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Propagation Over Rural Terrain

Transmitter

(®)

Receiver

 Model long range propagation over wide frequency band (MHz -> GHz)

 Model complex terrain
 Model atmospheric effects, ducting, earth curvature



Old But Highly Relevant Problem...

Longley Rice — TIREM models
Asymptotic techniques: PO to Ray Tracing to GTD
Parabolic Wave equations (PWE)

Numerically rigorous CEM solvers — FDTD, integral Equations (IE)

Key problems
* Scenes are electromagnetically HUGE
* Scene is not deterministic

No single technique can capture all effects



PWE : Basic Split-Step Scheme

* Split range into vertical slices

1. Advance wavefront through each
slice using spectral/plane wave Transmitte
propagator

2. Apply phase screens to account
for atmospheric disturbance
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PWE : Weaknesses of Basic Split-Step Scheme

Memory consumption /
computational complexity

* High even for structured ray-
like fields

Upper Domain truncation

* Awkward implementation of
PMLs, other RBCs

Terrain modeling

e Staircase approximations or
piecewise linear models

* Poor material modeling
capabilities
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Issues A and B addressed in: M. Bright E. Michielssen, J.
Kusuma, “Gabor Frame-Based Sparsification and Radiation
Boundary Conditions for Parabolic Wave Equations,”
Propagation and Remote Sensing in Complex and Random
Media. Thursday 16:00 — 17:40



Integral Equation: Weaknesses

Memory consumption /
computational complexity

e Addressed by fast methods
such as MLFMA, Transmitter
SDFMM/spectrally accelerated ((( )))
methods, Butterfly, Rank-
revealing schemes...

Receiver

Atmosphere modeling

e Use of VIEs is out of the
guestion

This contribution: Hybridization of Fast IE solver and PWE solver

O Noteworthy past effort at hybridizing PWE and IE: Rino, Charles L., and Hoc D.
Ngo. "Forward propagation in a half-space with an irregular boundary." IEEE
Transactions on Antennas and Propagation 45.9 (1997): 1340-1347.



Proposed Solver: Key Characteristics

Integral Equation (IE) for surface

* |BC or dielectric interface

Green’s function = background medium (inhomogeneous atmosphere)
* Computed using split step “spectrally resolved” PWE method

Discretized IE solved iteratively using forward-backward (FB) method

* Special case I: One forward sweep: traditional PWE

» Special case Il: Multiple sweeps in homogeneous medium : traditional FB / Gauss Seidel
method

“Fast aspects”
e Low-rank scheme for “near-field” interactions

e Fast hierarchical & spectrally accurate method for computing “PWE fields” from sources
and back

Options: matrix-free / Gabor accelerated
Cost scales as (N, N, log(N,)) with very small leading constant



Proposed Solver: Forward Sweep
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2. Compute “incident fields” on first surface slice. Use free-space Green \
function

3. Compute currents on surface =solve IE =)



Proposed Solver : Forward Sweep
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2. Compute “scattered field” on second PWE slice. Use free-space Green ,
function

3. Add fields propagated by PWE —)



Proposed Solver : Forward Sweep
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2. Compute “scattered field” on second PWE slice. Use free-space Green ,
function

3. Add fields propagated by PWE —)



Proposed Solver: Forward Sweep
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Repeat for all slices: (i) compute incident fields on IE surface - (ii) compute

currents — (iii) compute fieds on PWE slices — (iv) propagate and add PWE
fields .



Proposed Solver: Backward Sweep
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Repeat for all slices: (i) compute incident fields on IE surface - (ii) compute

currents — (iii) compute fieds on PWE slices — (iv) propagate and add PWE
fields .



Proposed Solver: Backward Sweep
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Repeat for all slices: (i) compute incident fields on IE surface - (ii) compute

currents — (iii) compute fieds on PWE slices — (iv) propagate and add PWE
fields .



Proposed Solver: Backward Sweep
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Repeat for all slices: (i) compute incident fields on IE surface - (ii) compute

currents — (iii) compute fieds on PWE slices — (iv) propagate and add PWE
fields .



Proposed Solver: Implementation Details

* Near-field buffer zone:
* In practice “near-fields” (self and neighbor interactions) are computed all using IE
* Fields from sources are only added to PWE fields beyond buffer region

 PWE discretization does not have to account for evanescent fields — same sparse discretization
as for classical PWE solvers can be used

* Any IE solver and acceleration method can be used

* Computation of PWE fields produced by sources
* Achieved using windowed Weyl transform
* Real spectrum, compatible w/ PWE

* Fast interpolation/filtering schemes to transition from IE to PWE spectral requirements



Proposed Solver: Implementation Details |

Transmitter

Near-field buffer zone:
In practice “near-fields” (self and neighbor interactions) are computed all using IE
Fields from sources are only added to PWE fields beyond buffer region FMM-style



Proposed Solver: Implementation Details Il

A : form cylindrical/spherical FMM plane wave
spectra at lower levels

B : form cylindrical/spherical FMM plane wave spectra
at higher levels

C : convert cylindrical/spherical FMM spectra to
planar plane wave spectra accounting for Weyl
weight and spectral window
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D : Apply spatial window to capture rays escaping
domain




Numerical Result 1: Scattering from Flat PEC Ground
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Numerical Result 1: Scattering from Flat PEC Ground

H-pol — 300 Mhz
Range =5 km
N =100,000

Currents on surface
Current Accuracy: ~ 4 digits

0.030

0.025

0.020

0.015

0.010

0.005

666666

444444

25x10%

A
5.0«10" 7.5«10" 1.0<10°

2222222

7777777



80

60

40

20

Numerical Result 1: Scattering from Flat PEC Ground
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Numerical Result 2: Scattering from Rough Surface
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Numerical Result 2: Scattering from Rough Surface

Relative error current
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Numerical Result 3: Scattering from Hilly Terrain w/ Rough Surface

RS - Corr. Length = 3m;
RMS height = 1m — dry soil
V-pol — 300 Mhz
Range =5 km
N =100,000
Fields in two vertical slices
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Numerical Result 4: Antenna on Curved Earth

IE-PWE + earth flattening

IE-PWE solver with “earth flattening
atmosphere”: n = 1+z/a

H-pol — 300 MHz — antenna h = 50m
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I[E-PWE + curved earth

IE-PWE solver with explicitly
curved earth:n=1

Results match : beam tilts are within a
few meters after 50km
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Numerical Result 5: Exaggerated Duct Over Sea
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Fig. 13. Total field of a high directivity 3 GHz source in the presence of an
exaggerated duct. BIE result (top) [8] (by permission). FDTD (bottom).
C. Bourlier, H. Li, and V. Fabbro, “Radar propagation modeling using the Flat Séa —eps = 70.4 - J 40.6
boundary integral equations in a maritime environment with a duct,” in H'p0| -3 GhZ

Proc. Int. Radar Conf., Oct. 2014, pp. 1-5
Range = 3.6 km
Brandon W. Dowd and Rodolfo E. Diaz. "FDTD simulation of very large N ~ 90.000
. . . 1" H ’
domains applied to radar propagation over the ocean." IEEE Transactions

on Antennas and Propagation 66, no. 10 (2018): 5333-5348 n = Sqrt(1 + 0.0001 (50 - z))



Numerical Result 5:
Convergence of Forward Backward Iterative Solver

 “RS” —Corr. Length = 300m; e Solver converges to err = 107(-6) in 15

RMS height = 10m - dry soil iterations
* V-pol -3 GHz — weak evaporation duct ¢ Relative accuracy after 3 and 1 iteration are
e Range=10km-N =2,000,000 15% and 3%
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Numerical Result 6:
Convergence of Forward Backward lterative Solver
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Conclusions

New IE — “PWE” hybrid

* Uses (new) plane wave translation scheme
* sole angle restricting operation is split step scheme)

Applies to large domains, complex terrain, and realistic atmospheric profiles
Computational expense = O(Nx Nz log(Nz)) with very small leading constant.
No dispersion error

Can be hybridized with Gabor/ray based propagator to sparsify field
representations

3D is within reach



