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1 SOCIAL TOUCH DATASET

1.1 Scenario Prompts

The scenario prompts that the toucher and receiver are
given are shown below. The amusement prompt was used
to acclimate participants with the procedure. The toucher
audios were used in the scenario classification experiment.
See Dataset SD1 for recordings of these prompts.

Amusement (Used for training only)
Toucher: Imagine this: You’re spending time with the

person sitting next to you. You’re talking about small things
here and there, but there are also some long pauses where
neither of you has much to say. Then, they make a face
and say something really, really funny. Suddenly everything
feels lighter. You reach out and touch them to show your
delighted amusement.

Receiver: Imagine this: You’re spending time with the
person sitting next to you. You’re talking about small things
here and there, but there are also some long pauses where
neither of you has much to say. Sure, it’s a little awkward.
Silence is fine, but today you’re feeling chatty. The person
sitting next to you seems receptive, so you crack a joke.
It must have worked, because suddenly everything feels
lighter. When they touch you, expressing their amusement,
you feel like maybe you saved the day, or at least the next
ten minutes.

Attention
Toucher: Imagine this: You’re at a crowded party with

the person sitting next to you, and they’ve drifted into a
conversation with someone else. You don’t want to be rude
and interrupt them, but you really need to ask them an
important question. Turn back toward them, and touch them
in a way that gets their attention.

Receiver: Imagine this: You’re at a crowded party with the
person sitting next to you, but you’ve drifted off into a side
conversation with other people. The person you’re talking to
is telling you a fascinating story, and you’re completely rapt.

It’s like no one else is in the room. You’re not purposefully
ignoring the person you came to the party with, but you’re
really focused on hearing all the details. Then, the person
you came to the party with touches you in a way that signals
they need your attention.

Gratitude

Toucher: Imagine this: You and the person sitting next to
you are at a dinner party with a group of friends you’ve
known for a long time. You start to sense the conversation
getting dangerously close to a topic that could put you in
a really uncomfortable position if aired in this group. The
person sitting next to you picks up on your uneasiness and
deftly takes the conversation in a different direction. You
feel a deep sense of relief, and you want them to know you
are grateful. Reach out and touch this person to express your
gratitude.

Receiver: Imagine this: You and the person sitting next
to you are at a dinner party with a group of friends you’ve
known for a long time. You have a knack for being able to
spot a train wreck before it happens, so when you sense
the conversation is getting dangerously close to a topic that
could damage the reputation of the person sitting next to
you, you steer it back on track. You don’t expect any credit
for such agile social maneuvers, but when they reach out
and telegraph “thank you” with their touch, you instantly
know you’ve done good.

Happiness

Toucher: Imagine this: Today is the perfect day. Like
magic, everything is going right, and everyone around you
seems to be in a good mood. You’re walking down the street
in the sunshine, listening to your favorite song. Feel that
little bounce in your step? You catch a glimpse of yourself
in a store window, and dang – you look good! On a whim,
you decide to pop in and buy a lottery ticket. Why not?
Scratch, scratch, scratch...you win $50! This day just couldn’t



2

get any better. Now take this feeling of happiness and touch
the person next to you to express it.

Receiver: Imagine this: When the person walking toward
you just can’t stop smiling, you know something is going
really right. They’re beaming, and you can just tell they’re
having the best day ever, almost walking on clouds. They
bound over to you and reach out to touch you, and it’s like
an electric bolt of pure joy flows through you.

Calming
Toucher: Imagine this: It’s 7:30 pm on a miserable, rainy

Thursday, and you’re waiting for the person next to you to
meet you for dinner. It’s been one hell of a week for them.
Everything that could go wrong for them has gone wrong.
Finally, you see them walk through the door, and they’re
completely frazzled. You can practically feel the stressed out
energy radiating off their body. Go to this person and touch
them in a way that feels calming.

Receiver: Imagine this: What a crappy week. You’re
stressed out, and things just keep piling on. You really aren’t
in the mood to meet the person sitting next to you for dinner,
but you can’t back out now. You walk through the door in a
state, and that must show because they reach out and touch
you in the most compassionate and tender way. You feel
instantly understood, and it brings a wave of calm. Your
blood pressure feels like it just dropped 20 points, in a good
way.

Love
Toucher: Imagine this: You and the person sitting next

to you are spending the afternoon together. You’re walking
to get a bite, the weather is amazing, and you’re catching
up on everything in the way that friends do. You look at
them, and it suddenly strikes you how much this friendship
means to you, that life is so much easier and better with
them around. Reach out and touch this person to express
your love for them.

Receiver: Imagine this: You and the person sitting next to
you are spending the afternoon together. You’re walking to
get a bite, the weather is amazing, and you’re catching up on
everything in the way that friends do. You look at them, and
it suddenly strikes you how much this friendship means to
you, that life is so much easier and better with them around.
They reach out to express their love for you.

Sadness
Toucher: Take a moment to think about someone you

have lost – could be the death of someone close, or a breakup
that tore you apart. Sit with that feeling for a bit... locate it in
your body. Maybe it feels heavy, or achy. Get in touch with
the sadness you feel about this loss, and touch the person
next to you in a way that expresses that sadness.

Receiver: Even if it doesn’t say anything out loud, a heavy
heart is a loud presence. It’s almost like another person
in the room. Or maybe instead of a presence what you
are feeling is an absence. The absence of joy. It seems like
the person next to you is in mourning, like they’ve lost
something that was important to them. That makes you
instantly want to fill up the space with something like
compassion or help or just being there.

1.2 Social Touch Survey
We provided a survey in which we asked participants to rate
their thoughts on conveying each meaning through touch
during the data collection process and in general along four
scales. We used the Friedman test to check the effect of
touch meaning on response, as our data was non-normal
and not independent. We provide the exact prompt for the
”Attention” version of each question:

• Rate your confidence in your ability to have conveyed At-
tention through touch alone. (Fig. S1a) The Friedman
test shows that touch meaning has a significant effect
on participants’ confidence in their ability to convey
that meaning (χ2(5) = 58.74, p = 2.2e-11). The mean
values for attention and gratitude were higher that
the other touch meanings.

• Rate your comfort level when conveying Attention to
your partner in this study. (Fig. S1b) The Friedman
test also shows that touch meaning has a significant
effect on participants’ comfort when conveying an
meaning to a partner (χ2(5) = 38.55, p = 2.9e-4). The
highest average comfort level was reported for atten-
tion, whose distribution was statistically significantly
different from the distributions for love and sadness.

• In general, how much do you want to communicate
Attention to other people through touch? (Fig. S1c) The
Friedman test shows that touch meaning has a sig-
nificant effect on participants’ desire to communicate
that meaning to others (χ2(5) =71.48, p = 5.0e-14).
Participants have the highest desire to communicate
attention, calming, happiness, and love.

• In general, how much do you want others to communi-
cate Attention to you through touch? (Fig. S1d) The
Friedman test shows that the touch meaning has
a significant effect on participants’ desire to have
others communicate that meaning to them (χ2(5) =
59.74, p = 1.4e-11). The mean values indicate that
participants most desire others to communicate love,
attention, and calming to them.
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Fig. S1. Social touch recording survey results. (a-d) The survey results for each question, based on a 7-point Likert scale. Error bars indicate
standard error. (e) Associated significance matrix for each question, using the Dunn-Sidak post-hoc test for Friedman. This test was chosen as our
data was non-normal and not independent.
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2 MAPPING ALGORITHM FORMALIZATION

Here we provide a full formalization of our algorithm,
which that maps from data recorded on a 2D sensor array
to an array of actuators. Our use case is to map from a
pressure sensor array recording of human touch to a device
consisting of a series of actuators worn by a human. The
algorithm tracks trajectories of high pressure datapoints
whose pressures vary smoothly over space and time, and
chooses which of those trajectories to map onto the actu-
ators. For the trajectories selected, our algorithm chooses
an accurate rendering given the the actuator workspace
limitations. The code is provided in Code SC1.

2.1 Function Input and Output
The algorithm provides a mapping

g : f1...× ...fp × a1 × ...× aq → R3×p×q

where p is the number of data frames, q is the number of
actuators. f1, ..., fp ∈ F are a series of data frames (which
are not constrained to be rectangular) and a1...aq ∈ A are
3D geometric shapes.

Each frame ft ∈ F contains a series of coordinates
x ∈ R2 and associated intensities It(x) ∈ R at time
index t. These coordinates must be in metric coordinates
(e.g. millimeters), and these frames define the “coordinate
space.” The intensities provide a measure of the probability
of detection at that coordinate.

Each shape ai ∈ A represents the workspace for actuator
i. The workspace is defined by the actuator’s available
motions (e.g. up and down, side to side, etc.) and the extents
of its motion in any direction. It is represented in the same
units as the coordinate space. The algorithm tracks only the
center of each actuator, so the shape should represent the
bound of how far the actuator center can move.

For each frame for each actuator, a 3D value for the
location of each actuator is output. Let Li(t) ∈ R3 be the
location of actuator i at time t in coordinate space. The
first 2 dimensions of Li(t) are coordinate distances, and last
dimension is the measurement value.

To map values from the algorithm to hardware, a func-
tion

h : R3 → R3

maps coordinate space actuator location values Li(t) to
desired 3D locations for each actuator. Typically, the first
two dimensions would be mapped by the identity function,
representing no scaling between coordinate space and the
actuator output in those dimensions. Because the intensity
values of sensor frames F are not necessarily directly map-
pable to a location in space, the third dimension will be
determined based on the use case.

Step 1: Trajectory generation using multi-object tracking
In the first phase of the algorithm, we leverage multi-object
tracking algorithms [1] to find the optimal contiguous paths
tracked in the sensor. Such algorithms are typically used
in computer vision to extend object detectors from single
images to continuously tracked objects in video. They rely
on the object detector providing a probability of a correct
detection to the tracking algorithm. They then take all

detections across all images, and provide a consistent set
of tracked object trajectories through the video. We use this
method to locate areas of contiguous, high pressure read-
ings of sensor, which we assume represent interaction of a
participants hand on the sensor. Our method for trajectory
generation is an adaption of [1] for our sensor frames.

If we consider our sensor frames as video, we assume
the pressure at each pixel location is monotonic with the
probability that it represents the center of mass of pressure
being applied by some object. This is a statement that higher
pressure indicates a higher likelihood of meaningful contact
with the sensor. Thus we could consider each pixel as a
detection, with probability as a function of pressure. Let g
be a pixel, where G = {g1, ...gn} = {(t1,x1), ..., (tn,xn)} is
the set of all pixels, consisting of coordinates x over all times
t, and let V (g) be the intensity of a pixel. V (g) = V (t,x) =
It(x). Let V̄ be the mean intensity over all pixel values in
the data and σV be the standard deviation of those values.
We use the following equations to calculate the functional
probability of a detection:

z(gi) =
V (gi)− V̄

σV

P (gi) = Φ(z(gi)− σk) ∗m

where Φ() is the cumulative distribution function (CDF)
of the standard normal distribution. The above equation
uses the z-score of a pixel value compared to all pixels in
the entire sequence and determines its probability value by
taking the standard normal CDF. σk is used to determine the
number of standard deviations from the mean that a pixel
must be for a value to be considered to have 0.5 likelihood
of being a detection – in our case we used σk = 1.25. The
constant m < 1 is used to prevent undefined values in later
steps. In our work we used m = 0.98.

For computational efficiency we consider only pixels
which are a local maxima. We define G′ ⊆ G:

G′ = {gi | V (gi) ≥ V (gj) for |||xi − xj || ≤
√

2}

In addition, we need a measure of the transition probability
between detections Plink(gi|gj), where ti = tj + 1

Plink(gi|gj) =

{
1− ||xi−xj ||

kd
if ||xi − xj || ≤ kd

0 otherwise

where kd is a problem specific parameter. For our use case
kd = 50.

The goal is to find the set of trajectories J that best ex-
plains G′ [1], with trajectories Jk ∈ J , Jk = {gk0, ...,gkl} ⊂
G′. This is formulated as a maximum a posteriori probability
(MAP) estimate:

J ∗ = argmax
J

P (J | G′)

= argmax
J

∏
i

P (gi | J )
∏
Jk∈J

P (Jk)

Jk ∩ Jw = ∅, k 6= w

P (gi|J ) =

{
P (gi) gi ∈ Jk ∈ J
1− P (gi) otherwise

P (Jk) = Pentr(gk0)Plink(gk1|gk0)...Plink(gkl|gkl−1)Pexit(gkl)
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Pentr is the probability that a point starts a trajectory, Pexit
is the probability a point ends a trajectory. Pentr = Pexit is a
tunable constant. We use e−8, indicative of source/sink costs
of 8 in the formulation by [1]. Increasing this value increases
the number of trajectories that the algorithm is likely to find.

The constraint Jk ∩ Jw = ∅, k 6= w indicates that two
trajectories cannot share an element.

A min-cost flow framework to solve for J ∗ is presented
in [1].

Step 2: Actuator workspace restriction
The previous section gave us J ∗ which represents a set
of trajectories from the sensor data. We will now find a
mapping from the trajectories to our actuators.

Assume we have a set of 3D geometric shapes A which
represent the bounds of motion for the center of an actuator
in trajectory space. Each vertex should be mapped into the
coordinate space of our sensor frames F . By positioning the
shapes onto a particular location on the frame, they repre-
sent some area of the sensor space that we wish to actuate.
By trying many transforms of the set of shapes, we can find
the optimal portion of the sensor space to render based on
which trajectories pass through that area. Let M represent
the set of transforms we wish to try (e.g. translations and
scalings). Let Am represent the set of actuator workspaces
transformed by transform m ∈M .

We then find the set of trajectories to render given a
workspace restriction. We assume that a given actuator can
only render one trajectory at a time, so we wish to find a
set of trajectories that would not require any actuator to
render more than one trajectory at any time τ ∈ T , where
T = 1, ..., p all times in which we have data frames. This
implies a matching between two sets of data – the set of
trajectories at time τ , and the set of actuator workspaces
with any trajectories in them at time τ . In order for a set
of trajectories to be valid and maximal, there must then
be a one-to-one correspondence between the two sets – a
bipartite perfect matching. Let

J ∗τ = {J ∈ J ∗|∃gi ∈ J, ti = τ}

Consider any Θτ ⊆ J ∗τ . Let

Ξτ = {a ∈ m(A)|∃J ∈ Θτ s.t. ∃gi ∈ J, ti = τ,

xi within a ∈ m(A)}

i.e. the actuator workspaces a where there exists a pixel g
in a trajectory J ∈ Θτ , with location x within a at time τ .
Consider the bipartite graph with vertex sets Θτ (trajecto-
ries) and Ξτ (actuator workspace) and edges between them.
In order for all J s.t. J ∈ Θτ to be compatible, the edges
must be a bipartite perfect matching in this graph, otherwise
two trajectories are in the same actuator workspace at the
same time. By checking if such a bipartite perfect matching
exists for each Θτ and associated Ξτ for all τ ∈ T , we
can determine which subsets of J ∗ can be rendered. For
every timestep τ , we consider the bipartite graphs for all
possible all Θτ ⊆ J∗τ and associated Ξτ . If a bipartite
perfect matching is not possible for Θτ we know the set
of trajectories J s.t. J ∈ Θτ is invalid. Thus we can calculate
the set of all sets of trajectories which are invalid Θ∨. We use
Hall’s theorem to check the bipartite perfect matchings [2].

We wish to find the best set of compatible trajectories for
our frame sequence and actuator workspace constraints. To
do this we create a convex measure of trajectory quality:

R(J,m(A)) =
∑
gi∈J

log

(
P (gi)

1− P (gi)
∗D(gi,m(A)

)
D() is a small factor that weights trajectory elements lower
as they move further from the center of the actuator bound-
ing shape they are within at a given time. In this work we
set

D(gi,m(A)) = 1.02

(
1.04− 0.04||gi − ci||22

c2r

)
where ci is the center of the actuator workspace that gi is
inside of, and cr is the radius of the workspace. This factor
assumes that it is more preferable to render the center of a
workspace than the edges. Let Θ∨ be the set of all sets of
trajectories that are incompatible as above, and J ∗′ be the
power set of J ∗. Let k(J,J ) = 1 iff J ∈ J .

We can then find the optimal trajectories by the following
convex optimization problem:

argmax
m∈M

argmax
J∈J ∗′

∑
J∈J

R(J,m(A))

subject to:

 ∑
J∈J ,J∈Θ

k(J,J )

 < |Θ|,∀Θ ∈ Θ∨

The above can be solved with an off-the-shelf convex
optimization solver such as CVX [3], [4] for the inner op-
timization, and by iterating over all m ∈ M for the outer
optimization.

We could have chosen to merge Step 1 and Step 2 into
a single optimization where the trajectories are selected
with information about the actuator workspaces provided.
However, we chose to separate these procedures so that Step
1 represents the trajectories strictly as a function of the data,
so they are a more accurate representation of the data itself
than if a single optimization were performed.
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3 SCENARIO CLASSIFICATION EXPERIMENT

3.1 Non-forced-choice Simulation

Our experiment was a forced-choice task. In Fig. S2 we
simulate the notion that a user did not believe any response
is valid. We assume that if a user assigns high probabilities
to few options, they are less likely to have selected no
scenario. Thus we plot the top-choice accuracy as a function
of different probability cutoffs for the maximum probability
scenario assignments. Top-n indicates the sum of the prob-
ability of the n highest probability scenario assignments
is calculated. Specifically, consider [p(s1), ..., p(s6)] to be
the sorted probability assignments for the 6 scenarios in
some instance, where p(s1) ≥ ... ≥ p(s6). The summed
probability for that instance in the top-n case is

∑n
i=1 p(si).

We calculate accuracy as in Fig. 2, except even if the top-
choice response was correct, it is marked incorrect if the
probability sum is less than the cutoff. For example, if a
user rated “attention” and “gratitude” highly, it is possible
they would have selected one of those 2 rather than a “no
response” option. The top-2 graph can be used to analyze
such behaviors. By providing this analysis participants no
longer need to decide at what certainty level they would
select no scenario, and instead a more complete profile of
user perception can be analyzed.

3.2 First Round Classification Results

For top choice classification, Fig. S3 compares the first round
classification results with the overall result. We see 42%
accuracy for the first decoding compared to 45% accuracy
overall, and with similar areas of confusion.

3.3 Self-Assessment Manikin clustering

We provide clustering analysis for the Self-Assessment
Manikin ratings of the displayed haptic signals (Fig. S5).
Using the Calinski-Harabasz [5] criterion we find only 5
clusters, unlike the 7 obtained when clustering on the user-
assigned probabilities (Fig. 8). We see two clusters similar to
those obtained via the user-assigned probabilities. Cluster
4 here is similar to Cluster 7 from the user-assigned prob-
abilities, a cluster which primarily contains points from the
sadness scenario. Cluster 5 here is similar to Cluster 6 for the
user-assigned probabilities, a cluster which has many points
from calming, love, and sadness. While the user-assigned
probabilities had clusters which seemingly exemplified each
of happiness, gratitude, and attention, no such clusters exist
in the Self-Assessment Manikin clustering. This may be
evidence that the 2-dimensional Self-Assessment Manikin
may be insufficient to fully capture common modes of
interpretation by the subjects.

3.4 Actuator Signal Measurement

We recorded the output of the each voice coil actuator
laid flat (Fig. S4) using the Micron Tracker Sx60 (ClaroNav,
Toronto, ON, CA), a vision tracker with sub-millimeter
resolution. We recorded six trials for each scenario and
report the means and standard deviations of the actuator
displacements (Figs. S6-S7). We see that the actuators do
not directly match the commanded signals, due to differing
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Fig. S2. Top-choice accuracy as a function of different probability cutoffs
for the maximum probability scenario assignments. Top-n indicates we
sum the probability of the highest n scenario probability assignments.
Even if the top-choice response was correct, it is marked incorrect if
the probability sum is less than the cutoff. For example in the top-2 line
consider an instance where the summed weight of the top 2 choices
is 0.3. For probability cutoff of at least 0.3 it will be marked incorrect,
regardless of whether the top choice selection was correct.

response characteristics for each actuator. This is possibly
due to the use of voice coils that were originally designed
to produce sound, where accuracy of frequency response is
more important than amplitude. However, the signals sent
to the actuators are repeatable across trials, as demonstrated
by the small standard deviations. Integrating closed-loop
control on the actuator forces or displacements using sen-
sors is left for future work.
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Fig. S4. Voice coil actuator sleeve laid flat. Each actuator has a thin
plastic covering to increase surface area. Signals are measured while
sleeve is laid flat.
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Fig. S6. Commanded and measured social touch signals. The commanded (left) and measured (right) signals sent to the voice coil actuators. The
shaded error bars of the measured signals represent the standard deviation of six repetitions.
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Fig. S7. Commanded and measured social touch signals. The commanded (left) and measured (right) signals sent to the voice coil actuators. The
shaded error bars of the measured signals represent the standard deviation of signal repetitions.
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4 SUPPLEMENTARY MEDIA, CODE, AND DATA

Movie SM1: Social Touch Recording Demonstration
This is a video showing an example interaction from our
social touch dataset collection. The video shown here is a
demo where two authors on the paper interact, and this
data is not included in the social touch dataset. The audio is
toucher version of the “love” scenario.

Movie SM2: Voice Coil Actuation
This is a video of the voice coil actuators displaying our
“love” signal. Fig. S7 shows the commanded and recorded
signal. We see there is a stroking motion followed by a
squeezing motion.

Code SC1: Mapping Algorithm Code
https://github.com/charm-lab/social multiobject
tracking

Dataset SD1: Audio for the Scenario Prompts
https://stanford.box.com/v/sparse-social-touch Folder:
audio prompts. (text available in section SI Social Touch
Dataset: Scenario Prompts).

Dataset SD2: Public Social Touch Dataset
We provide the recorded data for public use. The dataset
consists of PPS sensor data for each touch stored as
3D Python numpy arrays. We also provide annotations
for which gesture was being used during this touch. If
more than one clear gesture was made, the sections with
each gesture are annotated. https://stanford.box.com/v/
sparse-social-touch Folder: pressure data.

Dataset SD3: Classification Experiment Results
In the scenario classification experiment we asked each
participant to indicate the probability that a displayed
signal was drawn from each scenario. This was repeated
three times for each signal and recorded. In addition, for
each signal we asked each participant to rate the valence
and arousal of that signal, the results of which are avail-
able here. https://stanford.box.com/v/sparse-social-touch
Folder: classification results.
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