNet [3] includes 200 activity

3We have tried incorporating our hybrid discriminator in GAN training,
however, we have not observed a large difference, likely due to a large
space of training hyper-parameters which is challenging to explore.

4For Div-1,2 higher is better, while for RE-4 lower is better.
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Per video Overall Per act. Per video
Method METEOR BLEU@4 CIDEr-D Vocab Sent RE-4 ↓ Div-1 ↑ Div-2 ↑ RE-4 ↓

Size Length

MLE 16.70 9.95 20.32 1749 13.83 0.38 0.55 0.74 0.08

GAN w/o CE 16.49 9.76 20.24 2174 13.67 0.35 0.56 0.74 0.07
GAN 16.69 10.02 21.07 1930 13.60 0.36 0.56 0.74 0.07

SCST 15.80 10.82 20.89 941 12.13 0.52 0.47 0.65 0.11

MLE + BS3 16.22 10.79 21.81 1374 12.92 0.48 0.55 0.71 0.11
MLE + LP 17.51 8.70 12.23 1601 18.68 0.48 0.48 0.69 0.12

MLE + SingleDis 16.29 9.25 18.17 2291 13.98 0.37 0.59 0.75 0.07
MLE + SingleDis w/ Pair 16.16 9.32 18.72 2375 13.75 0.37 0.60 0.77 0.06

(Ours) MLE + HybridDis w/o Vis 16.33 8.92 17.29 2462 14.43 0.34 0.59 0.76 0.06
(Ours) MLE + HybridDis w/o Lang 16.44 9.37 19.44 2697 13.77 0.30 0.59 0.78 0.05
(Ours) MLE + HybridDis w/o Pair 16.60 9.56 19.39 2390 13.86 0.32 0.58 0.76 0.06
(Ours) MLE + HybridDis 16.48 9.91 20.60 2346 13.38 0.32 0.59 0.77 0.06

Human - - - 8352 14.27 0.04 0.71 0.85 0.01

SoTA models

VideoStory [13] 16.26 7.66 14.53 1269 16.73 0.37 0.51 0.72 0.09
Transformer [76] 16.15 10.29 21.72 1819 12.42 0.34 0.53 0.73 0.07
MoveForwardTell [67] 14.67 10.03 19.49 1926 11.46 0.53 0.55 0.66 0.18

Table 1: Comparison to video description baselines and SoTA models. Statistics over generated descriptions include N-gram
Diversity (Div-1,2, higher better) and Repetition (RE-4, lower better) per video and per activity. See Section 4.2 for details.

labels, and the videos with the same activity have similar
visual content. We thus also report RE-4 per activity by
combining all sentences associated with each activity, and
averaging the score over all activities.

We compare our model to baselines in Table 1 (top). The
best performing models in standard metrics do not include
our adversarial inference procedure nor the jointly trained
GAN models. This is somewhat expected, as prior work
shows that adversarial training does worse in these metrics
than the MLE baseline [9, 53]. We note that adding a CE
loss benefits GAN training, leading to more fluent descrip-
tions (GAN w/o CE vs. GAN). We also observe that the
METEOR score, popular in video description literature, is
strongly correlated with sentence length.

We see that our Adversarial Inference leads to more di-
verse descriptions with less repetition than the baselines, in-
cluding GANs. Our MLE+HybridDis model outperforms
the MLE+SingleDis in every metric, supporting our hybrid
discriminator design. Furthermore, MLE + SingleDis w/
Pair scores higher than the SingleDis but lower than our
HybridDis. This shows that a decoupled Visual discrimi-
nator is important for our task. Note that the SCST has the
lowest diversity and highest repetition among all baselines.
Our MLE+HybridDis model also improves over baselines
in terms of repetition score “per activity”, suggesting that it
obtains more video relevant and less generic descriptions.

To show the importance of all three discriminators, we
provide ablation experiments by taking out each compo-
nent, respectively (w/o Vis, w/o Lang, w/o Pair). Our Hy-
bridDis performs the worst when without its visual com-
ponent and the combination of three discriminators outper-
forms each of the ablations on the standard metrics. In Fig-
ure 4, we show a qualitative result obtained by the ablated
models vs. our full model. Removing the Visual discrim-
inator leads to incorrect mention of “pushing a puck”, as
the visual error is not penalized as needed. Model without
the Language discriminator results in somewhat implausi-
ble constructs (“stuck in the column”) and incorrectly men-
tions “holding a small child”. Removing the Pairwise dis-
criminator leads to incoherently including a “woman” while
missing the salient ending event (kids leaving).

Human Evaluation. The most reliable way to evaluate the
description quality is with human judges. We run our eval-
uation on Amazon Mechanical Turk (AMT)5 with a set of
200 random videos. To make the task easier for humans we
compare two systems at a time, rather than judging multi-
ple systems at once. We design a set of experiments, where
each system is being compared to the MLE baseline. The
human judges can select that one description is better than
another or that both as similar. We ask 3 human judges to
score each pair of sentences, so that we can compute a ma-

5https://www.mturk.com
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Figure 4: Comparison of ablated models vs. our full model
(discussion in text). Content errors are highlighted in red.

Method Better Worse Delta
than MLE than MLE

SCST 22.0 62.0 -40.0
GAN 32.5 30.0 +2.5

MLE + BS3 27.0 31.0 -4.0
MLE + LP 32.5 34.0 -1.5
MLE + SingleDis 29.0 30.0 -1.0
(Ours) MLE + HybridDis w/o Pair 42.0 36.5 +5.5
(Ours) MLE + HybridDis 38.0 31.5 +6.5

Table 2: Human evaluation of multi-sentence video descrip-
tions, see text for details.

jority vote (i.e. at least 2 out of 3 agree on a judgment), see
results in Table 2. Our proposed approach improves over all
other inference procedures, as well as over GAN and SCST.
We see that the GAN is rather competitive, but still overall
not scored as high as our approach. Notably, SCST is scored
rather low, which we attribute to its grammatical issues and
high redundancy in the descriptions.

Comparison to SoTA. We compare our approach to multi-
ple state-of-the-art methods using the same automatic met-
rics as above. As can be seen from Table 1 (bottom), our
MLE + HybridDis model performs on par with the state-
of-the-art on standard metrics and wins in diversity metrics.
We provide a qualitative comparison to the state-of-the-art
models in Figure 1 and in the supplemental material.

Person Correctness. Most video descriptions in the Ac-
tivityNet Captions dataset discuss people and their actions.
To get additional insights into correctness of the generated
descriptions, we evaluate the “person words” correctness.
Specifically, we compare (a) the exact person words (e.g.

Method Exact Gender+
word plurality

VideoStory [13] 44.9 64.1
Transformer [76] 45.8 66.0
MoveForwardTell [67] 42.6 64.1

MLE 48.8 67.5
SCST 44.0 63.3
GAN 48.9 67.5
(Ours) MLE + HybridDis 49.1 67.9

Table 3: Correctness of person-specific words, F1 score.

girl, guys) and (b) only gender with plurality (e.g. female-
single, male-plural) between the references and the pre-
dicted descriptions, and report the F1 score in Table 3 (this
is similar to [50], who evaluate character correctness in
movie descriptions). Interestingly, our MLE baseline al-
ready outperforms the state-of-the-art in terms of person
correctness, likely due to the additional object-level features
[1]. SCST leads to a significant decrease in person word
correctness, while our Adversarial Inference improves it.

5. Conclusion
The focus of prior work on video description generation

has so far been on training better generators and improving
the input representation. In contrast, in this work we advo-
cate an orthogonal direction to improve the quality of video
descriptions: We propose the concept Adversarial Inference
for video description where a trained discriminator selects
the best from a set of sampled sentences. This allows to
make the final decision on what is the best sample a pos-
teriori by relying on strong trained discriminators, which
look at the video and the generated sentences to make a de-
cision. More specifically, we introduce a hybrid discrim-
inator which consists of three individual experts: one for
language, one for relating the sentence to the video, and
one pairwise, across sentences. In our experimental study,
humans prefer sentences selected by our hybrid discrimi-
nator used in Adversarial Inference better than the default
greedy decoding. Beam search, sampling with log probabil-
ity as well as previous approaches to improve the generator
(SCST and GAN) are judged not as good as our sentences.
We include further qualitative results which demonstrate the
strength of our approach in supplemental materials.
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Anna Rohrbach was in part supported by the DARPA
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(BAIR) Lab, and the Berkeley DeepDrive (BDD) Lab.
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Supplemental Material
Here we provide implementation details for our ap-

proach and baseline models (Section A), and include qual-
itative comparison of our approach to ablations, baselines
and state-of-the-art methods (Section B).

A. Implementation Details

Processing the Visual Feature. First, we detail how we
obtain the visual input v̄im in Equation 1. Unlike image
captioning that relies on static features, video description
requires a dynamic multimodal fusion over different vi-
sual features, such as e.g. a stream of RGBs and mo-
tion features. In addition to video and image-level fea-
tures, we introduce object detections extracted for a sub-
set of frames. Different features may be temporally mis-
aligned (i.e. extracted over different sets of frames). We
address this as follows. Suppose, a visual feature f ex-
tracted from vi is represented as a sequence of Tf seg-
ments: vif = [vif,1, v

i
f,2, ...v

i
f,Tf

] [62, 67]. The previous
hidden state him−1 is used to predict temporal attention
[68] over these segments, which then results in a single
feature vector v̂im,f . We concatenate the resulting vectors
from all features as our final visual input to the decoder:
v̄im = [v̂im,1, v̂

i
m,2, ..., v̂

i
m,f , ...].

Self-Critical Sequence Training. Self-Critical Sequence
Training [46] (SCST)6 is a variant of REINFORCE [66]
where the inference algorithm is used as a baseline. Sup-
pose we have a generator model Gθ with parameters θ; a
complete sequence xs = (xs1, ...x

s
T ) is sampled using the

probability distribution pθ(xst |xs1, ...xst−1) at each time step
t. To reduce the variance during training and explore be-
yond the current best policy, SCST decodes another se-
quence x̂ with the inference algorithm (greedy decoding)
and aims to improve xs over x̂ based on a reward r such as
a CIDER metric [57]. The gradient function for the model
is calculated as:

∇θLGθ (θ) =

T∑
t=1

(r(xs)− r(x̂))∇θ log pθ(x
s
t |xs1:t−1).

(11)

GANs for Captioning. GANs for image captioning [9, 53]
are typically trained with the following procedure due to
their instability in early training stages: 1) pre-train the
generator Gθ optimizing MLE objective, 2) pre-train dis-
criminator Dη by sampling sentences from pre-trained Gθ,
and 3) jointly update Gθ and Dη iteratively with a different
objective for Gθ to deal with non-differentiable sampling.
Cross Entropy loss is used to pre-train Gθ and Dη , where

6Our SCST model is based on the implementation of https://
github.com/ruotianluo/self-critical.pytorch

Dη is trained with negative samples as in Equation 3, with
µ = 0.5, ν = 0.5. After both Gθ and Dη have been pre-
trained, we follow [6, 36] and jointly train them using SCST
but replacing reward r with an output of a standard (“sin-
gle”) discriminator Dη(V, xs), where V is a given video
segment and xs is a sampled description. We find that it is
best to update Gθ for 5 steps for each update of Dη . The
gradient for the above GAN model is:

∇θLGθ (θ) =

T∑
t=1

(Dη(V, xs)−Dη(V, x̂))∇θ log pθ(x
s
t |xs1:t−1).

(12)
Due to instability of adversarial training, we additionally

include a cross entropy (CE) loss that ensures that the gen-
erator will explore an output space in a more stable man-
ner and maintain its language model [40]. The final ob-
jective of Gθ is a mixed loss function, a weighted combina-
tion of Cross-Entropy Loss (LCE) optimizing the maximum-
likelihood training objective and Adversarial Loss (LGAN)
with its gradient function defined in Equation 12:

LMIX = λLGAN + (1− λ)LCE, (13)

where we use λ = 0.995. We compare this mixed objective
to not using the CE loss in Table 1 of the main paper.

Adversarial Inference. Suppose each wordwi in a vocabu-
lary of sizeK can be sampled with a probability p(wi). One
can additionally modify the probability distribution during
sampling with a temperature parameter τ :

pτ (wi) =
p(wi)

1/τ∑K
j=1 p(wj)

1/τ
. (14)

Based on Equation 14, τ = 1 is a default sampling pro-
cedure. Setting τ < 1 shifts the distribution to favor larger
probabilities, making the overall distribution more “peaky”.
We explore parameter τ for both discriminator training, τT ,
and adversarial inference, τI . We obtain more fluent cap-
tions by setting τI < 1 during inference, however we find
it is best to set τT = 1 during discriminator training so that
it learns to distinguish natural and fake descriptions. In our
adversarial inference procedure, we sample K = 100 sen-
tences with τI = 0.2 for each for each video segment. One
can see the effect of different temperatures during inference
in Figure 5.

B. Qualitative Examples

In this section, we provide qualitative examples compar-
ing our Adversarial Inference method to its ablations, other
baselines and state-of-the-art models.

9
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(a) (b)

Figure 5: Sampling multi-sentence descriptions with different temperatures. The sentences are sampled from a pre-trained
generator with temperatures {1.0, 0.8, 0.5, 0.2}. Each sentence corresponds to a clip in a video. Note that higher temperatures
tend to lead to more diverse vocabulary with the cost of decreased fluency.

B.1. Comparison to Model Ablations and GAN

Figure 6 shows a few qualitative examples compar-
ing ground truth descriptions to the ones generated by
the following methods: MLE, SCST (with CIDEr), GAN,
MLE+SingleDis (Single Disc), and our MLE+HybridDis
(Ours). We highlight errors, e.g. objects not present in
video, in bold/red, and repeating phrases in italic/blue.
Overall, our approach leads to more correct, more flu-
ent, and less repetitive multi-sentence descriptions than the
baselines. In (a), our prediction is preferable to all the base-
lines w.r.t. the sentence fluency. While all models recognize
the presence of a baby and a person eating an ice cream,
the baselines fail to describe the scene in a coherent way,
but our approach summarizes the visual information cor-
rectly. Our model also generates more diverse descriptions
specific to what is happening in the video, often mention-
ing more interesting and informative words/phrases, such
as “trimming the hedges” in (b) or “their experience” in (c).
MLE and SCST mention less visually specific information,
and generate more generic descriptions, such as “holding a
piece of wood”. In an attempt to explore diverse phrases,
the single discriminator is more prone to hallucinating non-
existing objects, e.g. “monkey bars” in (b). Finally, our
model outperforms the baselines in terms of lower redun-
dancy across sentences. As seen in (c), our approach de-
livers more diverse content for each clip, while all others
more frequently generate “speaking/talking to the camera”,
a very common phrase in the dataset.

We provide additional examples comparing our ap-
proach to SCST and GAN in Figure 7, further illustrating
how adversarial inference improves over adversarial train-
ing in terms of correctness and fluency. Again, our approach
leads to mentioning important concepts, such as e.g. “tai

chi”. SCST results in ungrammatical sentence endings (e.g.
“a game of”, “begins to the camera”).

We also show the effect of our Pairwise Discriminator
in Figure 8. As we see, an additional consistency score be-
tween sentences helps us obtain less redundant and some-
times more correct predictions (e.g. in (a) the hybrid w/o
pair never mentions dropping the weights).

B.2. Comparison to State-of-the-Art

Figure 9 provides a comparison of descriptions obtained
by our approach to three recent video description mod-
els (VideoStory [13], Transformer [76], MoveForwardTell
[67]). While the state-of-the-art models are often able to
capture the relevant visual information, they are still prone
to issues like repetition, lack of diverse and precise con-
tent as well as content errors. In particular, VideoStory
and MoveForwardTell suffer from the dominant language
prior and repeatedly mention “the camera”, making the sto-
ries less informative and specific to the events in the video.
Despite having less repeating contents and high scores in
language metrics, the Transformer model is prone to pro-
duce incoherent phrases e.g. “a man is a bikini” or “putting
sunscreen on the beach water”, and ungrammatical endings,
e.g. “and a” in (a). On the other hand, our model captures
the visual content more precisely, e.g. in the top example
it refers to the subject as a “girl”, pointing out that the
girl is “laying on a bed”, correctly recognizing “sand cas-
tles”, etc. Besides, unlike prior work, our approach men-
tions important video relevant concepts (e.g. “choppy wa-
ters”, “rapids”, “afloat” in (b); “synchronized”, “stepper” in
(c)). Overall, we see more diversity and less repetitiveness,
along with more accurate description of video content. We
note that there is still a large room for improvement w.r.t.
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(a)

(b)

(c)

Figure 6: Comparison of our approach to MLE baseline, SCST, GAN, and Adversarial Inference with Single Discriminator.
Red/bold indicates content errors, blue/italic indicates repetitive patterns.

the human ground-truth descriptions.

B.3. Failure Analysis

Finally, we analyze failures of our approach. As shown
in the previous examples, our model is not free of errors,
e.g. it hallucinates an ice cream “cone” (Figure 6 (a)), in-
correctly mentions “showing off her new york” (Figure 6
(c)), predicts “man” instead of a woman (Figure 7 (b)) and
“woman” instead of a child (Figure 9 (a)) or “lifting” in-
stead of “dropping” (Figure 8 (a)), etc. It is also still prone

to some repetition (e.g. Figure 7 (a), (b), Figure 9 (a)). Over-
all, however, our captions improve over those of the base-
lines, as supported by our human evaluation.

We include a few additional failure cases in Figure 10,
showcasing difficult examples from the ActivityNet Cap-
tions dataset. In particular, fine-grained activities that in-
volve small objects are hard, e.g. our model confuses ap-
plying makeup with inserting a contact lens in Figure 10
(a), incorrectly mentions a “hair dryer” and “scissors” in
Figure 10 (b), and “vegetables” and “potatos” in Figure 10
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(a)

(b)

(c)

Figure 7: Comparison of our approach to MLE baseline, SCST, and GAN. Red/bold indicates content errors, blue/italic
indicates repetitive patterns.

(c). The other methods are also struggling on these chal-
lenging videos, by either making errors or lacking detail,
showing that there is still a long way to go towards solving
multi-sentence video description in the wild.

12



(a)

(b)

Figure 8: Effect of Pairwise Discriminator term in our approach. Red/bold indicates content errors. While both models in a)
are not perfectly aligned with ground truth descriptions, the one without pairwise discriminator keeps repeating lifts a weight
and fails to mention that the man drops the weight. Similarly in b), the model without pairwise discriminator mentions that
man is pushed down the hill twice in a row, while ours avoids generating similar descriptions but more diverse phrases within
the paragraph such as continue riding down the hill and shown sledding down the hill together .
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(a)

(b)

(c)

Figure 9: Comparison of our approach to state-of-the-art video description approaches (VideoStory [13], Transformer [76],
MoveForwardTell [67]). Red/bold indicates content errors, blue/italic indicates repetitive patterns.
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(a)

(b)

(c)

Figure 10: Failure cases of our approach and state-of-the-art video description approaches (VideoStory [13], Transformer
[76], MoveForwardTell [67]). Red/bold indicates content errors, blue/italic indicates repetitive patterns.

15



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[2] Jacob Andreas and Dan Klein. Reasoning about pragmat-
ics with neural listeners and speakers. In Proceedings of the
Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2016.

[3] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,
and Juan Carlos Niebles. Activitynet: A large-scale video
benchmark for human activity understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 961–970, 2015.

[4] Massimo Caccia, Lucas Caccia, William Fedus, Hugo
Larochelle, Joelle Pineau, and Laurent Charlin. Language
gans falling short. arXiv preprint arXiv:1811.02549, 2018.

[5] Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm,
Wenjie Li, Yangqiu Song, and Yoshua Bengio. Maximum-
likelihood augmented discrete generative adversarial net-
works. arXiv preprint arXiv:1702.07983, 2017.

[6] Chen Chen, Shuai Mu, Wanpeng Xiao, Zexiong Ye,
Liesi Wu, Fuming Ma, and Qi Ju. Improving image
captioning with conditional generative adversarial nets.
arXiv:1805.07112, 2018.

[7] Yangyu Chen, Shuhui Wang, Weigang Zhang, and Qingming
Huang. Less is more: Picking informative frames for video
captioning. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[8] Yin Cui, Guandao Yang, Andreas Veit, Xun Huang, and
Serge Belongie. Learning to evaluate image captioning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5804–5812, 2018.

[9] Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. To-
wards diverse and natural image descriptions via a condi-
tional gan. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2017.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
Ieee, 2009.

[11] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

[12] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,
and Trevor Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
2017.

[13] Spandana Gella, Mike Lewis, and Marcus Rohrbach. A
dataset for telling the stories of social media videos. In Pro-
ceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 968–974, 2018.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems (NIPS), pages 2672–
2680, 2014.

[15] Tszhang Guo, Shiyu Chang, Mo Yu, and Kun Bai. Improving
reinforcement learning based image captioning with natural
language prior. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing (EMNLP),
2018.

[16] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can
spatiotemporal 3d cnns retrace the history of 2d cnns and
imagenet. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, Salt Lake City, UT,
USA, pages 18–22, 2018.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[18] Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and
Zeynep Akata. Grounding visual explanations. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2018.

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[20] Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut,
David Golub, and Yejin Choi. Learning to write with coop-
erative discriminators. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics (ACL),
2018.

[21] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2016.

[23] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017.

[24] Mert Kilickaya, Aykut Erdem, Nazli Ikizler-Cinbis, and
Erkut Erdem. Re-evaluating automatic metrics for image
captioning. In Proceedings of the Conference of the Euro-
pean Chapter of the Association for Computational Linguis-
tics (EACL), 2016.

[25] Jin-Hwa Kim, Kyoung Woon On, Woosang Lim, Jeonghee
Kim, JungWoo Ha, and Byoung-Tak Zhang. Hadamard
product for low-rank bilinear pooling. In Proceedings of
the International Conference on Learning Representations
(ICLR), 2017.

16



[26] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[27] A. Kojima, T. Tamura, and K. Fukunaga. Natural language
description of human activities from video images based on
concept hierarchy of actions. International Journal of Com-
puter Vision (IJCV), 50(2):171–184, 2002.

[28] Vijay R Konda and John N Tsitsiklis. Actor-critic algo-
rithms. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 1008–1014, 2000.

[29] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), pages 706–715, 2017.

[30] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. International Journal of Computer Vi-
sion, 123(1):32–73, 2017.

[31] Michael Denkowski Alon Lavie. Meteor universal: Lan-
guage specific translation evaluation for any target language.
In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), page 376, 2014.

[32] Lijun Li and Boqing Gong. End-to-end video caption-
ing with multitask reinforcement learning. arXiv preprint
arXiv:1803.07950, 2018.

[33] Yehao Li, Ting Yao, Yingwei Pan, Hongyang Chao, and Tao
Mei. Jointly localizing and describing events for dense video
captioning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7492–
7500, 2018.

[34] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and
Eric P Xing. Recurrent topic-transition gan for visual para-
graph generation. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2017.

[35] Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and
Kevin Murphy. Improved image captioning via policy gradi-
ent optimization of spider. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), volume 3,
page 3, 2017.

[36] Igor Melnyk, Tom Sercu, Pierre L Dognin, Jarret Ross, and
Youssef Mroueh. Improved image captioning with adversar-
ial semantic alignment. arXiv:1805.00063, 2018.

[37] Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a
text-video embedding from incomplete and heterogeneous
data. arXiv preprint arXiv:1804.02516, 2018.

[38] Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yuet-
ing Zhuang. Hierarchical recurrent neural encoder for video
representation with application to captioning. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[39] Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing
Zhu. BLEU: a method for automatic evaluation of machine
translation. In Proceedings of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL), 2002.

[40] Ramakanth Pasunuru and Mohit Bansal. Reinforced video
captioning with entailment rewards. In Proceedings of the

Annual Meeting of the Association for Computational Lin-
guistics (ACL), 2017.

[41] Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014.

[42] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and
Wojciech Zaremba. Sequence level training with recurrent
neural networks. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2016.

[43] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
versarial text to image synthesis. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), 2016.

[44] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015.

[45] Zhou Ren, Xiaoyu Wang, Ning Zhang, Xutao Lv, and Li-
Jia Li. Deep reinforcement learning-based image captioning
with embedding reward. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2017.

[46] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret
Ross, and Vaibhava Goel. Self-critical sequence training for
image captioning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[47] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor
Darrell, and Kate Saenko. Object hallucination in image
captioning. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2018.

[48] Anna Rohrbach, Marcus Rohrbach, Wei Qiu, Annemarie
Friedrich, Manfred Pinkal, and Bernt Schiele. Coherent
multi-sentence video description with variable level of de-
tail. In Proceedings of the German Confeence on Pattern
Recognition (GCPR), 2014.

[49] Anna Rohrbach, Marcus Rohrbach, and Bernt Schiele. The
long-short story of movie description. In Proceedings of the
German Confeence on Pattern Recognition (GCPR), 2015.

[50] Anna Rohrbach, Marcus Rohrbach, Siyu Tang, Seong Joon
Oh, and Bernt Schiele. Generating descriptions with
grounded and co-referenced people. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[51] Naeha Sharif, Lyndon White, Mohammed Bennamoun, and
Syed Afaq Ali Shah. Learning-based composite metrics for
improved caption evaluation. In Proceedings of ACL 2018,
Student Research Workshop, pages 14–20, 2018.

[52] Rakshith Shetty and Jorma Laaksonen. Frame- and segment-
level features and candidate pool evaluation for video caption
generation. In Proceedings of the ACM international confer-
ence on Multimedia (MM), pages 1073–1076, 2016.

[53] Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hendricks,
Mario Fritz, and Bernt Schiele. Speaking the same language:
Matching machine to human captions by adversarial train-
ing. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017.

17



[54] Andrew Shin, Katsunori Ohnishi, and Tatsuya Harada. Be-
yond caption to narrative: Video captioning with multiple
sentences. In Proceedings of the IEEE IEEE International
Conference on Image Processing (ICIP), 2016.

[55] Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Chris
Pal, and Aaron Courville. Adversarial generation of natural
language. In Proceedings of the 2nd Workshop on Represen-
tation Learning for NLP, pages 241–251, 2017.

[56] Ramakrishna Vedantam, Samy Bengio, Kevin Murphy, Devi
Parikh, and Gal Chechik. Context-aware captions from
context-agnostic supervision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), volume 3, 2017.

[57] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalua-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[58] Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue,
Raymond Mooney, Trevor Darrell, and Kate Saenko. Se-
quence to sequence – video to text. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
2015.

[59] Bairui Wang, Lin Ma, Wei Zhang, and Wei Liu. Recon-
struction network for video captioning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 7622–7631, 2018.

[60] Jing Wang, Jianlong Fu, Jinhui Tang, Zechao Li, and Tao
Mei. Show, reward and tell: Automatic generation of nar-
rative paragraph from photo stream by adversarial training.
In Proceedings of the Conference on Artificial Intelligence
(AAAI), 2018.

[61] Jingwen Wang, Wenhao Jiang, Lin Ma, Wei Liu, and Yong
Xu. Bidirectional attentive fusion with context gating for
dense video captioning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 7190–7198, 2018.

[62] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment
networks: Towards good practices for deep action recogni-
tion. In European Conference on Computer Vision, pages
20–36. Springer, 2016.

[63] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2018.

[64] Xin Wang, Wenhu Chen, Yuan-Fang Wang, and
William Yang Wang. No metrics are perfect: Adver-
sarial reward learning for visual storytelling. In Proceedings
of the Annual Meeting of the Association for Computational
Linguistics (ACL), 2018.

[65] Xin Wang, Wenhu Chen, Jiawei Wu, Yuan-Fang Wang, and
William Yang Wang. Video captioning via hierarchical rein-
forcement learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
4213–4222, 2018.

[66] Ronald J Williams. Simple statistical gradient-following al-
gorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

[67] Yilei Xiong, Bo Dai, and Dahua Lin. Move forward and
tell: A progressive generator of video descriptions. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 2018.

[68] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas,
Christopher Pal, Hugo Larochelle, and Aaron Courville. De-
scribing videos by exploiting temporal structure. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV), 2015.

[69] Huanyu Yu, Shuo Cheng, Bingbing Ni, Minsi Wang, Jian
Zhang, and Xiaokang Yang. Fine-grained video captioning
for sports narrative. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6006–6015, 2018.

[70] Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and Wei
Xu. Video paragraph captioning using hierarchical recurrent
neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[71] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan:
Sequence generative adversarial nets with policy gradient. In
AAAI, pages 2852–2858, 2017.

[72] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee
Kim. End-to-end concept word detection for video caption-
ing, retrieval, and question answering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2017.

[73] Mihai Zanfir, Elisabeta Marinoiu, and Cristian Sminchis-
escu. Spatio-temporal attention models for grounded video
captioning. In Proceedings of the Asian Conference on Com-
puter Vision (ACCV), 2016.

[74] Li Zhang, Flood Sung, Feng Liu, Tao Xiang, Shaogang
Gong, Yongxin Yang, and Timothy M Hospedales. Actor-
critic sequence training for image captioning. In Advances in
Neural Information Processing Systems (NIPS Workshops),
2017.

[75] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards
automatic learning of procedures from web instructional
videos. In Proceedings of the Conference on Artificial In-
telligence (AAAI), 2018.

[76] Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher,
and Caiming Xiong. End-to-end dense video captioning with
masked transformer. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8739–8748, 2018.

[77] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networkss. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

18


