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Abstract

The ratio of two Gaussians is useful in many contexts of statistical inference. We discuss
statistically valid inference of the ratio estimator under Differential Privacy (DP). We use
the delta method to derive the asymptotic distribution of the ratio estimator and use the
Gaussian mechanism to provide (ε, δ) privacy guarantees. Like many statistics, the quantities
needed here can be re-written as functions of sums, and sums are easy to work with for many
reasons. In the DP case, the sensitivity of a sum can be easily obtained. We focus on the
coverage of 95% confidence intervals (CIs). Our simulations shows that the no correction
method, which ignores the noise mechanism, gives CIs that are too narrow to provide proper
coverage for small samples. We propose two methods to mitigate the under-coverage issue,
one based on Monte Carlo simulations and the other based on analytical correction. We
show that the CIs of our methods have the right coverage with proper privacy budget. In
addition, our methods can handle weighted data, where the weights are fixed and bounded.

Some Key Words: Differential privacy; Ratio of two Gaussians; Delta method.



1 Introduction

Ratio estimation is useful in many contexts. In randomized experiments, one may be inter-

ested in the percent difference of the outcome metric between two experimental arms, which

involves a ratio. Other examples include the ratio of regression coefficients (Hirschberg and

Lye, 2007) and the therapeutic safety ratio (Dunlap and Silver, 1986).

The motivating example here is in the context of supervised machine learning, where a

model is said to be calibrated if its average score is close to the average label. Equivalently,

the ratio of the two should be close to 1. Further, one may choose to bucketize the scores

into (usually 10) groups and check the calibration ratio within each bucket.

Differential Privacy (DP) has become one of the more popular formal definitions of pri-

vacy (Dwork et al., 2006b). DP can be achieved by adding noise to each unit (known as local

DP (Kasiviswanathan et al., 2008)), or to intermediate/final summary statistics (known as

central or global DP).

There is a relatively small literature on valid statistical inference under DP (Brawner and

Honaker, 2018; Covington et al., 2021; D’Orazio et al., 2015; Du et al., 2020; Evans et al.,

2019; Ferrando et al., 2020; Karwa and Vadhan, 2017; Movahedi et al., 2021). To the best of

the authors’ knowledge, there is no existing practical work on differentially private statistical

inference on the ratio estimator of two Gaussians. This work is an attempt to fill this gap.

2 Definitions and methodology

We define the quantity of interest and the privacy semantics. We use n for sample size, y for

the label, and s for the score. Both y and s are non-negative. Further, ly, uy, ls, us are the

lower and upper bounds on. We focus on the binary classification models, where the bounds

on y and s are [0, 1].

When the data is weighted, we use lw, uw for the lower and upper bounds of w, the

sample weights, which are assumed to be fixed (e.g., design weights). Also, we also assume

that uw is known, which is the case for example when the bounds are specified in the weight

calibration step.
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2.1 Calibration Ratio

Given a model, calibration ratio is simply r = µs/µy, where µs and µy are the true means

of s and y. An estimator of r is r̂ = s̄/ȳ. Note this estimator is statistically biased, but its

bias is of order 1/n and vanishes quickly as sample size increases. What’s more interesting

is its variance.

A fact we will use is that s̄/ȳ =
∑
s/
∑
y, where the ratio of sums is easier to work with

for inference. We use the same s̄ and ȳ to denote the weighted means when data is weighted.

2.2 Differential Privacy

A randomized algorithm satisfies the requirement of Differential Privacy (DP) (Dwork

et al., 2006b) if for every two neighboring datasets that differ on exactly one record, and for

every possible output, the probabilities of the output is close up to a multiplicative factor of

eε ≈ 1 + ε whether the randomized algorithm is applied on one dataset or the other. This is

often called ε-DP or pure DP.

When we say that two neighboring datasets differ on exactly one record, we mean one

of the dataset can be obtained by adding or removing one record from the other dataset.

This definition of neighboring is known as add/remove-one, as opposed to the alternative

definition based on changing one record.

Approximate DP Dwork et al. (2006a) relaxes the DP requirement by allowing for the

violation of ε-DP with a (cryptographically) small probability δ. This is often called (ε, δ)-DP.

Formally, a randomized algorithm M : X n → Y is (ε, δ)-DP if for all neighboring datasets

X,X ′ ∈ X n and all outcomes T ⊆ Y we have Pr (M(X) ∈ T ) ≤ eεPr (M(X ′) ∈ T ) + δ.

We use a few important properties of DP algorithms (Dwork et al., 2014):

1. Closure under composition: the composition of K differential private mechanisms,

where the kth mechanism is (εk, δk)-DP, for 1 ≤ k ≤ K, is (
∑K

k=1 εk,
∑K

k=1 δk)-DP. This

is known as basic composition, which we use in this paper. There are more advanced

theorems that have tighter composition bounds than the basic one.

2. Immune to post-processing: If an algorithm is (ε, δ)-DP, then any post-processing
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of its outputs (i.e., without going back and looking at the raw data) is still (ε, δ)-DP.

DP makes intuitive sense for robust predictive modeling or statistical inference (Dwork

and Lei, 2009). The ultimate goal of a predictive model is to have accurate predictions out

of sample, not in sample. Similarly, the ultimate goal of statistical inference is to generalize

the conclusion beyond the sample at hand. As a result, a small change in the sample, or one

observation in the DP case, should not change the model or the inference much.

DP provides strong privacy guarantee for the worst-case scenario, at the cost of utility

degradation. The privacy guarantee holds no matter how the data is distributed and what

type of attack happens, but the added noise makes the statistical inference less precise.

2.3 Inference

For inference, the point estimate of the ratio is simply the ratio of the two (weighted) means,

which is biased but the bias goes away quickly as sample size increases. So, we instead focus

on the confidence interval (CI), usually at the 95% confidence level. Due to the Central

Limit Theorem, both the numerator and the denominator of r̂ are means of independent

and identically distributed variables and are thus asymptotic Gaussians. For a ratio of two

Gaussians, the delta method shows that the asymptotic distribution of r̂ is itself a Gaussian

with variance

Var(r̂) =
1

µ2
ȳ

σ2
s̄ − 2

µs̄
µ3
ȳ

σȳs̄ +
µ2
s̄

µ4
ȳ

σ2
ȳ, (1)

where µs̄ and µȳ are the means of s̄ and ȳ, σ2
s̄ and σ2

ȳ are their variances, and σȳs̄ is their

covariance. See Seltman for a derivation.

2.3.1 DP mechanism

In statistics, many quantities of interest can be written as functions of sums, a fact we make

use of here. In particular, for the DP context, sums are attractive because their sensitivity

can be easily calculated. It is straightforward to re-write the plug-in estimator of equation

(1) in terms of sums, where x is a placeholder for either s or y:
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µ̂x̄ =

∑n
i=1wixi∑n
i=1 wi

(2)

σ̂2
x̄ =

∑n
i=1w

2
i

(
∑n

i=1wi)
2

{∑n
i=1wix

2
i∑n

i=1wi
−
[∑n

i=1wixi∑n
i=1 wi

]2
}

(3)

σ̂2
ȳs̄ =

∑n
i=1w

2
i

(
∑n

i=1wi)
2

{∑n
i=1 wiyisi∑n
i=1wi

−
∑n

i=1 wiyi
∑n

i=1wisi
(
∑

i=1 wi)
2

}
(4)

To be explicit, up to 7 sums are needed:
∑n

i=1wi,
∑n

i=1wiyi,
∑n

i=1 wisi,
∑n

i=1w
2
i ,∑n

i=1 wiy
2
i ,
∑n

i=1wis
2
i , and

∑n
i=1wiyisi. However, for a binary classification model, y is either

0 or 1, so
∑n

i=1wiyi =
∑n

i=1 wiy
2
i , leading to only to 6 sums needed. Further, when the data is

not weighted, aka wi = 1 for all i, then
∑n

i=1wi =
∑n

i=1w
2
i , leading to only 5 sums needed.

Also, you may recognize the inverse of Kish’s effective sample size (
∑n

i=1wi)
2/(
∑n

i=1 w
2
i )

(Kish, 1965) in equations (3) and (4). Without weights, they would become 1/n. The

effective sample size indicates the loss of efficiency due to weighting.

Recall that one reason we use the sums is that their sensitivity can be easily obtained.

Under the add/remove-one definition of neighboring datasets, the sensitivity of each sum is

simply the summand with s, y, and w replaced by their (positive) upper bounds. In the

binary classification case, the bounds for s and y are [0, 1], so the sensitivity for all sums is

simply uw.

We use the Gaussian mechanism to achieve (ε, δ)-DP (Dwork et al., 2006a), which uses

Gaussian noise with standard deviation 1

σ =
∆
√

2log(1.25/δ)

ε
. (5)

For example,
∑n

i=1wiyi will be released as (
∑n

i=1wiyi)dp =
∑n

i=1 wiyi + e, where we use

a subscript dp to indicate the noisy quantity that can be released. Here, e is the noise term

coming from a Gaussian distribution e ∼ Gaussian(0, σ2∑n
i=1 wiyi

), where σ is obtained by

plugging ∆ = uw into (5) (upper bound uy = 1 for the binary case). Due to composition,

1Alternatively, we can use an improved method described in Balle and Wang (2018), so that smaller

scale noise is used. The smaller variance of the noise has no closed-form expression and has to be solved

numerically.
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the global budget is split among quantities released. For example, if 6 sums are released,

then each one would get (ε/6, δ/6). Tighter composition theorems can be used for large

number of composition rounds, but here we use the basic composition for simplicity.

2.4 CI calculation

Now the DP version of the up to 7 sums are released, all calculation based on them are

post-processing, therefore the privacy guarantees remain the same. The point estimate is

simply r̂ =
(
∑n

i=1 wisi)
dp

(
∑n

i=1 wiyi)
dp

. What’s more interesting is the standard error. Instead of ignoring

the DP mechanism, we propose two methods that appropriately account for it in the CI

calculation.

2.4.1 No correction

One option is to ignore the DP noise added to the sums without applying any correction.

To be explicit, we just plug in the DP version of the sums into equations 2 to 4 to get the

mean and variance/covariance estimates and then plus those into 1 to get the final variance

estimate. We call the variance obtained this way σ2
no correction, which ignore some uncertainty

and the resulting CIs are expected to be too narrow in finite sample settings.

2.4.2 Monte Carlo

How much additional variance is injected by the DP mechanism to the ratio estimate? We

can estimate that via Monte Carlo simulations. Note that the ratio of means is the same as

the ratio of sums, which we’ll use here for convenience. The procedure is straightforward,

where we

1. calculate point estimate r̂ =
(
∑n

i=1 wisi)
dp

(
∑n

i=1 wiyi)
dp

.

2. for b = 1, ..., B, where B is a large integer:

(a) generate independent Gaussian noises es,b for
∑n

i=1 wisi and ey,b for
∑n

i=1wiyi

from distributions with the same variances as in the original DP process, again

according to Equation (5).
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(b) calculate r̂b =
(
∑n

i=1 wisi)
dp

+es,b

(
∑n

i=1 wiyi)
dp

+ey,b

3. the extra variance due to DP is then σ2
extra = 1/B

∑B
b=1(r̂b − r̂)2

4. the final variance is then σ2
sim = σ2

no correction + σ2
extra

Note that we are not looking at the raw data beyond the released sums and thus not

consuming additional privacy budget due to the post-processing property of DP. The Monte

Carlo is easy to implement. In addition, the computation is fairly cheap since it can be

vectorized.

2.4.3 Analytical correction

Recall that the variance of r̂ depends on the means and variance/covariance of s̄ and ȳ. Here,

for convenience we again use the ratio of sums instead of means. To get the corresponding

terms for the sums version, we multiply the right hand side of equation (2) by
∑n

i=1wi and

the right hand side of equations (3) and (4) by (
∑n

i=1 wi)
2.

How do the Gaussian noises added do to
∑n

i=1wisi and
∑n

i=1wiyi change their variance?

It’s actually simple. The noise is coming from independent Gaussians, so the variance of

the sum is simply the sum of the variance. Further, the independent noises do not change

the covariance term. As a result, all we need is to add the variance of the noise term to the

variance of
∑n

i=1wisi and
∑n

i=1wiyi before plugging into equation (1).

Once the point estimates and CIs are obtained via any of the three methods above for

two groups, hypothesis testing of the equality of the two ratios can be easily carried out since

r̂1 − r̂2
d−→ Normal(r1 − r2, σ

2
r1

+ σ2
r2

).

3 Simulations

With a sample size of 5, 000 or 10, 000, we simulated s ∼ Beta(2, 2), y ∼ Bernoulli(s/1.1)

(so that true calibration ratio was 1.1), and w as Exponential(1) clipped to the range of [0.2,

5.0]. Values of ε used included {0.5, 1.0, 4.0}, δ = 1e-6, and both weighted and unweighted

data were analyzed.
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For each simulated dataset, we generated the 95% Wald confidence intervals, calculated

the width of the intervals, and checked whether each covered the true calibration ratio for

the following methods

• Public: the public method without DP

• No correction: the method without correction for DP

• Monte Carlo: the Monte Carlo simulation based method

• Analytical correction: the correction based on modified variance terms

We also calculated the effective sample size, which gave us a rough idea of how variable

the weights are, using the Kish formula (
∑n

i=1wi)
2)/(

∑n
i=1 w

2
i ) (Kish, 1965). Recall that

the inverse of Kish’s effective sample size appeared in equations (3) and (4). We repeated

the simulation 1, 000 times. The python code for the simulation can be found at https:

//github.com/miaojingang/private ratio.

4 Results
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Public No Correction Monte Carlo Analytical

ε width coverage width coverage width coverage width coverage

No weights; n = 5, 000, effective n = 5, 000

0.5 0.061 0.947 0.061 0.575 0.156 0.949 0.156 0.949

1.0 0.061 0.947 0.061 0.784 0.094 0.947 0.094 0.947

4.0 0.061 0.947 0.061 0.936 0.064 0.948 0.064 0.948

With weights; n = 5, 000, effective n = 2, 622

0.5 0.084 0.947 0.086 0.142 0.989 0.949 0.903 0.946

1.0 0.084 0.947 0.083 0.312 0.447 0.947 0.441 0.947

4.0 0.084 0.947 0.084 0.776 0.136 0.946 0.136 0.949

No weights; n = 10, 000, effective n = 10, 000

0.5 0.043 0.955 0.043 0.665 0.083 0.934 0.084 0.935

1.0 0.043 0.955 0.043 0.874 0.056 0.951 0.056 0.947

4.0 0.043 0.955 0.043 0.951 0.044 0.955 0.044 0.955

With weights; n = 10, 000, effective n = 5, 323

0.5 0.059 0.946 0.058 0.178 0.442 0.932 0.435 0.925

1.0 0.059 0.946 0.059 0.369 0.222 0.924 0.222 0.922

4.0 0.059 0.946 0.059 0.836 0.080 0.947 0.080 0.948

Table 1: Average width and coverage of 95% confidence intervals. Public: no noise added
and thus Non-DP; the average width and coverage does not change as a function of ε. No
correction: ignoring the face that DP noise was added. Monte Carlo: correction via Monte
Carlo simulation. Analytical: correction via modified variance terms.

The results were summarized in Table (1). The public version, as expected, had coverages

fairly close to the nominal level of 95%. Also, we were able to verify that the estimated

variance agreed with the sampling variance.

The no correction method under-covered, and the width of its CIs were practically the

same as the public method. This is because the no correction method did not account

for the extra variability introduced by the DP mechanism. As a result, the CIs were too

narrow, especially for cases with small sample sizes and/or small privacy budget and/or with



weighted sample. For example, on the weighted data with n = 10, 000, ε = 0.5, its CIs only

covered the true value 17.8% of the time, which is grossly lower than the nominal coverage

level.

Both correction methods gave the right coverage. For a fixed sample size and weighting

scenario, as ε got smaller, more noise was injected by the DP mechanism, and both correction

methods correctly accounted for that by giving wider CIs, which had the right coverage. With

a large sample size and a big privacy budget, the DP CIs were only slightly wider than the

public ones; for example, with n = 10, 000, ε = 4.0 and no weights, both correction methods

had an mean CI width of 0.044, which is barely large than the public method’s 0.043. On the

other hand, the increase in CI width was more pronounced for smaller sample sizes, smaller

privacy budgets, and weighted data.

5 Concluding remarks and future work

We explored the ratio estimation problem and proposed a DP mechanism on summary

statistics and two inference methods that gave the valid CIs under DP. The proposal has a

few nice features:

1. Simple. Calculation of the sums themselves is simple, calculation of their sensitivity is

simple, and the correction needed to get valid CIs are again simple.

2. Flexible. Suppose the data has a hierarchical structure. For example, if the inference

is done at the state level and later on one wants to aggregate to national level. The

sums can be trivially added up.

3. Extensible. It can be extended for inference on other quantities. Sums are the building

blocks of many statistics, including the moments and in turn some more complex

quantities that depend on the moments. DP mechanisms based noising sums can be

applied to other statistics.

This work represents an early effort on ratio estimation under DP. We hope future re-

search will lead to better methods. We list a few possible optimizations and potential future

directions here:
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1. smaller Gaussian noise variance using analytical Gaussian Mechanism by Balle and

Wang (2018)

2. more accurate DP mechanisms such as truncated Laplace for ε, δ-DP (Geng et al.,

2020).

3. smarter budget allocation

4. advanced composition theorems, potentially leverage other relaxed DP definitions such

as Concentrated DP (Bun and Steinke, 2016) and Gaussian DP (Dong et al., 2019)

5. Fieller’s interval (Sherman et al., 2011) instead of the delta method for small samples

6. more conservative approaches to account for the DP noise uncertainty are available

(e.g., Karwa and Vadhan (2017)), which will result in wider CIs and likely over-cover.

7. releasing fewer intermediary quantities, or conducting DP hypothesis testing of ratios

without releasing both ratios. Intuitively, releasing fewer quantities might be more

efficient both in terms of privacy budget usage and in terms of less noise needed.

However, it takes work to derive the correct sensitivity of more complex quantities.

8. generic Monte Carlo based simulations to directly measure the combined uncertainty

from sampling and DP (Du et al. (2020); Ferrando et al. (2020)).

9. other generic methods that work for many statistics. One example is bootstrapping

(Brawner and Honaker, 2018).

10. methods that work with more generic survey weights that are not necessarily fixed.

One example is calibration weights (Deville and Särndal, 1992) that depend on the

sample at hand.

Instead of r, one may consider using log(r), which we briefly discuss in the Appendix.
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Appendix

5.1 Consider log(r)

As a result of the fact that both y and s are non-negative, the distribution of r is skewed.
However, the CIs constructed using the method presented here is symmetric. There are two
remedies. First, log(r) might be a better quantity to use. Second, if the quantity of interest
is indeed r, one can construct CI of log(r) and exponentiate the limits to get back a CI of
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r. For both remedies, the asymptotic variance of log(r̂) is needed. The good news is that it
can be constructed again using the delta method:

Var(log(r̂)) =
1

µ2
s̄

σ2
s̄ − 2

1

µs̄µȳ
σȳs̄ +

1

µ2
ȳ

σ2
ȳ.

The even better news is that it depends on the same quantities as equation 1, which
means what we’ve proposed for r can be trivially adapted for the log version.
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