
Appendix
Data Collection
Data collection was done in two stages. In the first stage,
we collected if-then-because commands from humans sub-
jects. In the second stage, a team of annotators annotated the
data with commonsense presumptions. Below we explain the
details of the data collection and annotation process.

In the data collection stage, we asked a pool of human
subjects to write commands that follow the general format:
if 〈 state holds 〉 then 〈 perform action 〉 because 〈 i want
to achieve goal 〉. The subjects were given the following
instructions at the time of data collection:

“ Imagine the two following scenarios:
Scenario 1: Imagine you had a personal assistant that has

access to your email, calendar, alarm, weather and naviga-
tion apps, what are the tasks you would like the assistant to
perform for your day-to-day life? And why?

Scenario 2: Now imagine you have an assistant/friend that
can understand anything. What would you like that assistan-
t/friend to do for you?

Our goal is to collect data in the format “If . . . . then . . . .
because . . . .” ”

After the data was collected, a team of annotators anno-
tated the commands with additional presumptions that the
human subjects have left unspoken. These presumptions were
either in the if -clause and/or the then-clause and examples of
them are shown in Tables 1 and 4

Logic Templates
As explained in the main text, we uncovered 5 different logic
templates, that reflect humans’ reasoning, from the data after
data collection. The templates are listed in Table 5. In what
follows, we will explain each template in detail using the
examples of each template listed in Tab. 5.

In the blue template (Template 1), the state results in a
“bad state” that causes the not of the goal. The speaker asks
for the action in order to avoid the bad state and achieve
the goal . For instance, consider the example for the blue
template in Table 5. The state of snowing a lot at night, will
result in a bad state of traffic slowdowns which in turn causes
the speaker to be late for work. In order to overcome this bad
state. The speaker would like to take the action , waking up
earlier, to account for the possible slowdowns cause by snow
and get to work on time.

In the orange template (Template 2), performing the
action when the state holds allows the speaker to
achieve the goal and not performing the action when the
state holds prevents the speaker from achieving the goal .
For instance, in the example for the orange template in Table
5 the speaker would like to know who the attendees of a
meeting are when the speaker is walking to that meeting so
that the speaker is prepared for the meeting and that if the
speaker is not reminded of this, he/she will not be able to
properly prepare for the meeting.

In the green template (Template 3), performing the
action when the state holds allows the speaker to take
a hidden action that enables him/her to achieve the desired
goal . For example, if the speaker is reminded to buy flower

bulbs close to the Fall season, he/she will buy and plant the
flowers (hidden action s) that allows the speaker to have a
pretty spring garden.

In the purple template (Template 4), the goal that the
speaker has stated is actually a goal that they want to avoid.
In this case, the state causes the speaker’s goal , but the
speaker would like to take the action when the state holds
to achieve the opposite of the goal . For the example in
Tab. 1, if the speaker has a trip coming up and he/she buys
perishables the perishables would go bad. In order for this
not to happen, the speaker would like to be reminded not
to buy perishables to avoid them going bad while he/she is
away.

The rest of the statements are categorized under the “other”
category. The majority of these statements contain conjunc-
tion in their state and are a mix of the above templates. A
reasoning engine could potentially benefit from these logic
templates when performing reasoning. We provide more de-
tail about this in the Extended Discussion section in the
Appendix.

Prolog Background
Prolog (Colmerauer 1990) is a declarative logic programming
language. A Prolog program consists of a set of predicates.
A predicate has a name (functor) and N ≥ 0 arguments. N
is referred to as the arity of the predicate. A predicate with
functor name F and arity N is represented as F (T1, . . . , TN )
where Ti’s, for i ∈ [1, N ], are the arguments that are arbitrary
Prolog terms. A Prolog term is either an atom, a variable or
a compound term (a predicate with arguments). A variable
starts with a capital letter (e.g., Time) and atoms start with
small letters (e.g. monday). A predicate defines a relationship
between its arguments. For example, isBefore(monday, tues-
day) indicates that the relationship between Monday and
Tuesday is that, the former is before the latter.

A predicate is defined by a set of clauses. A clause is either
a Prolog fact or a Prolog rule. A Prolog rule is denoted with
Head :− Body., where the Head is a predicate, the Body is a
conjunction (∧) of predicates, :− is logical implication, and
period indicates the end of the clause. The previous rule is
an if-then statement that reads “if the Body holds then the
Head holds”. A fact is a rule whose body always holds, and
is indicated by Head. , which is equivalent to Head :− true.
Rows 1-4 in Table 6 are rules and rows 5-8 are facts.

Prolog can be used to logically “prove” whether a
specific query holds or not (For example, to prove that
isAfter(wednesday,thursday)? is false or that status(i, dry,
tuesday)? is true using the Program in Table 6). The proof
is performed through backward chaining, which is a back-
tracking algorithm that usually employs a depth-first search
strategy implemented recursively. In each step of the recur-
sion, the input is a query (goal) to prove and the output is
the proof’s success/failure. in order to prove a query, a rule
or fact whose head unifies with the query is retrieved from
the Prolog program. The proof continues recursively for each
predicate in the body of the retrieved rule and succeeds if all
the statements in the body of a rule are true. The base case
(leaf) is when a fact is retrieved from the program.



Table 4: Example if-then-because commands in the data and their annotations. Annotations are tuples of (index, missing text)
where index shows the starting word index of where the missing text should be in the command. Index starts at 0 and is calculated
for the original utterance.

Utterance Annotation

If the temperature ( ·
↓
) is above 30 degrees ( ·

↓
)

then remind me to put the leftovers from last night into the fridge
because I want the leftovers to stay fresh

(2, inside)
(7, Celsius)

If it snows ( ·
↓
) tonight ( ·

↓
)

then wake me up early
because I want to arrive to work early

(3, more than two inches)
(4, and it is a working day)

If it’s going to rain in the afternoon ( ·
↓
)

then remind me to bring an umbrella ( ·
↓
)

because I want to stay dry

(8, when I am outside)
(15, before I leave the house)

Table 5: Different reasoning templates of the statements that we uncovered, presumably reflecting how humans logically reason.
∧, ¬, :− indicate logical and, negation, and implication, respectively. action h is an action that is hidden in the main utterance
and action (state ) indicates performing the action when the state holds.

Logic template Example Count

1. (¬(goal ) :− state )∧
(goal :− action (state ))

If it snows tonight
then wake me up early
because I want to arrive to work on time

65

2. (goal :− action (state ))∧
(¬(goal ) :− ¬(action (state )))

If I am walking to a meeting
then remind me who else is there
because I want to be prepared for the meeting

50

3. (goal :− action h)∧
(action h :− action (state ))

If we are approaching Fall
then remind me to buy flower bulbs
because I want to make sure I have a pretty Spring garden.

17

4. (goal :− state )∧
(¬(goal ) :− action (state ))

If I am at the grocery store but I have a trip coming up in the next week
then remind me not to buy perishables
because they will go bad while I am away

5

5. other
If tomorrow is a holiday
then ask me if I want to disable or change my alarms
because I don’t want to wake up early if I don’t need to go to work early.

23

At the heart of backward chaining is the unification opera-
tor, which matches the query with a rule’s head. Unification
first checks if the functor of the query is the same as the
functor of the rule head. If they are the same, unification
checks the arguments. If the number of arguments or the arity
of the predicates do not match unification fails. Otherwise
it iterates through the arguments. For each argument pair,
if both are grounded atoms unification succeeds if they are
exactly the same grounded atoms. If one is a variable and the
other is a grounded atom, unification grounds the variable
to the atom and succeeds. If both are variables unification
succeeds without any variable grounding. The backwards
chaining algorithm and the unification operator is depicted in
Figure 3.

Parsing
The goal of our parser is to extract the state , action and
goal from the input utterance and convert them to their logi-

cal forms S(X), A(Y ), and G(Z), respectively. The parser
is built using Spacy (Honnibal and Montani 2017). We imple-
ment a relation extraction method that uses Spacy’s built-in
dependency parser. The language model that we used is the
en coref lg−3.0.0 released by Hugging face8. The predicate
name is typically the sentence verb or the sentence root. The
predicate’s arguments are the subject, objects, named entities
and noun chunks extracted by Spacy. The output of the rela-
tion extractor is matched against the knowledge base through
rule-based mechanisms including string matching to decide
weather the parsed logical form exists in the knowledge base.
If a match is found, the parser re-orders the arguments to
match the order of the arguments of the predicate retrieved
from the knowledge base. This re-ordering is done through a
type coercion method. In order to do type coercion, we use

8https://github.com/huggingface/neuralcoref-models/releases/
download/en coref lg-3.0.0/en coref lg-3.0.0.tar.gz



status(i, dry, tuesday)

status(Person1=i, dry, Date1=tuesday)

isInside(Person1=i, Building1, Date1=tuesday)

isInside(i, home, tuesday)

building(Building1)

building(home)

Figure 3: Sample simplified proof tree for query status(i, dry, tuesday). dashed edges show successful unification, orange nodes
show the head of the rule or fact that is retrieved by the unification operator in each step and green nodes show the query in each
proof step. This proof tree is obtained using the Prolog program or K shown in Tab. 6. In the first step, unification goes through
all the rules and facts in the table and retrieves rule number 2 whose head unifies with the query. This is because the query and
the rule head’s functor name is status and they both have 3 arguments. Moreover, the arguments all match since Person1 grounds
to atom i, grounded atom dry matches in both and variable Date1 grounds to tuesday. In the next step, the proof iterates through
the predicates in the rule’s body, which are isInside(i, Building1, tuesday) and building(Building1), to recursively prove them
one by one using the same strategy. Each of the predicates in the body become the new query to prove and proof succeeds if all
the predicates in the body are proved. Note that once the variables are grounded in the head of the rule they are also grounded in
the rule’s body.

Table 6: Examples of the commonsense rules and facts in K

1 isEarlierThan(Time1,Time2) :- isBefore(Time1,Time3),
isEarlierThan(Time3,Time2).

2 status(Person1, dry, Date1) :- isInside(Person1, Building1, Date1),
building(Building1).

3
status(Person1, dry, Date1) :- weatherBad(Date1, ),

carry(Person1, umbrella, Date1),
isOutside(Person1, Date1).

4 notify(Person1, corgi, Action1) :- email(Person1, Action1).

5 isBefore(monday, tuesday).

6 has(house, window).

7 isInside(i, home, tuesday).

8 building(home).

the types released by Allen AI in the Aristo tuple KB v1.03
Mar 2017 Release (Dalvi Mishra, Tandon, and Clark 2017)
and have added more entries to it to cover more nouns. The
released types file is a dictionary that maps different nouns to
their types. For example, doctor is of type person and Tues-
day is of type date. If no match is found, the parsed predicate
will be kept as is and CORGI tries to evoke relevant rules
conversationally from humans in the user feedback loop in
Figure 1.

We would like to note that we refrained from using a
grammar parser, particularly because we want to enable open-
domain discussions with the users and save the time required
for them to learn the system’s language. As a result, the
system will learn to adapt to the user’s language over time

since the background knowledge will be accumulated through
user interactions, therefore it will be adapted to that user. A
negative effect, however, is that if the parser makes a mistake,
error will propagate onto the system’s future knowledge. This
is an interesting future direction that we are planning to
address.

Inference
The inference algorithm for our proposed neuro-symbolic
theorem prover is given in Alg. 1. In each step t of the proof,
given a query Q, we calculate qt and rt from the trained
model to compute rt+1. Next, we choose k entries of Mrule

corresponding to the top k entries of rt+1 as candidates for
the next proof trace. k is set to 5 and is a tuning parameter. For
each rule in the top k rules, we attempt to do variable/argu-
ment unification by computing the cosine similarity between
the arguments ofQ and the arguments of the rule’s head. If all
the corresponding pair of arguments in Q and the rule’s head
have a similarity higher than threshold, T1 = 0.9, unification
succeeds, otherwise it fails. If unification succeeds, we move
to prove the body of that rule. If not, we move to the next
rule.

Extended Discussion
Table 7 shows the performance breakdown with respect to
the logic templates in Table 5. Currently, CORGI uses a gen-
eral theorem prover that can prove all the templates. The
large variation in performance indicates that taking into ac-
count the different templates would improve the performance.
For example, the low performance on the green template is
expected, since CORGI currently does not support the extrac-
tion of a hidden action from the user, and interactions only
support extraction of missing goal s. This interesting obser-
vation indicates that, even within the same benchmark, we



Algorithm 1 Neuro-Symbolic Theorem Prover

Input: goalG(Z), Mrule, Mvar, Model parameters,
threshold T1, T2, k

Output: Proof P
r0 ← 0 . 0 is a vector of 0s
P = PROVE(G(Z), r0, [])
function PROVE(Q, rt, stack)

embed Q using the character RNN to obtain qt
input qt and rt to the model and compute rt+1 (Equa-

tion (2))
compute ct (Equation (2))
{R1 . . . Rk} ← From Mrule retrieve k entries corre-

sponding to the top k entries of rt+1

for i ∈ [0, k] do
SU ← SOFT UNIFY(Q, head(Ri))
if SU == False then

continue to i+ 1
else

if ct > T2 then
return stack

add Ri to stack
PROVE(Body(Ri), rt+1, stack) . Prove the

body of Ri
return stack

function SOFT UNIFY(G, H)
if arity(G) 6= arity(H) then

return False
Use Mvar to compute cosine similarity Si for all cor-

responding variable pairs in G and H
if Si > T1 ∀ i ∈ [0, arity(G)] then

return True
else

return False

might need to develop several reasoning strategies to solve
reasoning problems. Therefore, even if CORGI adapts a gen-
eral theorem prover, accounting for logic templates in the
conversational knowledge extraction component would allow
it to achieve better performance on other templates.

Table 7: Number of successful reasoning tasks vs number
of attempts under different scenarios. In CORGI’s Oracle
unification, soft unification is 100% accurate. LT stands for
Logic Template and LTi refers to template i in Table 5.

CORGI LT1 LT2 LT3 LT5

Oracle Unification 24% 38% 11% 0%




