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Abstract
Many inference problems, such as sequential de-
cision problems like A/B testing, adaptive sam-
pling schemes like bandit selection, are often on-
line in nature. The fundamental problem for on-
line inference is to provide a sequence of confi-
dence intervals that are valid uniformly over the
growing-into-infinity sample sizes. To address
this question, we provide a near-optimal confi-
dence sequence for bounded random variables by
utilizing Bentkus’ concentration results. We show
that it improves on the existing approaches that
use the Cramér-Chernoff technique such as the
Hoeffding, Bernstein, and Bennett inequalities.
The resulting confidence sequence is confirmed
to be favorable in synthetic coverage problems,
adaptive stopping algorithms, and multi-armed
bandit problems.

1. Introduction
The abundance of data over the decades has increased the
demand for sequential algorithms and inference procedures
in statistics and machine learning. For instance, when the
data is too large to fit in a single machine, it is natural to split
data into small batches and process one at a time. Besides,
many industry or laboratory data, like user behaviors on
a website, patient records, temperature histories, are natu-
rally generated and available in a sequential order. In both
scenarios, the collection or processing of new data can be
costly, and practitioners often would like to stop data sam-
pling when a required criterion is satisfied. This gives the
pressing call for algorithms that minimize the number of
sequential samples subject to the prescribed accuracy of the
estimator is satisfied.

Many important problems fit into this framework, including
*Equal contribution 1 Department of Statistics and Data Science,

Carnegie Mellon University. 2Facebook AI Research. Part of the
work was done before the author joined FAIR. Correspondence
to: Arun Kumar Kuchibhotla <arunku@stat.cmu.edu>, Qinqing
Zheng <zhengqinqing@gmail.com>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

sequential hypothesis testing problems such as testing pos-
itiveness of the mean (Zhao et al., 2016), testing equality
of distributions and testing independence (Balsubramani &
Ramdas, 2016; Yang et al., 2017), A/B testing (Johari et al.,
2015; 2017), sequential probability ratio test (Wald, 2004),
best arm identification for multi-arm bandits (MAB) (Zhao
et al., 2016; Yang et al., 2017), etc. All these applications
require confidence sequences to determine the number of
samples required for a certain guarantee.

A simple example to start from is estimating the mean of a
random variable from sequentially available data. This is a
classic problem in statistics and widely applied to various
applications. An estimator pµ is said to be p", �q-accurate
for the mean µ if Pp|pµ{µ ´ 1| § "q • 1 ´ � (Dagum et al.,
2000; Mnih et al., 2008; Huber, 2019). This means that the
estimator has a relative error of at most " with probability at
least 1´ �. In the sequential setting, one important question
we would like to answer is how many samples are needed

to obtain an estimator of the mean that is p", �q accurate?

Mnih et al. (2008) shows the answer can be derived from a
confidence sequence.

Definition 1. Let Y1, Y2, . . . be independent real-valued

random variables, available sequentially, with mean µ P
R. Given � P r0, 1s, a 1 ´ � confidence sequence
is a sequence of confidence intervals ConfSeqp�q “
tCI1p�q,CI2p�q, . . .u, where CInp�q is constructed on-the-

fly after observing data sample pY1, . . . , Ynq, such that

P pµ P CInp�q for all n • 1q • 1 ´ �. (1)

For the p", �q-mean estimation problem above, suppose one
can construct a 1 ´ � confidence sequence of µ:

ConfSeqp�q “ tCInp�q “ rsYn ´Qn, sYn `Qns, n • 1u,

where sYn is the empirical mean of the first n samples.
Mnih et al. (2008) shows that with number of samples
N “ mintn : p1 ´ "qUBn § p1 ` "qLBnu, where UBn

and LBn are two simple functions of the radius of the con-
fidence intervals, the estimator pµ “ p1{2qsignpsYN qrp1 ´
"qUBN ` p1 ` "qLBN s is p", �q-accurate. See Algorithm 1
in Section 4.2 for details.

The need for sequential algorithms has triggered a surge of
interest in developing sharp confidence sequences. Unlike



the traditional confidence interval in statistics, the guaran-
tee (1) is non-asymptotic and is uniform over the sample
sizes. Ideally, we want CInp�q to reduce in width as either n
or � increase. Unfortunately, guarantee (1) is impossible to
achieve non-trivially1 without further assumptions (Bahadur
& Savage, 1956; Singh, 1963). In this paper, we assume
that the random variables are bounded: there exist known
constants L,U P R such that PpL § Yi § Uq “ 1 for all
i • 1, which yields µ P rL,U s. Although boundedness
can be replaced by tail assumptions such as sub-Gaussianity
or polynomial tails, we will restrict our discussion to the
bounded case in this paper.

In recent years, several techniques have been proposed to
construct confidence sequences (Zhao et al., 2016; Mnih
et al., 2008; Howard et al., 2018). These confidence se-
quences can be thought as a generalization of classical fixed
sample size concentration inequalities including Hoeffding,
Bernstein, and Bennett. Arguably the simplest construction
of a confidence sequence is based on stitching the fixed
sample size concentration inequalities. Other techniques
include self-normalization, method of mixtures or pseudo-
maximization (Victor et al., 2007; Howard et al., 2018).
The stitching method (unlike the others) makes use of a
union bound (or Bonferroni inequality) which might result
in a sub-optimal confidence sequence compared to those
obtained from method of mixtures.

To the best of our knowledge, all the existing confidence
sequences are built upon concentration results that bound
the moment generating function and follow the Cramér–
Chernoff technique. The Cramér–Chernoff technique
leads to conservative bounds and can be significantly im-
proved (Philips & Nelson, 1995). In this paper, we lever-
age the refined concentration results introduced by Bentkus
(2002). We first develop a “maximal” version of Bentkus’
concentration inequality. Based on it, we construct the
confidence sequence via stitching. In honor of Bentkus,
who pioneered this line of refined concentration inequalities,
we call our confidence sequence as Bentkus’ Confidence

Sequence. The fixed sample size Bentkus concentration in-
equality is theoretically an improvement of the best possible
Cramér–Chernoff bound; see Theorem 1 and the discussion
that follows. This improvement implies that stitching the
Bentkus concentration inequality improves upon the stitch-
ing of the best possible Cramér–Chernoff bound. Hence,
our confidence sequence is an improvement on the stitched
Hoeffding, Bernstein, and Bennett confidence sequences.
Although this is an obvious fact, we find in applications that
our confidence sequence leads to about 50% reduction in
sample complexity when compared to the classical ones.
Surprisingly, we find in simulations that our confidence se-

1Of course, if we take CInp�q “ p´8,8q, then (1) is trivially
satisfied.

quence also improves on the method of mixture confidence
sequences that do not use a union bound like stitching.

To summarize, our major contributions are as follows.

• We provide a self-contained introduction to near-optimal

concentration inequality based on the results of Bentkus
(2002; 2004) and Pinelis (2006). Unlike the Cramér–
Chernoff bounds, which can be infinitely suboptimal, our
bound is optimal up to e2{2. In other words, our tail bound
is at most e2{2 times the best tail bound that can be ob-
tained under our assumptions. We believe ours is the first
application of Bentkus’ concentration inequality for confi-
dence sequences and machine learning (ML) applications
including the best-arm identification problem. All ML al-
gorithms that use classical concentration inequalities like
Hoeffding or Bernstein can be improved substantially, by
simply replacing them with the concentration inequalities
discussed in this paper.

• We use these results in conjunction with a “stitching”
method (Zhao et al., 2016; Mnih et al., 2008) to con-
struct non-asymptotic confidence sequences. At sam-
ple size n, for sYn “ n´1

∞n
i“1 Yi, the confidence in-

terval is CInp�q :“ rsYn ´ qlown p�q, sYn ` qupn p�qs, for dif-
ferent values qlown p�q, qupn p�q • 0 and they scale likea

VarpY1q log logpnq{n as n Ñ 8.

• Similar to the Bernstein inequality, Bentkus’ method uti-
lizes the variance of Yi’s. Therefore, variance estima-
tion is needed to make the stitched Bentkus confidence
sequence actionable in practice. We propose a closed
form upper bound of the unknown variance based on
one-sided concentration for the non-negative variables
pYi ´ µq2 from Pinelis (2016). This one-sided concen-
tration bound is an improvement on the classical Cramér–
Chernoff bound (Peña et al., 2008, Theorem 2.19) for
non-negative random variables. Once again, this leads to
a better upper bound on the unknown variance compared
to the ones from Audibert et al. (2009) and Maurer &
Pontil (2009).

• We derive a computable form of the Bentkus’ method
based on Bentkus et al. (2006), and further provide a
constant time algorithm to compute it efficiently (see
Appendix C). In comparison, a brute-force method leads
to a linear time complexity.

• We conduct numerical experiments to verify our theoreti-
cal claims. Moreover, we apply the Bentkus confidence
sequence to the p", �q mean estimation problem and the
best-arm identification problem. For both problems, our
method significantly reduces the sample complexity by
about 1

2 compared with the other methods.

The rest of this article is organized as follows. Section 2
reviews the related work. Section 3 contains our theoretical
results. Section 4 presents the experiments that confirm



the superiority of our method. Section 5 summarizes the
contributions and discusses some future directions.

2. Related Work
Several confidence sequences built on classical concentra-
tion inequalities have been proposed and can be applied to
bounded random variables. Zhao et al. (2016) propose con-
fidence sequences through Hoeffding’s inequality, assuming
that Yi’s are 1

2 -sub-Gaussian. For random variables sup-
ported on rL,U s, this assumption is satisfied after scaling
by 1

U´L . However, this confidence sequence does not scale
with the true variance and hence can be conservative. Mnih
et al. (2008) building on Audibert et al. (2009) construct a
confidence sequence through Bernstein’s inequality. Due to
the nature of Bernstein’s inequality, those intervals scale cor-
rectly with the true variance. The methods in these papers
is stitching of fixed sample size concentration inequalities.
As mentioned before, they make use of union bound and
can have more coverage than required in practice. In prob-
ability, Darling & Robbins (1967) and Victor et al. (2007)
(among others) have considered confidence sequences based
on martingale techniques and method of mixtures. These
methods do not require union bound and can be sharper than
the stitched confidence sequences. More recently, Howard
et al. (2018) have unified the techniques of obtaining confi-
dence sequences under a variety of assumptions on random
variables. This work builds on much of the existing statistics
literature and we refer the reader to this paper for a detailed
historical account.

All the confidence sequences in the works mentioned above
depend on concentration results that bound the moment
generating function and follow the Cramér-Chernoff tech-
nique. Such concentration results, and consequently the
obtained confidence sequences, are conservative and can
be significantly improved. To understand the deficiency of
such concentration inequalities, consider for example the
Bernstein’s inequality: for sYn “ ∞n

i“1 Yi{n,

P
`?

npsYn ´ µq • t
˘

§ e´t2{r2A2`pU´Lqt{p3?
nqs,

which scales like expp´t2{p2A2qq, for “small” t. However,
the central limit theorem implies

Pp?
npsYn ´ µq • tq « 1 ´�pt{Aq § e´t2{p2A2q

a
2⇡ppt{Aq2 ` 1q .

See, e.g., Abramowitz & Stegun (1948, Formula 7.1.13).
Therefore, Bernstein’s inequality and the true tail differ by
the scaling

a
2⇡pt2{A2 ` 1q, which can be significant for

large t. This scaling difference is referred to as the missing
factor in Talagrand (1995) and Fan et al. (2012). This miss-
ing factor does not exist just with Bernstein’s inequality but
also with the optimal bound that could be derived from the

Cramér–Chernoff technique; see the discussion surrounding
Eq. (1.4) of Talagrand (1995). This explains why a further
improvement is possible and Bentkus (2002) presents such
sharper concentration inequalities. Our work essentially
builds on the works Bentkus (2002; 2004); Pinelis (2006;
2016), to derive a near-optimal concentration inequality,
followed by an improved confidence sequence through the
technique of stitching.

Given that Bentkus’ concentration inequality is an improve-
ment on the Cramér–Chernoff inequalities and that the tight-
ness of the stitched confidence sequence is mainly controlled
by the sharpness of the fixed sample size concentration in-
equality used, our results are not entirely unexpected. Be-
cause the improvement we obtain over the existing confi-
dence sequences is significant (Figs. 4-6), we believe this
paper will be an important addition to the literature for prac-
tical ML applications.

3. Bentkus’ Confidence Sequences
For any random variable Yi with mean µ, Xi “ Yi ´ µ is
mean zero and hence we will mostly restrict to the case of
mean zero random variables. The result for general µ will
readily follow; see Theorem 4. We first discuss Bentkus’
concentration inequality for bounded mean zero random
variables. Afterwards, we present a refined confidence se-
quence through stitching. This confidence sequence is not
readily actionable because it depends on the true variance
of random variables. To address this, we present a practical
version where we replace the true variance by an estimated
upper bound. This provides an analog of the empirical
Bernstein confidence sequence, and we call our method
Empirical Bentkus Confidence Sequence.

Assumptions. Suppose X1, X2, . . . are independent ran-
dom variables satisfying

ErXis “ 0, VarpXiq § A2
i , and PpXi ° Bq “ 0, (2)

for all i • 1. We will first derive concentration inequali-
ties under the one-sided bound assumption as in (2) which
only requires Xi § B almost surely. To derive actionable
versions of the concentration inequalities (with estimated
variance), we will impose a two-sided bound assumption.

3.1. Bentkus’ Concentration Inequality for a fixed
Sample Size

We now present a near-optimal concentration inequality for
St “ ∞t

i“1 Xi that holds uniformly over all sample sizes
t § n. The main idea behind the optimality is to replace the
exponential function used in the Cramér-Chernoff technique
with a slowly growing function. Fix ↵ P r0,8s, and set



paq` “ maxta, 0u. It is easy to verify that for all ⌫ P R,

1t⌫ • 0u § p1 ` ⌫{↵q↵` § e⌫ . (3)

Taking ⌫ “ �pSn ´uq for some � ° 0 in inequality (3) and
applying expectation, we obtain for all u P R,

PpSn • uq § inf�•0 E
“
p1 ` �pSn ´ uq{↵q↵`

‰
. (4)

The second inequality in (3) readily shows that (4) is better
than the Cramér-Chernoff bound. Reparameterizing � “
↵{pu ´ xq with x § u in (4), we obtain

PpSn • uq § inf
x§u

ErpSn ´ xq↵`s
pu ´ xq↵`

, @u P R. (5)

Next, we bound ErpSn ´xq↵`s for all random variables Xi’s
satisfying (2). This should be done optimally in order to
obtain a near-optimal concentration inequality. Surprisingly,
for all ↵ • 2, ErpSn ´ xq↵`s can be bounded in terms of a
“worst case” two-point distribution satisfying (2).

Define independent random variables Gi, i • 1 as

P
`
Gi “ ´A2

i {B
˘

“ B2{pA2
i ` B2q,

P pGi “ Bq “ A2
i {pA2

i ` B2q.
(6)

These random variables satisfy (2) and Gi’s are the worst
case random variables satisfying (2), in the sense that for all
n • 1,↵ • 2, and x P R,

Erp∞n
i“1 Gi ´ xq↵`s “ sup

Xi„(2)
Erp∞n

i“1 Xi ´ xq↵`s, (7)

where the supremum is over all distributions of Xi’s satis-
fying (2). We refer the readers to Bentkus (2002, Eq. (11))
and Pinelis (2006, Theorem 2.1) for the proof of (7). The
definition of the “worst-case” distribution of Gi’s follows
from finding the best quadratic function that upper bounds
t fiÑ pt ´ xq↵`; see, e.g., Burgess et al. (2019, Lemma 8).
Pinelis (2006) proves that (7) holds true when t fiÑ pt´xq↵`
is replaced with any function t fiÑ fptq that has a convex
first derivative.

Inequality (5) with ↵ “ 2 and (7) show that2

PpSn • uq § inf
x§u

Erp∞n
i“1 Gn ´ xq2`s
pu ´ xq2`

, (8)

and we find u such that the right hand side of (8) is upper
bounded by �. Set A “ tA1, A2, . . .u as the collection of
standard deviations and for n • 1, define

P̃2,npuq :“ inf
x§u

Erp∞n
i“1 Gi ´ xq2`s
pu ´ xq2`

. (9)

2The function ↵ fiÑ p1 ` ⌫{↵q↵` increases as ↵ increases, so
using the smallest possible ↵ leads to the best bound. Because (7)
only holds for ↵ • 2, ↵ “ 2 is optimal in this context.
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Figure 1: Comparison of the concentration bounds when
� “ 0.05. Xi are centered i.i.d. Bernoullip 1

4 q. We give the
true standard deviation Ai “

?
3
4 and upper bound B “ 3

4 to
all the methods. The average failure frequencies across 300
trials and 1 § n § 3000 are: Hoeffding 0.00205˘0.00261,
Bernstein 0.00593 ˘ 0.0044, Bentkus 0.01411 ˘ 0.00769.
The Bentkus’ bound is the least conservative.

For � P r0, 1s, define qp�;n,A, Bq as the solution to the
equation P̃2,npuq “ �. In other words,

qp�;n,A, Bq “ P̃´1
2,np�q (10)

The inverse exists uniquely for � • Pp∞n
i“1 Gi “ nBq and

is defined to be nB ` 1 if � † Pp∞n
i“1 Gi “ nBq. The

following result provides a refined concentration inequality
for Sn “ ∞n

i“1 Xi. It is a “maximal” version of Theorem
2.1 of Bentkus et al. (2006), see Appendix D for the proof.
Theorem 1. Fix n • 1. If X1, X2, . . . , Xn are independent

random variables satisfying (2), then

P
ˆ

max
1§t§n

St • qp�;n,A, Bq
˙

§ �, @� P r0, 1s. (11)

Further, if A1 “ ¨ ¨ ¨ “ An “ A and if q̃p¨;A,Bq is a

function such that Ppmax1§t§n St • nq̃p�1{n;A,Bqq § �
for all � P r0, 1s then qp�;n,A, Bq § nq̃p�1{n;A,Bq.

Remark. The first part of Theorem 1 provides a fi-
nite sample valid estimate of the quantile. The second
part implies that it is sharper than classical concentra-
tion inequalities such as Hoeffding, Bernstein, Bennett
or Prokhorov inequalities. To see this fact, note that
Ppmax1§t§n St • nq̃p�1{n;A,Bqq § � for all � P r0, 1s
is equivalent to the existence of a function Hpu;A,Bq such
that Ppmax1§k§n St • nuq § Hnpu;A,Bq for all u. The
classical concentration inequalities mentioned above are
all of this product from Hnpu;A,Bq for some H , hence
weaker than our bound.

3.2. Comparison to Classical bounds

Most of the classical concentration inequalities includ-
ing Hoeffding, Bernstein, Bennett, or Prokhorov inequali-
ties (Bentkus, 2002; Wellner, 2017) are derived based on the



Cramér–Chernoff technique. The Cramér–Chernoff tech-
nique makes use of exponential moments unlike the positive
part second moment used in Bentkus’ concentration inequal-
ity. We have mentioned in (7) that random variables Gi’s
defined in (6) is worst case for the positive part second mo-
ment. Interestingly, the same random variables are also
worst case for exponential moments too, i.e., for all � • 0,

E rexp p�∞n
i“1 Giqs “ sup

Xi„(2)
E rexp p�∞n

i“1 Xiqs .

See Bennett (1962, Page 42) for a proof. Hence, the optimal
Cramér–Chernoff concentration inequality is given by

Pp∞n
i“1 Xi • uq § inf

�•0

E rexpp�∞n
i“1 Giqs

expp�uq . (12)

Furthermore, it can be proved that for all u P R,

P̃2,npuq § inf
�•0

E rexpp�∞n
i“1 Giqs

expp�uq , (13)

see Eqns (3)–(4), (9). This implies that Bentkus’ concentra-
tion inequality is sharper than the optimal Cramér–Chernoff
inequality, and hence sharper than Hoeffding, Bernstein,
Bennett, and Prokhorov inequalities. Inequality (13) only
proves that Bentkus’ inequality is an improvement but does
not show how significant the improvement is. In order to
describe the improvement, let us denote the right hand side
of (13) as P̃8,npuq. It can be proved that

1 § lim
nÑ8

sup
uPR

P̃8,npuq
Pp∞n

i“1 Gi • uq “ 8. (14)

See Talagrand (1995, Eq. (1.4)). Moreover,3

P
` nÿ

i“1

Gi • u
˘ piq

§ P̃2,npuq
piiq
§ e2

2
P

` nÿ

i“1

Gi • u
˘
. (15)

Inequalities in (15) show that our concentration inequalities
based on the two-point random variables Gi are sharp up
to a constant factor e2{2. Further, inequalities (14) and
(15) show that there exists a distribution for which Bentkus’
inequality can be infinitely better than the optimal Cramér–
Chernoff bound. See Figure 1 for an illustration and Bentkus
(2002; 2004); Pinelis (2006) for further discussion.

3.3. Computation of Bentkus’ bound

Computation of qp¨;n,A, Bq is discussed in Bentkus et al.
(2006, Section 9) and we provide a detailed discussion in
Appendix C. In this respect, the following result describes
the function in (9) as a piecewise smooth function in ho-
moscedastic case, i.e., A1 “ . . . “ An “ A.

3Because Gi’s satisfy assumption (2), inequality piq is trivial
using (8). Inequality piiq holds for all u in the support of

∞n
i“1 Gi;

it holds for all u P R if Pp∞n
i“1 Gi • uq is replaced by its log-

linear interpolation; see Bentkus (2002) for details.

�1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

P
2(

x
;Z

n
)

n = 3, A = 0.1, B = 1

�1 0 1 2 3 4
x

10�6

10�5

10�4

10�3

10�2

10�1

100

P
2(

x
;Z

n
)

npAB

v0/e0

v1�e1
e1�p1

v2�2e2
e2�2p2

n = 3, A = 0.1, B = 1

Figure 2: Examples function P2px;Znq when n “ 3, A “
0.1 and B “ 1.0. We plot P2px;Znq in both linear (left)
and log (right) scales on the y-axis.

Proposition 1. Set pAB “ A2{pA2 ` B2q and Zn “∞n
i“1 Ri where Ri „ BernoullippABq. Then for u P R,

P̃2,npuq “ P2 pnpAB ` up1 ´ pABq{B; Znq , (16)

where P2px;Znq “ 1 for x § npAB and

P2 px;Znq :“
$
’’’’’&

’’’’’%

npABp1 ´ pABq
px ´ npABq2 ` npABp1 ´ pABq , if npAB † x §  0,

vkpk ´ e2k
x2pk ´ 2xek ` vk

, if  k´1 † x §  k,

P pZn “ nq “ pnAB , if x •  n´1 “ n.

Here pk “ PpZn • kq, ek “ ErZn1tZn • kus, vk “
ErZ2

n1tZn • kus, and  k “ pvk ´ kekq{pek ´ kpkq.

The function P2p¨;Znq is illustrated in Figure 2 for n “ 3
in both linear and logarithmic scale. Using Proposition 1
and (10), computation of qp¨;n,A,Bq follows. In Ap-
pendix C.1, we also provide a similar piecewise description
of qp¨;n,A,Bq. It is worth pointing out that a similar ex-
pression for P2p¨;Znq can be derived when Ai’s are unequal.
Proposition 1 is stated for equal variances for simplicity and
also because of the widely used i.i.d. assumption.

3.4. Adaptive Bentkus’ Concentration Inequality with
Known Variance

Although Theorem 1 leads to a uniform in sample size
confidence sequence until size n, it is very wide for sample
sizes much smaller than n. We now use the method of
stitching to obtain a confidence sequence that is valid for
all sample sizes and scales reasonably well with respect
to the sample size. See Mnih et al. (2008, Section 3.2)
and Howard et al. (2018, Section 3.1) for other applications.
The stitching method requires two user-chosen parameters:

- a scalar ⌘ ° 1 that determines the geometric spacing.

- a function h : R` Ñ R` such that
∞8

k“0 1{hpkq § 1.
Ideally, 1{hpkq, k • 0 adds up to 1.
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are provided to all the methods. A-Bentkus is computed us-
ing ⌘ “ 1.1, hpkq “ pk`1q1.1⇣p1.1q. For 3000 trials, there
is zero failure for Adaptive Hoeffding and Empirical Bern-
stein, but 3 for A-Bentkus (17). All the bounds have failure
frequency bounded above by � but the Bentkus’ bound is
the least conservative. The differences between the bounds
continue to grow as n increases.

The following result (proved in Appendix E) gives a uni-
form over n tail inequality by splitting tn • 1u intoî

k•1tr⌘ks § n § t⌘k`1uu and then applying (11) within
tr⌘ks § n § t⌘k`1uu. For each n • 1, set kn :“ mintk •
0 : r⌘ks § n § t⌘k`1uu and cn :“ t⌘kn`1u.
Theorem 2. If X1, X2, . . . are independent random vari-

ables satisfying (2), then for any � P r0, 1s,

P
ˆ

Dn • 1 : Sn • q

ˆ
�

hpknq ; cn,A, B

˙˙
§ �. (17)

The choice of the spacing parameter ⌘ and stitching function
hp¨q determine the shape of the confidence sequence and
there is no universally optimal setting. The growth rate of
hp¨q determines how the budget of � is spent over sample
sizes; a quickly growing hp¨q such as 2k yield confidence
intervals of essentially 100% confidence for larger sample
sizes. The choice of ⌘ determines how conservative the
bound is for small n in tr⌘ks § n § t⌘k`1uu; for ⌘ too large
the bound will be conservative for n close to ⌘k. Eq. (15)
shows that bound is tightest at n “ t⌘k`1u in each epoch.
See Appendix B.1 for the graphical illustration. Throughout
this paper, we use ⌘ “ 1.1 and hpkq “ ⇣p1.1qpk ` 1q1.1
where ⇣p¨q is the Riemann zeta function.

The same stitching method used in Theorem 2 can also
be used with Hoeffding and Bernstein inequalities as done
in Zhao et al. (2016) and Audibert et al. (2009), respectively.
However, given that inequality (11) is sharper than Hoeffd-
ing and Bernstein inequalities, our bound (17) is sharper
for the same spacing parameter ⌘ and stitching function
hp¨q; see Figure 3. Stitched bounds as in Theorem 2 are
always piecewise constant but the Hoeffding and Bernstein

versions from Zhao et al. (2016) and Mnih et al. (2008)
are smooth because they are upper bounds of the piece-
wise constant boundaries (obtained using n § cn § ⌘n
and kn § log⌘ n ` 1). For practical use, smoothness is
immaterial and the piecewise constant versions are sharper.

3.5. Adaptive Bentkus Confidence Sequence with
Estimated Variance

Theorem 2 is impractical in its form because it involves
the unknown sequence of A1, A2, . . .. In the case where
A1 “ A2 “ ¨ ¨ ¨ “ A, one needs to generate an upper bound
of A (for a known B) and obtain an actionable version of
Theorem 2. Finite-sample over-estimation of A requires
a two-sided bound on the Xi’s; one-sided bounds on the
random variables do not suffice. This actionable version is
a refined version of empirical Bernstein inequality that is
uniform over the sample sizes.

We will assume that PpB § Xi § Bq “ 1, @ i. It follows
that VarpXiq “ A2 § ´BB (Bhatia & Davis, 2000). Be-
cause Xi’s have mean zero, B § 0 and B • 0; this implies
that ´BB • 0. If one wants to avoid variance estimation,
then one can use this upper bound in Theorem 2 to obtain
an actionable confidence sequence. This sequence, however,
will not have width scaling with the true variance.

Define sA1p�q “ pB ´ Bq{2 and for n • 2, � P r0, 1s

pA2
n :“ tn{2u´1

∞tn{2u
i“1 pX2i ´ X2i´1q2{2,

sAnp�q :“
b

pA2
n ` g22,np�q ` g2,np�q,

(18)

where g2,np�q :“ p2
?
2nq´1

a
tcn{2upB ´ Bq ˆ

�´1
`
1 ´ 2�{pe2hpknqq

˘
, for the distribution function �p¨q

of a standard normal random variable. We will write
sAnp�;B,Bq, when needed, to stress the dependence of
sAnp�q on B,B. Lemma F.1 shows that sAnp�q is a valid
over-estimate of A uniformly over n and yields the follow-
ing actionable bound. We defer the proof to Appendix F.

Theorem 3. If X1, X2, . . . are mean-zero independent ran-

dom variables satisfying VarpXiq “ A2
and PpB § Xi §

Bq “ 1 for all i • 1, then for any �1, �2 P r0, 1s, with prob-

ability at least 1 ´ �1 ´ �2, simultaneously for all n • 1,

Sn § q

ˆ
�1

hpknq ; cn,
sA˚
np�2q, B

˙
and A § sA˚

np�2, B,Bq.

Similarly, with probability at least 1 ´ �1 ´ �2, simultane-

ously for all n • 1,

Sn • ´q

ˆ
�1

hpknq ; cn,
sA˚
np�2q,´B

˙
and A § sA˚

np�2, B,Bq.

Here sA˚
np�2q :“ min1§s§n

sAnp�2, B,Bq, and kn, cn are

those defined before Theorem 2.



Theorem 3 is an analogue of the empirical Bernstein in-
equality Mnih et al. (2008, Eq. (5)). The over-estimate of
A in (18) can be improved by using non-analytic expres-
sions, but we present the version above for simplicity; see
Appendix F for details on how to improve sAnp�q in (18).

Theorem 3 can be used to construct a confidence sequence as
follows. Suppose Y1, Y2, . . . are independent random vari-
ables with mean µ, variance A2, and satisfying PpL § Yi §
Uq “ 1. Then Xi “ Yi ´ µ is a zero mean random variable
where PpL ´ µ § Xi § U ´ µq “ 1, and Theorem 3 is
directly applicable with B “ ´B “ U ´ L. An interesting
observation is that we can refine the values of B and B while
we are updating the confidence interval for µ. Suppose with
n data points, we have: ´qlown § nsYn ´ nµ § qupn , then

µlow
n :“ sYn ´ n´1qupn § µ § sYn ` n´1qlown “: µup

n ,

where sYn is the empirical mean of Y . We thus have a
valid estimate rL ´ µup

n , U ´ µlow
n s of the support of X ,

and when we observe Yn`1, we can use U ´ µlow
n as B

and L ´ µup
n as B. Importantly, as Theorem 3 provides

a uniform concentration bound, these recursively defined
upper and lower bounds hold simultaneously too. This leads
to the following result, proved in Appendix G.
Theorem 4. If random variables Y1, Y2, . . . are indepen-

dent with mean µ, variance A2
and satisfy PpL § Yi §

Uq “ 1. Define µup
0 :“ U , µlow

0 :“ L, and for n • 1

µup
n “ sYn ` 1

n
q

ˆ
�1

2hpknq ; cn,
sA˚
np�2, U, Lq, µup

n´1 ´ L

˙

µlow
n “ sYn ´ 1

n
q

ˆ
�1

2hpknq ; cn,
sA˚
np�2, U, Lq, U ´ µlow

n´1

˙

(19)
Let µup˚

n “ min0§i§n µ
up
i and µlow˚

n “ max0§i§n µlow
i .

Then for any �1, �2 P r0, 1s, with probability at least 1 ´
�1 ´ �2, simultaneously for all n • 1,

µ P rµlow˚
n , µup˚

n s and A § sA˚
np�2, U, Lq. (20)

Because µup
0 “ U, µlow

0 “ L, the confidence intervals
rµlow˚

n , µup˚
n s is always a subset of rL,U s.

4. Experiments
We compare our adaptive Bentkus confidence sequence (20)
with the adaptive Hoeffding (Zhao et al., 2016), empirical
Bernstein (Mnih et al., 2008), and two other versions of em-
pirical Bernstein inequality from (Howard et al., 2018): Eq.
(24) and Theorem 4 with the gamma-exponential boundary.
Eq. (24) of Howard et al. (2018) is a stitched confidence se-
quence, while Theorem 4 is a method of mixture confidence
sequence. 4 We denote these methods by A-Bentkus,

4Code is available at https://github.com/enosair/
bentkus_conf_seq.
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Figure 4: The 95% confidence sequences for the mean when
Yi „ Bernoullip0.1q. All the methods estimate the vari-
ance except A-Hoeffding. HRMS-Bernstein-GE in-
volves a tuning parameter ⇢ which is chosen to optimize the
sequence at n “ 500 as suggested in Howard et al. (2018).
(a) shows the confidence sequences from a single replication.
(b) shows the average widths of the confidence sequences
over 1000 replications. The upper and lower bounds for all
the other methods are cut at 1 and 0.

A-Hoeffding, E-Bernstein, HRMS-Bernstein,
and HRMS-Bernstein-GE, respectively. We use � “
0.05 for all the experiments. For A-Bentkus, we fix
the spacing parameter ⌘ “ 1.1, the stitching function
hpkq “ pk ` 1q1.1⇣p1.1q, and �1 “ 2�{3, �2 “ �{3.

Section 4.1 examines the coverage probability and the width
of the confidence intervals constructed on a synthetic data
from Bernoullip0.1q; for other cases, see Appendix B. Sec-
tion 4.2 and 4.3 apply the confidence sequences to an adap-
tive stopping algorithm for p", �q-mean estimation and the
best arm identification problem.

4.1. Confidence Sequences for Bernoulli Variables

We generate samples Y1, Y2, . . . , Y20000
i.i.d„ Bernoullip0.1q

and compute the confidence sequences for µ “ 0.1. Fig-
ure 4a illustrates the confidence sequences obtained and
shows the sharpness of A-Bentkus. For most of the
cases (n • 20), A-Bentkus dominates the other meth-
ods. For smaller sample sizes, A-Bentkus also closely
traces A-Hoeffding and outperforms the others. This is

https://github.com/enosair/bentkus_conf_seq
https://github.com/enosair/bentkus_conf_seq


because the variance estimation is likely conservative and
in which case our sA˚

n ends up using the trivial upper bound
pU ´Lq{2, which is essentially what A-Hoeffding is ex-
ploiting. In fact, we have provided the same upper bound for
all the other Bernstein-type methods too, and A-Bentkus
still outperforms. This phenomenon shows the intrinsic
sharpness of our bound.

We repeat the above experiment 1000 times and report the
average miscoverage rate:

1

1000

1000ÿ

r“1

1tµ R CIprq
n for some 1 § n § 20000u.

where CIprq
n is the confidence interval constructed

after observing Y1, . . . , Yn in the r-th replication.
The results are 0.001 for A-Bentkus, 0.003 for
HRMS-Bernstein-GE, and 0 for the others. All the
methods control the miscoverage rate by � “ 0.05 but are
all conservative. Recall from (15) that our failure proba-
bility bound can be conservative up to a constant of e2{2.
Furthermore, from the proofs of Theorems 2 and 4, we get
that for ⌘ “ 1.1, hpkq “ pk ` 1q1.1⇣p1.1q,

P
`
µ R CInp�q for some 1 § n § 20000

˘

§ ∞log⌘p20000q
k“0 �{hpkq § 0.41�.

For � “ 0.05, 0.41� “ 0.0205. This explains why the
average miscoverage rate in the experiment is small.

We also report the average width of the confidence intervals
in Figure 4b. All the values are between 0 and 1 as we cut
the bounds from above and below for the other methods.
As mentioned above, when n is very small A-Bentkus
closely traces A-Hoeffding and both have smaller width.
Yet the advantage of A-Hoeffding disappears for n • 20
and A-Bentkus enjoys smaller confidence interval width
afterwards. HRMS-Bernstein-GE improves slightly on
A-Bentkus after observing very large number of samples.

4.2. Adaptive Stopping for Mean Estimation

In this section, we apply our confidence sequence to adap-
tively estimate the mean of a bounded random variable Y .
The goal is to obtain an estimator pµ such that the relative
error |pµ{µ ´ 1| is bounded by ", and terminate the data
sampling once such criterion is satisfied.

Given sY the empirical mean and any confidence sequence
centered at sY satisfying (1), Algorithm 1 yields a valid stop-
ping time and an p", �q-accurate estimator; see Mnih et al.
(2008, Section 3.1) for a proof. Clearly, a tighter confidence
sequence will require less data sampling and yields a smaller
stopping time. We follow the setup in Mnih et al. (2008).
The data samples are i.i.d generated as Yi “ m´1

∞m
j“1 Uij ,

where Uij are i.i.d uniformly distributed in r0, 1s. This im-
plies that µ “ 1

2 and A2 “ 1
12m . Because Algorithm 1

Algorithm 1: Adaptive Stopping Algorithm
Initialization: n – 0, LB – 0, UB – 8
while p1 ` "qLB † p1 ´ "qUB do

n – n + 1
Sample Yn and compute the n-th CI in the sequence:

rsYn ´ Qn, sYn ` Qns – ConfSeqpn, �q
LB – maxtLB, |sYn| ´ Qnu
UB – mintUB, |sYn| ` Qnu

return stopping time N “ n and estimator

pµ “ p1{2qsignpsYN qrp1 ` "qLB ` p1 ´ "qUBs
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Figure 5: Comparison of confidence sequences for an p", �q-
estimator. Here " “ 0.1 and � “ 0.05.

requires symmetric intervals, we shall symmetrize the in-
tervals returned by A-Bentkus by taking the largest devi-
ation. We consider 5 cases: m “ 1, 10, 20, 100, 1000 and
report the average stopping time (i.e. the number of samples
required to achieve p", �q “ p0.1, 0.05q accuracy) based on
200 trials in Figure 5. HRMS-Bernstein-GE involves
a tuning parameter ⇢, chosen here to optimize the confi-
dence sequence at n “ 10 (best out of 10, 50, 100, 200).
As m increases, the variance of Yi decreases. As expected,
A-Hoeffding does not exploit the variance of random
variables so the stopping times remains roughly the same.
For others, the stopping time is decreasing. It is clear that
on average, A-Bentkus is the best for all values of m and
the ratios of our stopping time to the second best are 0.79,
0.66, 0.72, 0.86, 0.84.

4.3. Best Arm Identification

In this section, we study the fixed confidence best arm iden-
tification, a classic multi-arm bandit problem. An agent is
presented with a set of K arms A, with unknown expected
rewards µ1, . . . , µK . Sequentially, the agent pulls an arm
↵ P A of his choice and observes a reward value, until
he finally claims one arm to have the largest expected re-
ward. The goal is to correctly identify the best arm with
fewer pulls N , i.e. smaller sample complexity. This prob-
lem has been extensively studied; see, e.g., Even-Dar et al.
(2002); Karnin et al. (2013); Jamieson et al. (2013; 2014);
Jamieson & Nowak (2014); Chen & Li (2015). Zhao et al.
(2016) provided an algorithm based on A-Hoeffding



Algorithm 2: Best Arm Identification
Input: failure probability �, a set of arms A
Initialization: N – 0; n↵ – 0, @↵ P A
while A has more than one arms do

Compute empirical mean reward pµ↵, @↵ P A
p↵ – argmax↵PA pµ↵

for every arm ↵ P A do

�↵ –
#

�{2
|A|´1 if ↵ “ p↵
�
2 otherwise

rL↵, U↵s – the n↵-th CI of ConfSeqp�↵q
R↵ – radius of the n↵-th CI of ConfSeqp�↵q

Sample from the arm ↵ with largest radius R↵

n↵ – n↵ ` 1, N – N ` 1
Remove arm ↵ from A if U↵ † Lp↵

return the remaining arm in A, number of pulls N

that outperforms previous algorithms including LIL-UCB,
LIL-LUCB. Here we present it as Algorithm 2 in a general
form that utilizes any valid confidence sequences, and use
A-Bentkus as well as the competing ones in it to compare
their performance. Following the proof of Zhao et al. (2016,
Theorem 5), one can show that Algorithm 2 outputs the best
arm with probability at least 1 ´ �.

The experiment setup follows Jamieson & Nowak (2014);
Zhao et al. (2016). Each arm is generating random Bernoulli
rewards with µ↵ “ 1´ p ↵

K q0.6, ↵ “ 0, . . . ,K ´ 1; the first
arm has highest expected reward µ0 “ 1. The problem hard-
ness is measured by H1 “ ∞

↵‰0pµ↵ ´ µ0q´2 (Jamieson &
Nowak, 2014), which is roughly 0.4K1.2 in our setup.

In Algorithm 2, the sampling of an arm depends on R↵, the
radius of the confidence interval. In our experiments, we
find that a confidence sequence for which R↵ stays constant
for a stretch of samples yields a larger sample complexity.
Our intuition is that Algorithm 2 keeps selecting the same
arm when the radius is not updated, therefore it forgoes a
number of samples; see Appendix B.3 for more details. This
phenomenon happens for all confidence sequences when
truncated to r0, 1s, where the intervals stay constant at r0, 1s
for the first few samples, see Figure 4a. For A-Bentkus,
the cumulative maximum/minimum (µlow˚

n and µup˚
n in The-

orem 4) also leads to the constant radius problem. Hence, for
smaller sample complexity, we set L↵ “ µlow˚

n↵
, U↵ “ µup˚

n↵

and R↵ “ pµup
n↵

´ µlow
n↵

q{2 instead of pµlow˚
n↵

´ µup˚
n↵

q{2.

Our experiments are reported in Figure 6. A-Bentkus sig-
nificantly outperforms the competing approaches, including
A-Hoeffding which beats LIL-UCB, LIL-LUCB (Zhao
et al., 2016). Further, A-Bentkus only requires 52% to
61% of the samples required by A-Hoeffding. Finally,
we note that the Bernstein type of methods underperform
because they have larger confidence intervals for small to
moderate number of samples as can be seen in Figure 4a.
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Figure 6: The number of pulls N versus the the number of
arms K. � “ 0.05. The results are averaged over 10 trials.

5. Conclusion
We proposed a confidence sequence for bounded random
variables and examined its efficacy in synthetic examples
and applications. Our method is favorable to methods that
utilize classical concentration results. It can be applied
to various problems for improved performance, including
testing equality of distributions, testing independence (Bal-
subramani & Ramdas, 2016), etc. Our work can be extended
in a few future directions. We assumed that Xi’s are inde-
pendent and bounded. The generalizations for the dependent
case and/or the sub-Gaussian case are of interest. The gener-
alized results can be obtained based on the results of Pinelis
(2006, Theorem 2.1) and Bentkus (2010).
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