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Abstract—Super-resolution aims at increasing the resolution
and level of detail within an image. The current state of the art
in general single-image super-resolution is held by NESRGAN+,
which injects a Gaussian noise after each residual layer at
training time. In this paper, we harness evolutionary methods
to improve NESRGAN+ by optimizing the noise injection at
inference time. More precisely, we use Diagonal CMA to optimize
the injected noise according to a novel criterion combining quality
assessment and realism. Our results are validated by the PIRM
perceptual score and a human study. Our method outperforms
NESRGAN+ on several standard super-resolution datasets. More
generally, our approach can be used to optimize any method
based on noise injection.

I. INTRODUCTION

Super-resolution has received much attention from the com-
puter vision and machine learning communities and enjoys
a wide range of applications in domains such as medical
imaging [9], [29], security [36], [27] and other computer
vision tasks [5], [13], [44], [28]. Several architectures were
proposed to maximize the Peak Signal-to-Noise Ratio (PSNR)
[7], [21], [22], [6]. However, the PSNR score contradicts
quality assessments from human observers and PSNR-oriented
methods tend to produce blurry images [4], [32]. Recent
works [47], [33], [51] evaluate their models based on the PIRM
perceptual index, which combines the MA [24] and NIQE [26]
scores and is related to perceptual quality.

Methods based on Generative Adversarial Networks
(GANs) are especially successful at producing sharp and
realistic images. Among them, we can list Super Resolution
GANs (SRGANs) [23], and follow up works [33], [47], [30],
[41], [23] that perform well according to the PIRM criterion.
In this paper, we improve SRGAN and its variant known as
NESRGAN+ [33] that uses noise injection [45] at training
time. We consider the noise injection as a free parameter that
can be leveraged in order to improve the output quality. More
precisely, at inference time, we optimize the noise injection
using an evolutionary algorithm in order to produce sharper
and more detailed images. Our novel objective function com-
bines an Image Quality Assessment tool, Koncept512 [15],
and the discriminator of the GAN in order to improve both
image quality and realism. Thanks to our proposed score, our
criterion is also robust across datasets and requires little hyper-
parameter tuning.
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Fig. 1. Tarsier compared to baselines on the eye of the boy
in set5. Compared to NESRGAN+ and to other baselines, the
image generated by Tarsier is sharper.

NESRGAN+ Tarsier

Fig. 2. Left: baseline with noise set to zero at inference time
(NESRGAN+). Right: Our result, where some details on the
image optimized with Diagonal CMA are sharper than on the
baseline image, notably the neck, eye, and beak.

When optimizing our objective function, gradient-based
optimization methods classically used in deep learning (e.g.
Adam, Gradient Descent) quickly get stuck on critical points
and only result in marginal improvements in our criterion.



Evolutionary methods [14] are known as the jeep of artifi-
cial intelligence [42], [25]: they are compatible with rugged
objective functions without gradient and search for flat, stable
optima [19]. Moreover, the work [37], [40] optimizing the
latent space of GANs finds that evolutionary methods are
especially robust to imperfect surrogate objective functions.
Our experiments also support the use of evolutionary methods
for optimizing noise injection in GANs: they show that Diag-
onal CMA is well suited to optimizing our rugged objective
criterion, as it outperforms gradient-based methods on many
datasets. When optimizing our criterion with an evolution
strategy, we produce sharper and more detailed images. We
outperform NESRGAN+ and other Super Resolution methods
quantitatively (i.e. according the PIRM perceptual index) and
qualitatively (according to a human study). A short paper [39]
presented the idea of merging super-resolution GAN and
quality estimation. The present paper contains experimental
results, equations and detailed algorithms.

II. BACKGROUND

A. NESRGAN+: noise injection in super-resolution GANs

SRGAN [23], an application of conditional GANs to super-
resolution, showed that GANs are well suited to improving the
perceptual quality of images generated with Super Resolution.
SRGAN is equipped with attention in [31], and made size-
invariant thanks to global pooling in [8]. Sometimes extended
with dense connections, it performs well for perception-related
measures [48]. ESRGAN [47] is an enhancement based on
a novel architecture containing blocks without batch normal-
ization layers [17], use of Relativistic average GAN [18]
and features before activation for the perceptual loss. NES-
RGAN+ [33] is an extension of ESRGAN using additional
residual connections and noise injection as depicted in Fig. 3.
Gaussian noise is added to the output of each of the 23
residual layers of each of the 3 blocks (total 69 layers)
along with learned per-feature scaling factors. It leverages
stochastic variations that randomize only local aspects of the
generated images without changing our global perception of
these images, in a spirit similar to [20]. The injected noise z
is usually set to zero at inference time. In the present paper,
we consider z 6= 0, optimized by evolutionary algorithms
based on an objective function built with Koncept512 and the
discriminator.

B. Koncept512: image quality metric via supervised deep
learning

We modify our conditional GAN to improve the quality
of the generated images by considering the Koncept512 [15]
image quality assessment (IQA) model.

Koncept512 is built by training a deep-learning model to
rate the quality of images from the KonIQ-10k dataset. The
KonIQ-10k dataset is the largest, reliably annotated in-the-
wild IQA publicly available dataset, consisting of 10,073
subjectively rated images, each rated by 120 users. The
images are sourced from Flickr and selected to cover a
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Fig. 3. Top: NESRGAN+ training. A Gaussian noise z is injected at
training time. At test time, z is set to zero. Bottom: our Tarsier noise
optimization method. We use a pre-trained NESRGAN+ generator
to generate high resolution images from low resolution images and
a noise chosen using an optimizer that maximizes our criterion

wide range of content sources (object categories) and quality-
related indicators. The domain of the images in KonIQ-10k is
particularly suitable for evaluating super-resolution methods.
As the images on Flickr are predominantly taken by amateur
photographers, they often focus incorrectly, take hand-held
shots producing motion-blurs, or take pictures in low-light
conditions.

For brevity, the Koncept512 IQA model will be referred to
as K. It takes as input an image I and outputs its estimated
quality score K(I). Koncept512 is highly accurate, with a
performance on the KonIQ-10k test set equivalent to the mean
opinion score coming from nine users. However, when K is
cross-tested on another in-the-wild IQA database (LIVE in-
the-wild), implying some domain shift, the performance drops;
in this case, the model is equivalent to roughly the opinion of
a single user. Thus, K is effective on in-the-wild images and
may not fare well on synthetic degradation. The limitations of
the model require careful consideration when deploying it for
guided super-resolution, as done in the present work.

III. TARSIER: OPTIMIZED NOISE INJECTION

Given a low-resolution image ILR and a noise vector z of
dimension d, we can use a trained NESRGAN+ generator
G to generate a high resolution image ISR = G(z, ILR).
Whereas GANs with noise injection typically use z = 0, our
algorithm Tarsier (named after a family of haplorrhine pri-
mates with excellent eyesight) considers z = z∗ maximizing
one of the criteria defined below. See Figure 3 for an overview
of our approach.



A. Image Quality Score

A naive quality scorer could consist in simply applying
Koncept512 to the output of NESRGAN+:

SNaive
q = K(G(z, ILR)).

We observe that the scores given by K remain accurate as long
as the generated images remain similar to natural images or to
the images generated by NESRGAN+. However, the images
obtained by optimizing for SNaive

q are not in this category:
they tend to contain many artifacts, which increases the score
of K despite being unrealistic and visually displeasing. It
prompted us to optimize a pessimistic version of the score
given by K:

Sq(z) = L+(K(G(z, ILR))−K(G(0, ILR))) (1)

with

L+(x) =

{
log(1 + x) if x > 0

x otherwise.
(2)

We call Sq pessimistic because it trusts bad scores while
taking a safety margin for good ones. As K(G(0, ILR))
is constant, Sq is equivalent to SNaive

q when the proposed
z fares worse than the zero-noise injection baseline (i.e.
K(G(z, ILR)) − K(G(0, ILR)) < 0). In other words, we
consider that SNaive

q is an accurate evaluation of the quality
of the generated image when it gives a poor score. Inversely,
when the proposed z fares better than the baseline (i.e.
K(G(z, ILR))−K(G(0, ILR)) > 0), Sq increases logarithmi-
cally with the score of K in order to account for the possibility
that the image quality may be overestimated. Moreover, Sq

increases similarly to SNaive
q for K(G(z, ILR)) very close to

the baseline score, while it increases slowly when it is much
larger.

Another advantage of the logarithm in the L+ function is
that it makes our optimization process less scale-dependent
when the proposed z clearly outperforms the baseline: when
x = K(G(z, ILR)) − K(G(0, ILR)) is large, multiplying x
by a constant is almost equivalent to adding a constant to our
score and does not change the behaviour of our optimizer.
This property makes our hyper-parameters more robust across
images and datasets.

B. Realism Score

Optimizing for Sq compels the generator to produce high-
quality images, but nothing forces it to generate realistic
images. Generative Adversarial Networks train a generator
concurrently with a discriminator, which aims at evaluating
the realism of a high-resolution image given an input low-
resolution image. The later can be used to produce a realism
score. The discriminator still suffers from the same issue as
K. It is trained on real high-resolution images and images
generated by the NESRGAN+ generator. Since the noise is
sampled from a Gaussian distribution centered on zero during
training, the discriminator is inaccurate on images generated
with noises having extreme norms or directions. In order

to mitigate this issue, we define a pessimistic realism score
similarly to the quality score defined in Section III-A:

Sr(z) = L+(D(G(z, ILR))−D(G(0, ILR))), (3)

where D(I) is the discriminator score for the image I .
In practice, the discriminator can only take images of di-

mension 128×128 as input and the high-resolution images we
generate with NESRGAN+ are always of higher dimension.
To compute Sr on the whole image, we divide the image in
patches of size 128 × 128 and compute the score on each
one of them. In order to ensure that each part of the image
looks realistic, we define Sr as the minimum score over all
the patches.

C. Final Criterion

We define our final criterion, which is to be maximized, by
adding a l2 penalization to the quality score (Eq. 1) and the
realism score (Eq. 3) with suitable coefficients:

C1(z) = λqSq(z) + λrSr(z)−
λp
d
||z||22, (4)

where d is the dimension of z, and λq, λr, λp are scale factors
for each term. The application of this first criterion yields
better results on blurry images. This observation motivates the
definition of a second criterion that adapts the noise injection
to the blurriness of the input. We define it as follows:

C2(z) = λqSq(z) + λrSr(z)−
λpB(G(0, ILR))

d
||z||22, (5)

where B(I) is the standard deviation of the Laplacian of image
I , divided by

√
1000 in order to keep the regularization on

the same order of magnitude. The value of B(I) increases
when the blurriness of image I decreases. Maximizing Eq. 5
increases the regularization when the images are less blurry.

We tested several values of the hyperparameters λq , λr and
λp. With our pessimistic scores, Tarsier is not very sensitive
to small variations of the hyperparameters. While some values
lead to slightly better results on some of the datasets, we find
the results obtained by setting λq = λr = λp = 1 to be
satisfactory and particularly robust across datasets.

Tarsier uses Diagonal Covariance Matrix Adaptation
(DCMA) [38] for optimizing our criteria. CMA Evolution
Strategy [12], [10] is a second order method which estimates
a covariance matrix closely related to the Hessian matrix
in Quasi-Newton methods. It requires no tedious parameter
tuning, since the choice of most of the internal parameters
of the strategy is automatically done during training with
methods such as Cumulative Step-Size Adaptation [2]. DCMA
is a variant of CMA in which the covariance matrix is
constrained to be diagonal. It reduces the time and space
complexity of CMA from quadratic to linear. It evaluates
fewer parameters for the covariance matrix and requires fewer
function evaluations than CMA for estimating the covariance
in high dimension.



IV. EXPERIMENTS

A. Setup

As in [33], we use an NESRGAN+ model trained on
DIV2K [1], improving significantly the performance of ES-
RGAN by injecting noise at training time. Noise vectors
are injected after each residual connection in every residual
dense block, and are sampled randomly from a Gaussian
distribution at training time. At inference time, Tarsier learns
noise vectors for each residual connection. We consider them
as additional degrees of freedom for further improving the
performance, as measured by our criterion. The dimension of
the noise is d =27,600. We use the code and the weights
of the Koncept512 model available online1. We compute the
Tarsier criterion on a Tesla V100 GPU. We run ×4 up-
scaling experiments on widely used super-resolution datasets:
Set5[3], Set14[50], the PIRM Validation and Test datasets[4],
Urban100[16], and OST300[46]. We compute the PIRM score
on Matlab using the code made available for the PIRM2018
challenge2. We refer to [47], [24], [26] and references therein
for a precise definition of the perceptual quality estimation
used in the present document. Here is a description of the
optimizers we assess to maximize Eq. 4 and 5.

B. Optimizer choice: evolutionary computation

We use evolutionary algorithms implemented in the never-
grad library [34]. The motivations for this choice are:
• As pointed out in [19] and [37] in the context of computer

vision, evolutionary algorithms provide solutions robust to
imperfect objective functions. More precisely, by focusing
on optima stable by random variable-wise perturbations,
evolutionary algorithms behave well on the real objective
function (in particular, human assessment) when we opti-
mize a proxy (here, our criterion). We see in Table I that,
even from a purely numerical point of view, evolutionary
computation outperforms gradient-based algorithms in the
present setting. We observe that gradient-based methods
tend to get stuck in suboptimal critical points after a few
hundreds iterations. Gradient descent slightly outperforms
Adam on all datasets but its performances are still way
below these of Diagonal CMA.

• There is no need for gradient estimation. Although our
criteria are differentiable, evolutionary methods could also
be used to optimize non-differentiable criteria (e.g., direct
human feedback). Moreover, computing the overall gradient
over distinct deep learning frameworks can be a burden, and
evolutionary methods do not require it. .

• The optimization is naturally parallel.
We mainly use Diagonal CMA [38] as a derivative-free
optimization algorithm because it is fast and reliable. Com-
pared to CMA, the diagonal covariance matrix reduces the
computational cost and reduces the budget requirement as
we do not have to evaluate an entire covariance matrix.
Compared to the (1 + 1)-evolution strategy with one-fifth

1https://github.com/subpic/koniq
2https://github.com/roimehrez/PIRM2018

TABLE I
COMPARISON OF DERIVATIVE-FREE METHODS (CMA, DIAGONAL

CMA, THE 1+1 EVOLUTION STRATEGY [43], DIFFERENTIAL
EVOLUTION) AND GRADIENT-BASED METHODS (ADAM AND

GRADIENT DESCENT) FOR OPTIMIZING C1 (HIGHER IS BETTER).
GRADIENT-BASED METHODS TEND TO GET STUCK IN

SUB-OPTIMAL LOCAL MINIMA AND DO NOT PERFORM AS WELL
AS DIAGONAL CMA.

Dataset/Method Set5 Set14 PIRM Val

Random Search 1.28± 0.65% 0.61± 0.50 0.06± 0.03
CMA 1.75± 1.36 0.71± 0.68 0.28± 0.16
DCMA 4.51± 0.86 3.80± 0.50 3.13± 0.13
(1+1) 3.74± 2.1 1.63± 1.36 0.01± 0.02
GD 1.79± 0.77 0.85± 0.54 0.93± 0.18
ADAM 1.51± 0.77 0.84± 0.63 0.82± 0.23

TABLE II
GRADIENT-BASED METHODS ALSO DO NOT PERFORM AS WELL
ACCORDING TO THE PIRM PERCEPTUAL SCORE [4] (LOWER IS
BETTER). THE BUDGET IS 10000 FUNCTION EVALUATIONS. FOR

EACH OPTIMIZER, THE BLUR VERSION OPTIMIZES C2 (EQ. 5) AND
THE OTHER VERSION OPTIMIZES C1 (EQ. 4). BEST RESULT

SHOWN IN BOLD, SECOND BEST UNDERLINED.

DCMA DCMA GD GD ADAM ADAM
+ Blur + Blur +Blur

set5 2.787 2.667 3.033 3.026 2.997 2.998
set14 2.740 2.656 2.826 2.828 2.937 2.937
PIRM Val 2.348 2.335 2.376 2.375 2.399 2.399
PIRM Test 2.260 2.277 2.297 2.297 2.307 2.307

rule, DCMA has anisotropic mutations: it adapts the step-size
on each dimension. DCMA frequently ranks high in black-
box optimization benchmarks, particularly when the problem
is partially separable and/or when the dimension is large.
This is definitely the case here with 27600 parameters, while
the black-box optimization literature focuses on dimensions
< 200[11]. DCMA and Differential Evolution (DE) are often
perform best among algorithms not using specific decompo-
sitions, e.g. Nevergrad’s dashboard[35] or LSGO[49]. In our
experiments, DCMA performed better than DE.

SAN Tarsier

Fig. 4. SAN and Tarsier on the baboon image from Set 14. The
image generated by SAN is visibly more blurry than that generated
by Tarsier. It is also the case for other images and when comparing
SAN to ESRGAN.

https://github.com/subpic/koniq
https://github.com/roimehrez/PIRM2018


TABLE III
PIRM PERCEPTUAL SCORES COMPUTED (LOWER IS BETTER) ON
THE RAW OUTPUTS OF SEVERAL SUPER-RESOLUTION MODELS.
FOR EACH DATASET, THE BEST RESULT IS SHOWN IN BOLD AND

THE SECOND BEST IS UNDERLINED. TARSIER OPTIMIZES C1 (EQ.
4) WHILE TARSIER + BLUR OPTIMIZES C2 (EQ. 5). BOTH TARSIER
AND TARSIER+BLUR OUTPERFORM NESRGAN+ IN ALL CASES.

Dataset SAN[6] ENHANCENET ESRGAN NESRGAN+ Tarsier Tarsier
+ Blur

set5 5.94 2.93 3.76 3.21 2.79 2.67
set14 5.37 3.02 2.93 2.80 2.74 2.66
PIRM Val - 2.68 2.55 2.37 2.35 2.34
PIRM Test - 2.72 2.44 2.29 2.26 2.28
Urban100 5.12 3.47 3.77 3.55 3.50 3.49
OST300 - 2.82 2.49 2.49 2.47 2.47

C. Results

Our main quantitative experimental results are presented
in Table II and Table III. In Table II, we compare gradient-
based methods to the evolutionary method that performed best
according to our criterion: Diagonal CMA. Diagonal CMA
outperforms both GD and ADAM on four standard super-
resolution datasets and when optimizing either the Blur or
the normal criterion. Using the results from Tables I and II,
we decided to eliminate gradient-based methods and to use
Diagonal CMA to optimize our criterion in Tarsier.

a) Perceptual score: In Table III, we use the PIRM score
to compare our method, Tarsier, to NESRGAN+[33], ESR-
GAN[47], ENHANCENET[41] and SAN [6]. All our baselines
are perception-driven approaches based on GANs, except SAN
that is based on a convolution network with attention. ES-
RGAN outperforms ENHANCENET on every dataset except
set5, which is much smaller than the others, and Urban100, on
which ENHANCENET is particularly efficient. NESRGAN+
outperforms ESRGAN on every dataset, even though it is
only by a small margin for OST300. However, ENHANCENET
still surpasses NESRGAN+ on set5 and Urban100. Whether
it uses the Blur or the non-Blur criterion, Tarsier outperforms
NESRGAN+ on every dataset. It also outperforms every
other method on every dataset except Urban100, on which
ENHANCENET is slightly better. SAN performs well in terms
of PSNR, but not in terms of perceptual scores. The images it
generates appear much blurrier than those generated by Tarsier
or any of our baselines, see Fig. 4.

b) Qualitative comparison: We present some examples
in Figs. 1 and 2. Compared to NESRGAN+, Tarsier generates
images that are sharper and more detailed. For instance, Tarsier
produces sharper and more natural eyelashes on the boy in
Fig. 1. On Fig. 2, it is capable of generating sharper patterns
and shadows on the stones behind the swan, as well as more
convincing wet feathers on the neck of the animal. The beak
also appears less blurry. We show in Fig. 5 that Tarsier
does more than applying a classical sharpening filer (unsharp
masking) on top of NESRGAN+, while keeping the image
clean, and reducing graininess.

Fig. 5. On the left, unsharp masking applied to the output of
NESRGAN+. On the right, the output of Tarsier. We set the
amount, radius, and threshold parameters of unsharp masking
to 80%, 5 pixels and 0 respectively.

λr = 0 λr = 1

Raw
Score

Pessimistic
Score

Fig. 6. Ablation study for the pessimistic score and the realism
loss. Tarsier is on the bottom right.

c) Human study: We conducted a double-blind human
study to validate that Tarsier improves the images generated
by NESRGAN+. We took random samples of 20 images for
the PIRM Test dataset and 30 for the OST300 dataset. We
generated high resolution images with NESRGAN+ and Tar-
sier, and asked human reviewers to pick the best image among
the two images shown in a random order. As NESRGAN+
already generates high-quality images, it is difficult to compare
its output to that of Tarsier without zooming on the image. In
order to make the comparison easier for the annotators, we
generated zoomed-in images automatically for most different
sub-images (measured using the PSNR). The images generated
using Tarsier are preferred in 75.0% of the cases for PIRM
Val and 76.7% for OST300. On both sets, Tarsier significantly
outperforms NESRGAN+ (p-value < 0.05).

D. Ablation Study

We study the impact of each term in our criterion by setting
the corresponding parameters to 0. We observe that removing
both the realism score and the penalization (λr = λp = 0)
leads to the generation of images with unrealistic and visually
displeasing artifacts (see Fig. 7). Both terms act as regulariz-
ers: if one of them is set to 1, most of the artifacts disappear.
Removing only the penalization term (λp = 0) sometimes
produces slightly more detailed images (e.g., sheep on Fig. 7).
However, it can also produce some artifacts (see bird on
Fig. 8). We decided to keep the penalization term for more



NESRGAN+ Our result with Tarsier

NESRGAN+ λr = λp = 0 λr = 0
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Fig. 7. Ablation study on an image from the PIRM validation dataset.

robustness. Removing the realism score (λr = 0) frequently
produces small artifacts (see Fig. 8). Without the quality term
(λq = 0), the images become more blurry and similar to those
obtained with z = 0 (NESRGAN+).

As expected, the logarithm in the definition of the quality
(Eq. 1) and realism (Eq. 3) scores can act as a regularizer and
keep the generated images realistic. It is particularly visible
when we also remove the realism score from our criterion
(see λr = 0 on Fig. 6). The artifacts can also be avoided by
increasing the penalization coefficient. However, without the
pessimistic loss, the right value for λr would depend on the
dataset and even on the image within a dataset. Therefore,
using the raw instead of the pessimistic scores would make
the method less robust and the penalization factor difficult and
costly to tune. The pessimistic loss is less scale-dependent and
the results it produces are much more robust across images
and datasets: all the results we present are obtained with all
the parameters set to 1. Another benefit of the pessimistic
loss is to allow us to keep the quality and realism scores on
the same scale. With the raw scores, i.e. without applying
a logarithm to positive relative scores, the optimizer tends
to optimize for whichever criterion is easiest to optimize. In
our case, the optimizer often reaches very high realism scores
(median value of 99.83 on set5 and set14) and almost ignores
the quality score (median value of 4.45). Despite that, we do
not often observe artifacts on the images generated without
the pessimistic score. It indicates that optimizing the realism
score does not easily create artifacts. However, these images
are blurrier since the quality term tends to be ignored (see right
column on Fig. 6). With the pessimistic scores, the median
value of the quality score becomes 2.42 on set5 and set14,
meaning the median raw scores goes up from 4.45 to 11.25.

NESRGAN+ Our result with Tarsier

NESRGAN+ λr = λp = 0 λr = 0

λp = 0 λq = 0 Tarsier

Fig. 8. Ablation study on an image from the set5 dataset. Removing
the realism score and the penalization produces heavy artifacts.
Removing only the penalization term still produces visible artifacts.
Removing quality score makes the image blurrier and less detailed.

V. CONCLUSION

Noise injection has been left unexploited by super-resolution
approaches that typically use noise z = 0 at inference time.
In this work, we combine the perceptual image quality assess-
ment model Koncept512 and the adversarial network output
into a novel criterion accounting for the image’s technical
quality and realism. Without retraining the model, we optimize
z using our criterion and outperform the state-of-the-art on
several standard super-resolution datasets according to the
PIRM score and to human opinion.

Our experiments show that, in addition to being easy to use,
Diagonal CMA is better suited to our problem than gradient-
based methods. On every dataset we tested, it outperformed
gradient-based methods for optimizing the criterion and when
compared using the PIRM score.

Though this optimized noise injection is applied to super-
resolution in the present paper, the method can be applied
for optimizing noise injection in general. In this paper, we
choose Koncept512 for our quality score in order to optimize
the technical quality of the images. We could use the same
method on another type of criterion (e.g. the artistic quality).
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