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Figure 1: RidgeSfM efficiently marries the classic SfM pipelines with recent deep approaches. Like classic SfM, it
employs a large scale bundle adjustment over hundreds of frames. Similar to deep methods, it is capable of harnessing
geometry priors from a large dataset with geometric annotations.

Abstract

We consider the problem of simultaneously estimating a
dense depth map and camera pose for a large set of images
of an indoor scene. While classical SfM pipelines rely on a
two-step approach where cameras are first estimated using a
bundle adjustment in order to ground the ensuing multi-view
stereo stage, both our poses and dense reconstructions are
a direct output of an altered bundle adjuster. To this end,
we parametrize each depth map with a linear combination
of a limited number of basis "depth-planes" predicted in a
monocular fashion by a deep net. Using a set of high-quality
sparse keypoint matches, we optimize over the per-frame
linear combinations of depth planes and camera poses to
form a geometrically consistent cloud of keypoints. Although
our bundle adjustment only considers sparse keypoints, the
inferred linear coefficients of the basis planes immediately
give us dense depth maps. RidgeSfM is able to collectively
align hundreds of frames, which is its main advantage over

recent memory-heavy deep alternatives that are typically
capable of aligning no more than 10 frames. Quantitative
comparisons reveal performance superior to a state-of-the-
art large-scale SfM pipeline.

1. Introduction

Estimating the 3D structure and camera motion from im-
age sequences is a traditional task that attracted the computer
vision community since its inception. Modern Structure-
from-Motion (SfM) systems [35, 37] are robust and able to
reconstruct thousands if not millions of photos from signifi-
cantly heterogeneous image collections. Suprisingly, since
the the seminal works from [13, 1, 29, 38], there has been
little change to the fundamentals of the SfM pipeline.

This comes as an even bigger surprise after deep learning
revolutionized most of the classic CV tasks - SfM did not
enjoy the benefits of deep learning to the extent other sub-



fields have, and classic SfM building blocks have prevailed.
While there have been many efforts to boost reconstruction
algorithms with deep learning [44, 41, 4, 55, 42], due to
their memory requirements, they only consider small-scale
setups with a handful of images that are incomparable to the
vast scenes that classic SfM bundle adjusters can process.
Omitting the global optimization step constitutes a signif-
icant drawback since any short-term tracking system will
eventually drift without loop closure.

In this paper, we aim at achieving a more harmonious
marriage between deep learning (DL) and the classic SfM
pipelines. Departing from the standard DL approach which
considers losses defined over dense pixel-wise predictions,
we tap into the classic idea of utilizing only sparse keypoint
matches, as their low memory footprint is the main enabler
of global optimization. However, we still employ CNNs in
order to learn powerful priors from annotated data.

The crux of our method lies in predicting the allowed
factors of variation of 3D positions of image points. More
specifically, instead of employing the standard direct monoc-
ular regression of depth for each image, we task our deep
network to predict an intermediate representation of dense
depth in the form of a set of basis "depth-planes" that span
the modes of ambiguity of the true image depth. Importantly,
our per-frame depth maps are simple linear combinations of
the basis planes, bringing several benefits that summarize
our contributions:

First, the optimized depth prediction is constrained to lie
on a compact manifold represented with a small number of
scalar coefficients of the basis planes. This alleviates the
need for ad-hoc depth regularizers, such as TV-norms.

Second, the linearity of our representation allows us to
optimize reprojection losses for only a small set of sparse
keypoints in each frame without the need to keep the entire
basis depth planes and intermediate CNN features in memory.
This brings tremendous memory savings and allows us to run
bundle adjustment at a similar scale to classic SfM pipelines.

Third, once our BA finishes, we can apply the returned ba-
sis coefficients to the depth planes to obtain the dense depth
maps in a straightforward fashion. This is more efficient than
classic SfM pipelines which require additional multi-view
stereo processing to recover dense reconstructions.

Our empirical evaluation on the ScanNet dataset reveals
that RidgeSfM outperforms a popular representative of a
classic SfM pipeline (COLMAP [35]) in a large-scale global
adjustment regime. Its performance is on par with deep
memory-heavy alternatives for pair-wise image matching.

2. Related Work
Structure-from-Motion Structure-from-Motion (SfM)
constitutes the most classic line of work that targets
recovering the 3D structure of a scene and tracking of the
camera. Starting from the early works that focused on

limited numbers of images [26, 3], modern SfM pipelines
evolved into mature systems capable of reconstructing
thousands [16, 30, 36, 48, 13, 1] if not millions of photos
of various in/outdoor scenes. A particularly popular SfM
pipeline that effectively combines the fundamental findings
from the body of previous work, COLMAP, was built by
Schoenberger et al. [35, 37]. It follows the nowadays
standard design pattern: 1) Geometrically verified keypoint
matches are established between pairs of images. 2) The
estimated matches and relative camera motions are fed
into an incremental “bundle adjustment” (BA) that globally
optimizes the camera positions and triangulates a sparse 3D
point cloud of the scene. 3) Multi-View Stereo utilizes the
inferred absolute cameras to produce dense depth maps.

SLAM Related to SfM are SLAM methods that aim at
real-time tracking of a moving camera. PTAM [21] was one
of the first practical systems that allowed real-time tracking
and mapping using a pair of reconstruction and tracking
threads. PTAM was later extended to dense reconstructions
in DTAM [27]. LSD-SLAM [12] is another notable example
of a method capable of semi-dense reconstruction and track-
ing. Finally, DSO [11] attained a good trade-off between
speed and accuracy by directly optimizing photometric error
evaluated at sparse keypoints.

The aforementioned classic SLAM and SfM systems are
carefully “hand-engineered” methods that, despite being
the current methods of choice in practice, have a limited
ability to leverage priors learnable from large geometry-
annotated datasets. The next paragraph discusses methods
that constitute promising future learning-based directions.

Deep learning of geometry. The success of deep learn-
ing brought an expected invasion of deep networks to the
SfM/SLAM domain. Initial approaches have focused solely
on monocular depth estimation [10, 22, 46, 23, 24], or on
estimating the camera pose [2, 20, 18, 19, 47]. Deep CNNs
were also leveraged to describe image pixels for better match-
ing in standard SfM pipelines [52, 8, 53, 39].

However, the most relevant approaches focus on recon-
struction of both ego-motion and depth. DeMoN [44] pre-
dicts disparities with the FlowNet architecture [17] to ground
its predictions. BA-Net, DeepTAM and LS-Net [5, 40, 54]
proposed iterative architectures capable of geometrically
aligning a pair of images. CNN-SLAM [41] and DVSO [50]
studied the use of deep monocular depth predictors for im-
proving the performance of existing SLAM pipelines. More
recently, 3DVO [49] proposed an architecture that allowed to
handle several types of reconstruction ambiguities. Several
methods have also explored unsupervised learning of depth
and ego-motion from videos [55, 51, 15, 14, 45].

Notably, CodeSLAM [4] and BA-Net [40] are similar to
our method in the parametrization of depth maps using a
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Figure 2: An overview of RidgeSfM. (a) The key component is an efficient linear parametrization of depth maps using a linear
combination of basis depth planes Bµ(I), Bσ(I) (predicted by a CNN) with coefficients β. (b) The linear parametrization
allows to execute a memory efficient bundle adjustment (BA) that only considers sparse keypoint matches and, thus, can
align thousands of frames. Once BA optimizes the coefficients β and extrinsics R, T , we can efficiently recover dense depth
D = Bµ(I) +Bσ(I)β. Our BA thus indirectly optimizes over dense depth.

latent code which is later refined with the cameras.
Unfortunately, all the aforementioned deep methods suf-

fer from large memory consumption which prevents execut-
ing a global bundle adjustment over thousands of frames.
This is because they consider dense reconstruction errors
that, apart from limiting applicability to small camera mo-
tions, require complicated decoding or matching networks
to be stored in GPU memory at reconstruction time. In
constrast, RidgeSfM optimizes all scene cameras jointly be-
cause it restricts its optimization to a set of sparse matches
in the bundle. Importantly, although we consider losses eval-
uated at sparse landmarks, the linearity of our latent depth
parametrization allows us to simultaneously solve for the
dense depth of each scene image.

Image keypoints. Sparse set of keypoints that can be
matched across images are a crucial building block of the
standard SfM pipeline. Classic examples include SIFT [25]
and ORB [33]. Deep learning approaches include LF-Net
[28], D2-Net [9], R2D2 [31], and SuperPoint [7].

3. Task and naming conventions

Given a set of images of a scene {Ii|Ii ∈ R3×H×W }Ni=1

of height H and width W , the goal of our work is estimating
the parametrization of the absolute orientation (extrinsics) of
the per-frame cameras {(Ri, Ti)|Ri ∈ SO(3), Ti ∈ R3}Ni=1

as well as the depth maps {(Di|Di ∈ RH×W }Ni=1.

We will follow the ensuing convention. By sampling
Di at a pixel location y ∈ {1, ...,W} × {1, ...,H} we can
identify y’s depth value dy ∈ R. Per-pixel depth, together
with the calibration matrixKi ∈ R3×3 of Ii’s camera, allows
to back-project each pixel y to its corresponding 3D point
x(dy) = K−1i dy[y[1], y[2], 1]

T in the camera coordinates.
Here z[k] is an operator that retrieves k-th value of a vector
z. The camera calibration matrices Ki are assumed to be
known. A point xc ∈ R3 in the coordinates of camera i is
mapped to scene coordinates xw ∈ R3 with xw = Rix

c+Ti.

4. Depth parametrization
For SfM pipelines, the parametrization of the extrinsics

{Ri, Ti} is straightforward, but the same cannot be claimed
for the per-frame depths Di. Since the set of plausible depth
maps forms a low dimensional manifold, measures have to
be taken to ensure compactness of the representation of Di.

A classic solution is to employ a regularizer, such as
TV-norm, that ensures spatial smoothness. Such regular-
izer typically entails a cumbersome hyperparameter tuning
and only indirectly enforces the depth maps to follow their
natural manifold. Furthermore, these depth regularizers are
hand-engineered functions that do not allow to learn priors
from datasets with geometric annotations.

In order to deal with the latter, recently, Bloesch et. al
[4] proposed to parametrize depths with a trained deep non-
linear mapping φCodeSLAM(βi) = Di, where βi ∈ RK is
a low dimensional latent depth code. While this greatly



improves the generated depth maps, a major disadvantage is
the substantial memory footprint due to φCodeSLAM being a
heavy de-convolutional network, which has to be evaluated
during every step of the SfM optimization.

Parametrizing depth with mean and factors of variation.
In order to deal with the aforementioned issues and obtain
a learnable memory-efficient latent depth parametrization,
RidgeSfM, similar to [40], parametrizes depth maps in a
linear fashion as a weighted combination of depth basis
planes. Our parametrization function φ takes the form:1

vec(Di) = φ(βi, Ii) = Bµ(Ii) +Bσ(Ii)βi, (1)

where βi ∈ RK is a set of linear coefficients that are used to
adjust Di. The predicted mean depth Bµ(Ii) ∈ RHW and
factors of variation Bσ(Ii) ∈ RK×HW are the outputs of a
small convolutional network B.

This formulation has two main advantages: 1) After
Bµ(Ii) and Bσ(Ii) are predicted from Ii, one can erase the
intermediate tensors of network B from memory and alter
the depth Di by only optimizing over βi. 2) As K � HW ,
our depth code βi forms a compact geometric bottleneck
that is unlikely to result in unnatural depth values: we can
optimize the coefficients for a sparse set of keypoints and
then safely extrapolate to optimized dense depth maps.

Learning depth uncertainty with Ridge Regression Loss.
Our deep network B is related to modern deep monocular
depth predictors. While the inherent ambiguity of monocular
depth estimation is considered as a limiting factor that makes
the problem underconstrained and thus hard to solve, the
linearity of eq. (1) allows us to easily train the network B.

Given a training image I annotated with a ground truth
depth map D?, we exploit the monocular depth prediction
ambiguity by letting our network predict the basis vectors
Bµ(I), Bσ(I) and solving for a β? that leads to a good
approximation of D? by employing Ridge Regression:

β? = argmin
β∈RK

‖φ(β, I)−D?‖22 + λ‖β‖22 (2)

= (Bσ(I)ᵀBσ(I) + λIK)−1Bσ(I)ᵀ(D? −Bµ(I)).

Given β?, we train our network B to minimize the following
loss function:

Ldepth(I|B,D?) = (3)

‖Bµ(I)−D?‖22 + ‖Bµ(I) +Bσ(I)β? −D?‖
+ λ‖β?‖22 + ‖RowVar(Bσ(I))− 1‖1,

where RowVar(Bσ(I)) denotes the sample variance of the
rows of Bσ(I). This encourages the network to put the

1Note that we reshape depth Di ∈ RH×W to a vector vec(Di) ∈
RHW to simplify the notation.

best-guess prediction Bµ(I) close to the ground truth, to
construct Bσ(I) such that D? ≈ D = φ(β?, I) with ‖β?‖22
small. This way, the basis Bµ/σ(I) is predicted such that it
spans the most significant modes of uncertainty of the depth
map D for image I .

Training data and network architecture. The depth pre-
diction network B is trained using batched gradient descent
to optimize the loss Ldepth averaged over a large dataset of
images and depth maps. Here we use 1412 scenes from the
ScanNet RGBD dataset for training. The architecture of B
is based on U-Net [32], built with inverted residual building
blocks [34]. Full details are in the supplementary.

5. Ridge Structure from Motion
The input to RidgeSfM is a sequence of images. For

each image Ii, we extract a sparse set of keypoint locations
yj ∈ Ii, and a corresponding collection of feature vectors.
We also use the trained depth network to predict the depth
and factors of variation Bµ/σ(Ii).

RidgeSfM, similar to classic SfM pipelines, then recon-
structs scenes in two steps. First, egomotions between pairs
of frames are estimated and then a global bundle adjustment
procedure is carried out.

5.1. Pairwise RidgeSfM

Given a pair of images (Ii, Ij), we use the values of
Bµ/σ(Ii/j) at the keypoint locations to estimate the corre-
sponding relative camera motion Rij ∈ SO(3), Tij ∈ R3.

Weakly verified matches. We create set of weakly veri-
fied matches Mij = {(ymi , ymj )|ymi ∈ Ii, y

m
j ∈ Ij}Mm=1

as follows. We first search for nearest-neighbor pairs of
keypoints in feature space. We then remove any pairs that
fail the crosscheck critera, or that are considered outliers by
OpenCV’s findFundamentalMat LMedS function.

Pairwise RidgeSfM alignment of matched keypoints.
Let bµmi (Ii) ∈ R and bσmi (Ii) ∈ RK denote per-pixel basis
vectors obtained by sampling Bµ(Ii) and Bσ(Ii) respec-
tively at location ymi . Given b(µ/σ)mi , we can obtain the per-
pixel depth with dmi (βi, Ii) = βᵀ

i b
σm
i (Ii)+b

µm
i (Ii). Finally,

dmi (βi, Ii) is used to backproject pixel ymi to its 3D cam-
era coordinates with xmi (βi, Ii) = K−1i dmi (βi, Ii)

[
ymi , 1]

T .
Then, pairwise RidgeSfM solves for {Rij , Tij , βi, βj} by
minimizing the pairwise alignment loss Lpw:

Lpw(Mij) =

M∑
m=1

`mij + λ(‖βi‖22 + ‖βj‖22);

`mij = ‖Rijxmi (βi, Ii) + Tij − xmj (βj , Ij)‖22, (4)



We minimize Lpw with coordinate descent by alternating
two steps until convergence: 1) Given βi, βj we solve for
Rij , Tij using Umeyama’s rigid alignment algorithm [43];
2) GivenRij , Tij eq. (4) reduces to a simple ridge regression
problem which allows to solve for βi, βj . The algorithm is
initialized with βi = βj = 0, corresponding to the depth
network’s predicted mean depth.

Egomotion estimation by progressive growing of
matches. The 3D alignment procedure is not robust to
outliers, so we use RANSAC to build a subsetMI

ij ⊂Mij

of strongly geometrically verified inlier matches.
Starting with MI

ij consisting of M = 3 matches ran-
domly drawn fromMij , we alternate between (i) optimizing
Lpw(MI

ij), and (ii) increasing the number of active matches
M by a multiplicative factor: we increase M by re-selecting
MI

ij to be the subset of matchesMij that are most closely
aligned (i.e. their `mij is small) given the current estimate
of {Rij , Tij , βi, βj}. The process stops when the alignment
error maxm∈MI

ij
`mij exceeds a precision threshold. Full

details are in supplementary material.

5.2. Bundle-adjustment with RidgeSfM

Given a procedure for pairwise matching that returns sets
of inlier matchesMI

ij as well as relative camera motions,
we propose to use a bundle adjuster to collectively estimate
absolute camera orientations and dense depths for all images
in a scene, as detailed below.

Broadly, we minimize the following bundle adjustment
loss Lbundle:

min
{Ri},{Ti},{βi}

∑
(i,j)∈I

Lmatches
ij (Ri, Rj , Ti, Tj , βi, βj)

+ Lpose
ij (Ri, Rj , Ti, Tj), (5)

where the outer sum is carried over the set I of all pairs of
images with a significant set of verified matchesMI

ij . We
represent the absolute rotations Ri as cumulative products of
rotations each stored in Tait-Bryan angles; and translations
Ti as cumulative sums of 3-dimensional vectors.

The first term Lmatches
ij , which enforces consistency of the

3D locations of matched points, is defined as follows:

Lmatches
ij =

∑
m∈MI

ij

σ(umij ) eij + λu σ(−umij ); (6)

eij = ‖[Rixmi (βi, Ii) + Ti]− [Rjx
m
j (βj , Ij) + Tj ]‖2,

where σ is the logistic function, umij ∈ R are auxiliary vari-
ables that limit the effect of bad matches, and λu = 0.3 is
the strength of the regularizer σ(−umij ) preventing the trivial
solution of σ(umij ) = 0 everywhere. Importantly, since the
number of matches between pairs of images is significantly

lower than the number of image pixels, Lmatches
ij can be in-

tegrated over a large number of image pairs I allowing to
optimize βi, and conversely dense depthsDi, in a large-scale
regime.

The second term Lpose
ij aids the convergence of the scene

cameras. More specifically, it minimizes the discrepancy
between the absolute camera orientations (Ri, Ti) and and
the relative cameras poses (Rij , Tij) predicted by pairwise
RidgeSfM:

Lpose
ij = ‖Ri −RjRij‖1 + ‖Ti −RjTij − Tj‖1. (7)

Optimization. The Adam optimizer is used, with weight
decay applied to the βi. To improve convergence, we
first minimize the Lpose

ij losses incrementally for 6|I| itera-
tions; at step t we optimize their partial sum over the first
min(dt/5e, |I|) elements of I, sorted by j. We then opti-
mize the full scene loss eq. (5) until convergence.

6. Experiments
In this section we quantitatively and qualitatively evaluate

our method. Starting with a description of the utilized bench-
mark, we then present experiments evaluating the global
bundle adjustment procedure which collectively aligns hun-
dreds of frames from an indoor scene. Since virtually all
existing deep alternatives, such as [40, 54, 4, 49], do not
allow for such large-scale evaluation due to their ample
memory-consumption, for completeness, we compare to
these methods on a small-scale task of aligning image pairs.

Benchmark dataset. ScanNet [6] is a dataset of RGB
videos frames with matching depth maps, camera locations,
and camera intrinsics, captured with a hand-held scanning
device. There are 1513 training scenes, and 100 test scenes.
We use the first 1412 scenes from the training set to train
the depth prediction network. We evaluate RidgeSfM on
the remaining scenes that are not seen during training. We
consider the supplied camera poses as ‘ground truth’, as they
were calculated using the sensor depth-supervised bundle
adjustment.

Evaluation of bundle adjustment. To test RidgeSfM on
large sequences of images, we selected sequences of up to
300 images from the ScanNet test videos. For each of the 100
test scenes, we picked random starting points, and sampled
every k-th frame with the skip rate k = 1, 3, 10 and 30, for a
total of 400 test cases. RidgeSfM is compared to COLMAP
[35], a popular SfM pipeline that is widely considered as the
current state-of-the-art.

Using RidgeSfM we reconstruct the camera poses and
dense depth maps as explained in Section 5.2. We use Su-
perPoint [7] as the keypoint detector. For COLMAP, we first



Method COLMAP SfM pipeline RidgeSfM using SuperPoint feature

Skip rate 1 3 10 30 1 3 10 30

Camera rotation (degrees) 22.12 11.17 9.85 29.85 7.09 7.84 7.35 12.84
Camera center (m) 0.973 0.597 0.540 1.085 0.296 0.314 0.331 0.489
Depth map L1 err. (m) 0.941 0.763 0.727 1.184 0.221 0.234 0.243 0.322
Depth map RMSE (m) 1.138 1.012 0.990 1.386 0.305 0.332 0.343 0.432
PCL L1 err. (m) 0.647 0.642 0.639 0.860 0.209 0.258 0.303 0.454
PCL RMSE (m) 0.821 0.885 0.906 1.081 0.289 0.345 0.393 0.569

Successful reconstructions 99% 100% 98% 81% 100% 100% 100% 100%

Table 1: Quantitative comparison with COLMAP on large-scale bundle adjustment on the ScanNet dataset. For
COLMAP, evaluation is based on the available reconstructed frames for scenes where reconstruction was at least partially
successful. For RidgeSfM, the evaluation uses all frames in and all scenes.

Ablation Lbundle =
∑
�
��
�H

HHH
Lmatches
ij + Lpose

ij ���
��XXXXXSuperPoint SIFT features

Skip rate 1 3 10 30 1 3 10 30

Camera rotation (degrees) 7.22 9.14 9.10 25.05 7.78 9.10 9.08 19.16
Camera center (m) 0.306 0.344 0.395 0.853 0.318 0.377 0.420 0.676
Depth map L1 err. (m) 0.236 0.250 0.269 0.382 0.229 0.259 0.274 0.422
Depth map RMSE (m) 0.331 0.357 0.379 0.493 0.314 0.359 0.376 0.533
PCL L1 err. (m) 0.224 0.297 0.386 0.881 0.224 0.309 0.387 0.677
PCL RMSE (m) 0.307 0.383 0.474 1.017 0.304 0.398 0.478 0.811

Table 2: Ablation study on ScanNet. Left: Result using only the pairwise pose loss Lpose, rather than the full bundle
adjustment loss Lbundle. Right: Results for RidgeSfM with SuperPoint features replaced with SIFT features.

run the sparse reconstruction that tracks the cameras, and
then dense depths are estimated with COLMAP’s multi-view
stereo method. Since COLMAP sometimes fails to estimate
camera pose or depth for an image, we exclude these cases
from the evaluation. Note that RidgeSfM does not enjoy this
benefit of being able to exclude ambiguous frames from its
evaluation; by design it is forced to reconstruct all pixels, in
all frames, for every scene.

For evaluation purposes, given depth maps and camera
extrinsics, we generate a dense point cloud of each scene,
which is later aligned with the ground truth using Umeyama’s
algorithm [43] that estimates a 7 d.o.f. similarity transfor-
mation. After alignment and rescaling, we report several
errors: Camera rotation / center error denotes the average
rotation / distance between the ground truth camera’s rota-
tion / translation matrix and the prediction. The depth map
L1/RMSE denote errors between the ground truth and the
estimated depth. Point-cloud (PCL) L1/RMSE are similar
to the latter and compute the distance between the per-pixel
3D coordinates obtained by backprojecting estimated depth
using the estimated camera location.

Table 1 demonstrates that RidgeSfM reconstructions are
superior to COLMAP in all metrics and test scenes. Figure 3,

and videos in the supplementary material, qualitatively eval-
uates our reconstructions.

Ablation study. In order to demonstrate the benefits of
RidgeSfM’s bundle adjustment from Section 5.2, we com-
pare the performance of the full optimization minimizing
Lbundle, and merely minimizing

∑
(i,j)∈I L

pose
ij that solely

aligns the cameras without optimizing the scene 3D points.
For skip-rate k = 30, the full optimization leads to reduc-
tions of 49% / 43% / 12% / 44% in the camera rotation error
/ camera center error / depth RMSE / point cloud RMSE re-
spectively. This clearly demonstrates the benefits of our joint
optimization over the latent depth linear codes and camera
extrinsics. Table 2 provides a table with full ablation results.

We also consider the effect of replacing the SuperPoint [7]
features with classic SIFT [25] features. The reconstruction
quality decreases as expected, although the results are still
strong compared to COLMAP. See again Table 2.

Evaluation of the pairwise alignment. For completeness,
we also consider the task of estimating relative viewpoint
change between a pair of images, i.e. the task described in
Section 5.1. Note that here we compare with small-scale
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Figure 3: Qualitative results comparing the dense scene-wise reconstruction and camera poses of RidgeSfM (1st column) and
the ground truth (2nd column). The 3rd column colors each point of the RidgeSfM reconstruction proportionally to its depth
error (red-highest, blue-lowest). Each of the 3 depicted scenes is visualised from 2 different viewpoints.



Figure 4: Example results on pairwise matching. Top: Pairs of images with per-pixel correspondences. Bottom: The
inferred scene point clouds and cameras - we have plotted 10% of the pixels. The blue lines show initial feature matches. Red
matches denote the inliers of the Pairwise RidgeSfM alignment.

Error RidgeSfM BA-Net∗ [40] DeMoN∗ [44] Photometric BA∗ Geometric BA∗ DeepV2D † [42]

Depth RMSE (m) 0.33 0.35 0.76 0.79 0.88 0.17

Rotation (degrees) 1.94 1.02 3.79 4.41 8.56 0.63
Translation (cm) 7.70 3.39 15.50 21.40 37.00 1.37

Table 3: Pairwise alignment results on the ScanNet image pairs dataset [40]. Columns with ∗ are from [40]; columns with †
use the ground-truth median depth to scale each of the predicted depth maps.

deep methods that cannot operate in the large scale regime
of the previous experimental section.

We closely follow the evaluation protocol of BA-Net
[40]. We thus consider the set of 2000 pairs of test images
from [40]. Camera movement is generally quite small: 80%
of the ground truth translations are less than 15cm, and
80% of the ground truth rotations are less than five degrees.
We report the rotation error which is the angle between the
ground truth relative camera rotation and the prediction; and
the translation error which is the distance of the estimated
camera center from the ground truth. Furthermore, RMSE
between the estimated and the ground truth depth is reported.

RidgeSfM is compared to other methods in Table 3. Qual-
itative results are presented in Figure 4. Results indicate that
RidgeSfM outperforms other comparable methods in terms
of depth accuracy. The camera errors are slightly higher than
BA-Net and DeepV2D. One explanation for this is that those
methods are trained on image pairs with similar statistics
to the test set, so they can develop a prior that is biased
to predicting small angles of rotation. Another factor to
consider is that once an image has been processed once by
RidgeSfM, the keypoints and their factor of variation can be

stored compactly to be re-used for additional comparisons to
other images. The marginal overhead of additional pairwise
comparisons is small, compared to methods using dense
image comparisons, which is important for scalability.

7. Conclusions

We have proposed RidgeSfM, a novel method for estimat-
ing structure from motion that marries classic SfM pipelines
capable of bundle-adjusting huge image collections with
deep reconstructors. RidgeSfM’s efficient linear parametriza-
tion of depth allows to execute both pairwise and scene-wise
geometry optimization over a set of sparse matches while
simultaneously recovering dense depth in an indirect fash-
ion. The latter allows our method to collectively align large
image collections, which is not possible with the current
memory-hungry deep methods. We perform on par with
strongly supervised deep pairwise egomotion estimators and
we significantly outpeform a state-of-the-art SfM pipeline
on a large-scale bundle adjustment benchmark.
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