

RATE ESTIMATION TECHNIQUES FOR ENCODER PARALLELIZATION

Gaurang Chaudhari, Hsiao-Chiang Chuang, Igor Koba, Hariharan Lalgudi

Facebook Inc., 1 Hacker Way, Menlo Park, CA 94025

ABSTRACT

In this paper, we present a novel rate estimation technique for rate
control with frame parallelization in video encoding. The proposed
rate control accounts for internal delay in the frame encoder
pipeline, which is suitable for multithreaded or faster software (SW)
encoders and custom hardware or ASIC (HW) encoders. It includes
an accurate frame size prediction model based on a complete set of
first-pass statistics data for every frame. Using better prediction
models with linear and nonlinear model functions, we achieve
improved accuracy, with respect to encoding quality as well as
improving rate control bits-per-frame planning.

Index Terms— Encoder parallelization, rate control, VP9, random
forest, neutral network

1. INTRODUCTION

Rate control (RC) is an essential element of modern video encoders.
By means of rate control, encoder estimates the available amount of
bits to meet a specific bandwidth or file size goal, and maintains it
for the duration of the video stream, while achieving best video
quality for conditions. Rate control is not a normative part of the
video coding standard which means it is up to the developers to
implement it in the best way for the given encoder system.

Inputs to a typical rate control method are bit statistics (past
frame bits, QP (Quantization Parameter), target bits, HRD
(Hypothetical Reference Decoder) buffer constraints) and frame
statistics (encoded quality, past and present frame complexity etc.).
The output of rate control is QP for the next encoded video frame.
QP for a typical video encoder determines a tradeoff between
residual error (distortion) and number of encoded bits for the frame.
It is important to note that while QP value for the next frame is
decided by rate control conditioned on the prior statistics and
encoder data, the final outcome of the decision, i.e. residual error
(distortion) and number of coded bits of the frame is not known until
encoder finishes encoding a given video frame. Only then the frame
encoder updates information in the rate control unit, used for
decision for subsequent frames.

In a typical video encoder, a rate control mechanism can be
described in a following sequence:

1. Estimate frame complexity and target bits for the frame.
2. Choose a QP that gives the best trade-off between

controlling rate and overall quality.
3. Encode the frame.
4. Update number of encoded bits and other frame statistics.
Depending on use cases, first-pass analysis data for a number

of frames is completed ahead of time and used for rate control
algorithms. While the method proposed in this paper may be
potentially used for any type of video encoder, we will describe it

with respect to one particular video encoder, VP9 [1] and for faster
SW or custom HW implementations.

2. RELATED WORK

Li et. al. proposed the R-𝝀 domain rate control [2]. By modeling the
rate-distortion (RD) relationship using a hyperbolic function, Li
proposes to use a linear function to determine the frame-level and
coding unit (CU)-level QP values with the Lagrangian multiplier 𝝀.
The results show improved accuracy as well as better overall BD-
rate quality in terms of the PSNR quality metric when compared to
the Unified Rate-Quantization method [3]. The R-𝝀 domain method
is especially suitable for low-latency use cases while the R-𝝀
relationship can also be used in other scenarios. For high efficiency
use cases, two-pass methods may be employed.

Several two-pass rate control schemes are proposed to employ
a lightweight first-pass coding which provides pre-analysis of the
video characteristics (such as scene change) before the actual
encoding pass. In [4], a pre-encoding scheme using only 16x16 CU
is proposed. It is observed that in some sequences where scene
change occurs, it is required to refresh the parameter estimation. The
authors proposed to use an iterative algorithm to update the R-𝝀
model based on abnormal detection to reset the model parameters
along with an updated weight based on the proportion of the rate
within the same CTU. The results improve both the accuracy and the
overall PSNR by up to 6dB. In [5], following the SSIM-inspired
divisive normalization framework, Wang et. al. address the bit
allocation problem by adjusting the 𝝀 value for each GOP. The QP
value is determined based on the Sum of Absolute Transformed
Difference (SATD) with four-dimensional first-pass statistics. In
[6], based on the R-𝝀 model, Zupancic et. al. proposed to construct
the bit-rate profile for each intra period using pre-encoding, which
uses a simplified encoder to perform a variable-QP encoding scheme
to avoid coding the same frame multiple times. The proposed
method shows around 6% BD-rate improvement compared to the
RC method in HM. In [7], Deng et al. used pre-compression with
multiple QP values in the first pass and used the collected rate and
distortion numbers to construct a R-D model using a least-squares
method. A pair of 𝝀 and QP values are input to the actual encoding
pass.

3. LIBVPX RATE CONTROL

Libvpx [8] is an open source VP9 encoder implementation
frequently used as a reference by developers. This paper first
describes a particular rate control implementation in the libvpx [8]
library followed by advancements done in the proposed
implementation. Libvpx [8] has a 2-pass constrained quality
encoding method, in which a very fast first-pass analysis of the

2059978-1-6654-4115-5/21/$31.00 ©2021 IEEE ICIP 2021

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 Im

ag
e

Pr
oc

es
si

ng
 (I

C
IP

) |
 9

78
-1

-6
65

4-
41

15
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
IP

42
92

8.
20

21
.9

50
61

86

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 13,2021 at 18:15:58 UTC from IEEE Xplore. Restrictions apply.

entire video stream is done, and the resulting statistics are used for
computing target frame sizes and planning bit distribution across the
stream. Then, determined values of maximum and minimum frame
sizes are used for choosing suitable quantization parameter Qp for
every frame.

A second (main) encoding pass can be described in Figure 1.
The loop in Figure 1 is repeated for every encoded frame. The step
“Choose quant parameter” calculates the quantization parameter for
the next frame, given the maximum and minimum frame size and
quantization parameter. It relies on the frame size prediction
to estimate bits at Q, which in turn relies on predicted bits per
macroblock. The step “Encode frame” does most of the actual frame
encoding such as mode decision, transform coefficients, and residual
calculation for each superblock in the frame. The subsequent
“Entropy coding” step is a final step, where previously generated
mode decision and transform coefficients are packed using entropy
coding method according to the standard. VP9 uses a tree-based
boolean non-adaptive binary arithmetic encoder to encode all syntax
elements. It is important to note that while “Encode frame” and
“Entropy coding” are integral parts of the frame encode process, in
a typical encoder implementation they are executed consecutively,
in a pipelined order. Only after the “Entropy coding” step, the size
of encoded frames becomes known. The final step is a post-encode
update of rate control, by means of which the rate control algorithm
is informed about the size of the encoded frame. This is necessary
for calculating instantaneous state of buffer and rate estimation used
for a closed loop rate control algorithm.

Figure 1. Algorithm of rate control in conventional encoder.

In the original libvpx [8] implementation, the step “Choose
quant parameter” depends on a macroblock bits prediction model

Bitsprojected = (C1/q + C2) x Rcf (1)
Where C1 and C2 are constants, q is quantization parameter for the
frame. Rate correction factor Rcf is a model parameter which is
updated based on size of the last frame of the same level in a GF
structure (Inter, Golden Frame (GF), Alt-Ref Frame (ARF) and Key

Frame (KF)), per VP9 standard [1]. Separate values for rate
correction Rcf [level] are maintained for each frame reference level
(i.e. frame type and level in group of frames hierarchy).

4. PROPOSED RATE CONTROL METHOD

As explained above, “Encode frame” and “Entropy coding” in a
typical encoder implementation are executed one after another. This

helps in the hardware ecosystem, since the compute requirements of
both these steps are quite different and the mode decision for
example, needs to operate at a much faster speed to match the system
latency followed by the final entropy coding step. Typically, in a
faster SW or a custom HW encoder, the encode frame (mode
decision, transform coefficients) step and the final entropy coding
step operate at a different throughput pipeline or threads. There can
be various custom HW architecture implementations and we want to
focus on the faster architectures which primarily have entropy
coding operate on a different frame. As explained in the above
section, the typical rate control depends on the frame size bits to
decide encoding parameters. The frame size bits are an outcome of
the entropy coding and if the entropy coding is operating at a
different frame, then, the latest frame size bits information is not
available. We propose a solution to this problem.

The proposed VP9 rate control operation roughly corresponds
to Figure 1, with the following significant distinction: The
operations “encode frame” and “entropy coding: build the
bitstream” operate in a long pipeline, with the long delay essentially
asynchronous and with sometimes non-deterministic delay. Such a
long pipeline and delay is not unusual for multithreaded or faster
SW encoders and custom HW encoders, where several frames may
be encoded in parallel. The distinctive problem arises in the
“postencode rate control update” due to unavailability of the exact
size of encoded frame, as the entropy coding step may be several
frames behind. That distinction makes rate control function
essentially an open-loop task instead of the closed loop rate control
in libvpx [8].

To mitigate the problem, the encode algorithm in Figure 1 was
modified with the changes shown in Figure 2. We replaced the
unknown exact frame size value with an approximate value where
the function which predicts frame size relies on Eq. (1) above.

Figure 2. Algorithm of rate control with a delay in pipeline.

But the algorithm in Figure 2, has an issue that by using an
approximate predicted frame size value, the rate control internal
state and bit buffer level value can drift from the actual bits count
and buffer value determined by the actually encoded frame sizes (on
the output of delayed encode pipeline). To avoid drift of rate control
buffer value, the actually encoded frame size value (or true_size) is
used to make corrections for the rate control buffer level and bit
prediction model as soon as it becomes available. The difference
between previously predicted frame size and the actual frame size is

2060

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 13,2021 at 18:15:58 UTC from IEEE Xplore. Restrictions apply.

computed when the later is available, and this delta in formula (2) is
added to the predicted size of the next coded frame as shown in
formula (3), below, where n is a current encoded frame number, k is
a frame delay in the encoder pipeline.

prediction_deltan-k = true_bytesn-k - size_predictedn-k (2)
For the next frame update:

size_predicted_new = size_predictedn + prediction_deltan-k (3)
Then the function “postencode rate control update” is called with the
corrected value size_predicted_new. Due to this correction, the
computed bits budget and buffer level errors will not grow
unbounded over time and are bound by the error of frame size
prediction for k consecutive frames at most. Table 1 represents the
coding efficiency results for the simulated pipeline delay of the
encoder from 1 to 5 frames, using Bjontegaard delta (BD-rate) [9]
with respect to three popular video quality metrics (QM): SSIM
[10], PSNR, VMAF [11]. The dataset used is Facebook (FB) internal
dataset [12] which are 400 top-viewed public videos from FB Pages.
These videos were tested in an anonymized manner without
subjective analysis. BD-rate metric gives average bit-rate reduction
(-ve) or increase (+ve) for the same quality between two encoding
methods. Our anchor is encoded without any frame delay. The cq-

level values used are {33, 37, 41, 45}. Command line used is given
below -
--codec=vp9 --passes=2 --limit=300 --i420 --profile=0 --cpu-

used=1 --fps=30 --kf-min-dist=150 --kf-max-dist=150 --arnr -

maxframes=7 --arnr-strength=5 --lag-in-frames=25 --aq-mode=0 -

-end-usage=cq --target-bitrate={bitrate} --cq-level={cq-level} --

min -q=0 --max-q=63 --bias-pct=50 --minsection-pct=20 --max

section-pct=400 --auto-alt-ref=6 --frame-parallel=0 --threads=1 -

-tile-columns=0

Table 1. Average increase in BD-rate (% of rate loss).
QM delay = 1frame delay = 3frame delay = 5frame

SSIM 0.066% 0.87% 1.29%
PSNR -0.04% 0.67% 0.99%
VMAF 0.036% 0.70% 0.93%

Table 1 results show that the prediction of frame size can be

further improved. If the frame size prediction model worked
perfectly, the result with delayed pipeline would be the same as the
baseline, i.e the no-delay encoder. It can also be extrapolated that
the frame size prediction model in Eq. (1) used in the original libvpx
[8] encoder can be tuned further. Main deficiency of the Eq. (1) is
that rate correction factor Rcf is calculated based on statistics of
previously coded frames of the same coded type. The assumption is
made that consecutive frames have the same coding complexity. It
does not account for changes in the frame complexity over time, and
the assumption potentially breaks in the beginning of the stream or
at every scene cut or transition, i.e. at places where the libvpx [8]
encoder has no prior initial knowledge of frames complexity and
initial values of rate correction factor for the first frames starts with
a default value. Although the number of keyframes in the stream is
few, one out of 150 frames in a 30fps, 5-sec GOP, keyframes have
the largest size out of all frame types. This misprediction in
keyframe size may result in large error of bit buffer and bits budget
estimation in rate control.

4.1. Improved Prediction Model for Frame Size

First-pass statistics in a two-pass encoding can give some
information about coding complexity of each frame. Using the first-

pass statistics, the prediction model for frame size can be improved.
In the first-pass statistics, there are five types of raw data being
calculated:

• SSE of intra prediction
• SSE of inter prediction with LAST_FRAME
• SSE of inter prediction with GOLDEN_FRAME
• Block noise energy
• Motion vectors

The raw data is compared with thresholds or directly accumulated
for 23 statistics at the frame-level, which can later be employed by
the rate control algorithm. In the original libvpx [8] encoder, first-
pass data is used for planning allocation of bits for future frames
within each GOP interval. In addition to that, the first-pass data can
also be used for an improved frame size prediction model. The
proposed rate correction factor Rn, for the frame n can be computed
as

Rn = R1st x Rcf (4)
where R1st is a rate factor that can be predicted from 1st pass
statistical data, for the frame coding type. The rate factor value
R1st can be computed by linear or nonlinear prediction model from
the 1st pass data. Rcf is a content-dependent correction factor which
is updated dynamically, based on the last frame of the same coding
type. This parameter will compensate for a possible discrepancy
between the rate factor value R1st and the actual video stream
content, i.e. R1st reflects the initial predicted complexity of the frame,
and Rcf represents a dynamically updated correction value, which
depends on size of previously encoded frames. The rate factor
R1st can be computed using a linear or nonlinear prediction model as
a function of computed first pass statistics data for the given video
frame.

As a machine learning problem to train a prediction model, data
samples for each encoded frame (frame sizes and first pass statistics
data) is used. These data samples are then classified into bins,
according to a frame coding type in VP9, i.e. level in a GF structure
(Inter, ARF, GF_ARF, KF). The prediction model for rate factor R1st
was trained separately for each frame type bin. For each frame type
bin, a number (~10K) of samples for the training data set, and
(~10K) samples for test data set was randomly selected for the
purpose of machine learning. Since the number of keyframes (Intra)
is few, fewer samples (about 1.5K) were used.

4.1.1. Training prediction model for R1st for keyframe (Intra)

A simple linear model with the assumption that the scale factor is a
linear function of one parameter, intra_error is tried as a first
experiment and regression statistics are:

R square = 0.658707139
Standard Error = 0.178272478
For improving prediction model, 4 parameters relevant for the

keyframe complexity estimate from the 1st pass statistics data were
selected: intra_error (an estimate of per-pixel intra coding error),
frame_noise_energy (an estimate of per-block (16x16) noise level),
intra_skip_pct, and intra_smooth_pct (both intra_skip_pct and
intra_smooth_pct indicate the percentage of blocks whose intra
coding error is less than a threshold, while intra_skip_pct uses a
much smaller threshold value). Linear regression model with these
input variables (4 variables + intercept) gives significantly better
result:

R square = 0.765029423
Standard Error = 0.093895134

To test the effect from using the above linear regression model for
predicting R1st rate factor for keyframe size in VP9 encoder, we

2061

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 13,2021 at 18:15:58 UTC from IEEE Xplore. Restrictions apply.

repeated the same test conditions with same anchor as Table 1 and
the results are shown in Table 2.
Table 2. Keyframe size prediction results - average BD-rate delta

QM delay = 1frame delay = 3frame delay = 5frame
SSIM -0.14% 0.24% 0.44%
PSNR -0.19% 0.13% 0.20%
VMAF -0.22% 0.18% 0.26%

4.1.2. Training prediction model for R1st for Inter frames
The first problem to address is to select the appropriate variables out
of the more than 20 first pass statistics since not all variables have
equal significance for rate prediction. Principal Component
Analysis (PCA) is used to a) determine how many variables
(dimensions) are sufficient for the model b) which of the variables
can have highest significance for the top principal components
(which are eigenvectors of the covariance matrix). As a result, the
following set of variables for the model were selected:
sr_coded_error (estimate of per-block inter coding error with GF),
frame_noise_energy, pcnt_motion (percentage of blocks coded with
last frame), pcnt_second_ref (percentage of blocks coded with GF),
pcnt_intra_low, pcnt_intra_high (pcnt_intra_low and
pcnt_intra_high are percentage of intra coded blocks with low and
high variances, respectively), intra_skip_pct, intra_smooth_pct. (8
variables + intercept)

Inter frames are classified by levels, where 0 is a basic inter
frame, level 2 is reference frame (ARF), level 3 is a GF ARF frame.
A linear regression method with 8 input variables is used to create a
prediction model on the training data for frames at level 3 (GF ARF).
Measuring model accuracy on a training data set is not enough and
it is important to check how the model generalizes for different sets
of data. The statistics results for linear regression on the training data
and test data set are shown in Table 3 (Root MSE - lower value is

better, R square - higher value is better). The accuracy of the model
on the test data set above is slightly lower, but still within acceptable
margins, i.e. the model is not overtrained.

Table 3. Statistics results for linear regression model.
 Training Data Test Data

Root MSE 0.109148 0.11430165
R square 0.5744763 0.5571709

To explore if a nonlinear function gives better prediction results

for the same training and test data sets, two different powerful
nonlinear prediction methods, a Random Forest and a multilayer
neural network (ANN), were also tested. Both models are available
in a Scikit-learn [13], a machine learning library in python, which
was used for data analysis and modeling experiments. Random
Forest is a supervised learning algorithm, with a group of decision
trees, trained with a bagging method. Results on the training data
and test data set are shown in Table 4:

Table 4. Results using Random Forest and ANN models
 Training Data Test Data

Root MSE (RF) 0.02760262 0.06280004
R square (RF) 0.97278597 0.86632477

Root MSE (ANN) 0.08088808 0.090404541
R square (ANN) 0.76629876 0.72297972

Compared to the prediction results on a training data set, the

results of evaluating a Random Forest model on a test data set is

considerably worse, which is a typical indication of an over-trained
model, although the results on the test set above are still better than
the results with a linear regression model.

A multilevel neural network model (ANN) with the same
training data was also evaluated with 5 layers, with the following
size of each layer 90, 90, 90, 90, 20. Results on the training data and
test data set are shown in Table 4. ANN model has better accuracy
than linear regression, but accuracy on the training data set is not as
good as Random Forest. However, from a complexity perspective, a
linear regression method is preferable. It simplifies implementation,
especially for the firmware memory limitations involved in the HW
encoder. Similar deductions were done for other inter frame levels.

5. ENCODING RESULTS

After implementing the frame size prediction using linear regression
models discussed above, for both Inter and Intra frames, the BD-rate
results are shown in Table 5.

Table 5. Frame size prediction results using linear regression -
average BD-rate delta.

QM delay = 1frame delay = 3frame delay = 5frame
SSIM -0.18% -0.15% -0.19%
PSNR -0.29% -0.28% -0.43%
VMAF -0.39% -0.40% -0.65%

Negative BD-rate values mean average bit-rate reduction for

the same quality between two encoding methods, i.e, the target
encoder is better than the anchor. Our anchor is the original libvpx
[8] encoding without frame delay. The proposed prediction models
improve quality for the encoder even with a frame delay pipeline,
compared to the original libvpx encoder without frame delay.

As discussed in Section 4, the frame size prediction model in
Eq. (1), used in the original libvpx [8] encoder, can be tuned for
further improvement as it does not account for changes in the frame
complexity of frames over time. To add to this observation, we
experimented using the proposed prediction model in the original
libvpx encoder without frame delay and the average BD-rate results:

SSIM : -0.46%
PSNR : -0.31%
VMAF : -0.31%

Evidently, the proposed frame prediction model improves quality
and rate control operation, due to better frame size prediction and
choice of quant parameter Qp for each frame.

6. CONCLUSION

In this work, to address the inherent latency issue of obtaining
accurate frame size in hardware rate control, we presented a novel
scheme to predict the frame size using the 1st-pass statistics. Two
sets of feature statistics are discovered using the PCA method for
both key frames and inter frames, respectively. We compare the
prediction accuracy using linear regression, ANN, and Random
Forest, and present the associated coding performance. In the case
of no frame delay, but also with up to 5 frame delay, experimental
results show improved BD-rate performance compared to the
original libvpx algorithm.

7. REFERENCES

2062

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 13,2021 at 18:15:58 UTC from IEEE Xplore. Restrictions apply.

[1] Mukherjee, Debargha et al., (2015). “A Technical Overview of
VP9--the Latest Open-Source Video Codec,” SMPTE Motion

Imaging Journal. 124. 44-54. 10.5594/j18499.

[2] B. Li, H. Li, L. Li, and J. Zhang, “λ Domain Rate Control
Algorithm for High Efficiency Video Coding,” IEEE Trans. Image

Process., vol. 23, no. 9, pp. 3841–3854, 2014.

[3] H. Choi, J. Nam, J. Yoo, D. Sim, and I. Bajic ́, “Rate Control
Based on Unified RQ Model for HEVC,” document Rec. JCTVC-

H0213, San Jose, CA, USA, Feb. 2012.

[4] J. Wen, M. Fang, M. Tang, and K. Wu, “R-λ Model Based
Improved Rate Control for HEVC with Pre-Encoding,” in Proc.

IEEE Data Compress. Conf. (DCC), pp. 53-62, Apr. 2015.

[5] S. Wang, A. Rehman, K. Zeng, J. Wang, and Z. Wang, “SSIM-
motivated two-pass VBR coding for HEVC,” IEEE Trans. Circuits

Syst. Video Techn., vol. 27, no. 10, pp. 2189–2203, 2017

[6] I. Zupancic, M. Naccari, M. Mrak, and E. Izquierdo, “Two-Pass
Rate Control for Improved Quality of Experience in UHDTV
Delivery,” IEEE J. Selected Topics Signal Process., vol. 11, no. 1,
Feb. 2017

[7] L. Deng, F. Pu, S. Hu, and C.-C. J. Kuo, “HEVC encoder
optimization based on a new RD model and pre-encoding,” in Proc.

2013 IEEE Picture Coding Symp. (PCS), Dec. 2013.

[8] VP9 libvpx source code github (libvpx-1.8.0),
https://chromium.googlesource.com/webm/libvpx/+/refs/tags/v1.8.
0

[9] Bjøntegaard, “Calculation of average PSNR differences between
RD-curves (VCEG-M33),” in VCEG Meeting (ITU-T SG16 Q. 6),
2001.

[10] Zhou Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
"Image quality assessment: from error visibility to structural
similarity," in IEEE Transactions on Image Processing, vol. 13, no.
4, pp. 600-612, April 2004, doi: 10.1109/TIP .2003.819861.

[11] Li, Z., Aaron, A., Katsavounidis, I., Moorthy, A., and
Manohara, M., “Toward a practical perceptual video quality
metric,” https://netflixtechblog.com/toward-a-practical-perceptual-
video-quality-metric-653f208b9652, 2016.

[12] Yu Liu, Open Source, Video Engineering, “AV1 beats x264
and libvpx-vp9 in practical use case,”
https://engineering.fb.com/video-engineering/av1-beats-x264-and-
libvpx-vp9-in-practical-use-case/, April 2018

[13] Buitinck, L. et al., 2013. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD

Workshop: Languages for Data Mining and Machine Learning. pp.
108–122.

2063

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 13,2021 at 18:15:58 UTC from IEEE Xplore. Restrictions apply.

