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ABSTRACT 

 
In this paper, we present a novel rate estimation technique for rate 
control with frame parallelization in video encoding. The proposed 
rate control accounts for internal delay in the frame encoder 
pipeline, which is suitable for multithreaded or faster software (SW) 
encoders and custom hardware or ASIC (HW) encoders. It includes 
an accurate frame size prediction model based on a complete set of 
first-pass statistics data for every frame. Using better prediction 
models with linear and nonlinear model functions, we achieve 
improved accuracy, with respect to encoding quality as well as 
improving rate control bits-per-frame planning. 
 
Index Terms— Encoder parallelization, rate control, VP9, random 
forest, neutral network 

 

1. INTRODUCTION 
 
Rate control (RC) is an essential element of modern video encoders. 
By means of rate control, encoder estimates the available amount of 
bits to meet a specific bandwidth or file size goal, and maintains it 
for the duration of the video stream, while achieving best video 
quality for conditions. Rate control is not a normative part of the 
video coding standard which means it is up to the developers to 
implement it in the best way for the given encoder system. 

Inputs to a typical rate control method are bit statistics (past 
frame bits, QP (Quantization Parameter), target bits, HRD 
(Hypothetical Reference Decoder) buffer constraints) and frame 
statistics (encoded quality, past and present frame complexity etc.). 
The output of rate control is QP for the next encoded video frame. 
QP for a typical video encoder determines a tradeoff between 
residual error (distortion) and number of encoded bits for the frame. 
It is important to note that while QP value for the next frame is 
decided by rate control conditioned on the prior statistics and 
encoder data, the final outcome of the decision, i.e. residual error 
(distortion) and number of coded bits of the frame is not known until 
encoder finishes encoding a given video frame. Only then the frame 
encoder updates information in the rate control unit, used for 
decision for subsequent frames. 

In a typical video encoder, a rate control mechanism can be 
described in a following sequence: 

1. Estimate frame complexity and target bits for the frame. 
2. Choose a QP that gives the best trade-off between 

controlling rate and overall quality. 
3. Encode the frame. 
4. Update number of encoded bits and other frame statistics. 
Depending on use cases, first-pass analysis data for a number 

of frames is completed ahead of time and used for rate control 
algorithms. While the method proposed in this paper may be 
potentially used for any type of video encoder, we will describe it 

with respect to one particular video encoder, VP9 [1] and for faster 
SW or custom HW implementations. 
 

2. RELATED WORK 

 
Li et. al. proposed the R-𝝀 domain rate control [2]. By modeling the 
rate-distortion (RD) relationship using a hyperbolic function, Li 
proposes to use a linear function to determine the frame-level and 
coding unit (CU)-level QP values with the Lagrangian multiplier 𝝀. 
The results show improved accuracy as well as better overall BD-
rate quality in terms of the PSNR quality metric when compared to 
the Unified Rate-Quantization method [3]. The R-𝝀 domain method 
is especially suitable for low-latency use cases while the R-𝝀 
relationship can also be used in other scenarios. For high efficiency 
use cases, two-pass methods may be employed. 

Several two-pass rate control schemes are proposed to employ 
a lightweight first-pass coding which provides pre-analysis of the 
video characteristics (such as scene change) before the actual 
encoding pass. In [4], a pre-encoding scheme using only 16x16 CU 
is proposed. It is observed that in some sequences where scene 
change occurs, it is required to refresh the parameter estimation. The 
authors proposed to use an iterative algorithm to update the R-𝝀 
model based on abnormal detection to reset the model parameters 
along with an updated weight based on the proportion of the rate 
within the same CTU. The results improve both the accuracy and the 
overall PSNR by up to 6dB. In [5], following the SSIM-inspired 
divisive normalization framework, Wang et. al. address the bit 
allocation problem by adjusting the 𝝀 value for each GOP. The QP 
value is determined based on the Sum of Absolute Transformed 
Difference (SATD) with four-dimensional first-pass statistics. In 
[6], based on the R-𝝀 model, Zupancic et. al. proposed to construct 
the bit-rate profile for each intra period using pre-encoding, which 
uses a simplified encoder to perform a variable-QP encoding scheme 
to avoid coding the same frame multiple times. The proposed 
method shows around 6% BD-rate improvement compared to the 
RC method in HM. In [7], Deng et al. used pre-compression with 
multiple QP values in the first pass and used the collected rate and 
distortion numbers to construct a R-D model using a least-squares 
method. A pair of 𝝀 and QP values are input to the actual encoding 
pass. 
 

3. LIBVPX RATE CONTROL 
 
Libvpx [8] is an open source VP9 encoder implementation 
frequently used as a reference by developers. This paper first 
describes a particular rate control implementation in the libvpx [8] 
library followed by advancements done in the proposed 
implementation. Libvpx [8] has a 2-pass constrained quality 
encoding method, in which a very fast first-pass analysis of the 
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entire video stream is done, and the resulting statistics are used for 
computing target frame sizes and planning bit distribution across the 
stream. Then, determined values of maximum and minimum frame 
sizes are used for choosing suitable quantization parameter Qp for 
every frame. 

A second (main) encoding pass can be described in Figure 1. 
The loop in Figure 1 is repeated for every encoded frame. The step 
“Choose quant parameter” calculates the quantization parameter for 
the next frame, given the maximum and minimum frame size and 
quantization parameter. It relies on the frame size prediction 
to estimate bits at Q, which in turn relies on predicted bits per 
macroblock. The step “Encode frame” does most of the actual frame 
encoding such as mode decision, transform coefficients, and residual 
calculation for each superblock in the frame. The subsequent 
“Entropy coding” step is a final step, where previously generated 
mode decision and transform coefficients are packed using entropy 
coding method according to the standard. VP9 uses a tree-based 
boolean non-adaptive binary arithmetic encoder to encode all syntax 
elements. It is important to note that while “Encode frame” and 
“Entropy coding” are integral parts of the frame encode process, in 
a typical encoder implementation they are executed consecutively, 
in a pipelined order. Only after the “Entropy coding” step, the size 
of encoded frames becomes known. The final step is a post-encode 
update of rate control, by means of which the rate control algorithm 
is informed about the size of the encoded frame. This is necessary 
for calculating instantaneous state of buffer and rate estimation used 
for a closed loop rate control algorithm. 

 

Figure 1. Algorithm of rate control in conventional encoder. 
 

In the original libvpx [8] implementation, the step “Choose 
quant parameter” depends on a macroblock bits prediction model 

Bitsprojected = (C1/q + C2) x Rcf                                                  (1) 
Where C1 and C2 are constants, q is quantization parameter for the 
frame. Rate correction factor  Rcf   is a model parameter which is 
updated based on size of the last frame of the same level in a GF 
structure (Inter, Golden Frame (GF), Alt-Ref Frame (ARF) and Key 

Frame (KF)), per VP9 standard [1]. Separate values for rate 
correction Rcf [level] are maintained for each frame reference level 
(i.e. frame type and level in group of frames hierarchy). 
 

4. PROPOSED RATE CONTROL METHOD 
 
As explained above, “Encode frame” and “Entropy coding” in a 
typical encoder implementation are executed one after another. This 

helps in the hardware ecosystem, since the compute requirements of 
both these steps are quite different and the mode decision for 
example, needs to operate at a much faster speed to match the system 
latency followed by the final entropy coding step. Typically, in a 
faster SW or a custom HW encoder, the encode frame (mode 
decision, transform coefficients) step and the final entropy coding 
step operate at a different throughput pipeline or threads. There can 
be various custom HW architecture implementations and we want to 
focus on the faster architectures which primarily have entropy 
coding operate on a different frame. As explained in the above 
section, the typical rate control depends on the frame size bits to 
decide encoding parameters. The frame size bits are an outcome of 
the entropy coding and if the entropy coding is operating at a 
different frame, then, the latest frame size bits information is not 
available. We propose a solution to this problem. 

The proposed VP9 rate control operation roughly corresponds 
to Figure 1, with the following significant distinction: The 
operations “encode frame” and “entropy coding: build the 
bitstream” operate in a long pipeline, with the long delay essentially 
asynchronous and with sometimes non-deterministic delay. Such a 
long pipeline and delay is not unusual for multithreaded or faster 
SW encoders and custom HW encoders, where several frames may 
be encoded in parallel. The distinctive problem arises in the 
“postencode rate control update” due to unavailability of the exact 
size of encoded frame, as the entropy coding step may be several 
frames behind. That distinction makes rate control function 
essentially an open-loop task instead of the closed loop rate control 
in libvpx [8]. 

To mitigate the problem, the encode algorithm in Figure 1 was 
modified with the changes shown in Figure 2. We replaced the 
unknown exact frame size value with an approximate value where 
the function which predicts frame size relies on Eq. (1) above.  

 

Figure 2. Algorithm of rate control with a delay in pipeline. 
 

But the algorithm in Figure 2, has an issue that by using an 
approximate predicted frame size value, the rate control internal 
state and bit buffer level value can drift from the actual bits count 
and buffer value determined by the actually encoded frame sizes (on 
the output of delayed encode pipeline). To avoid drift of rate control 
buffer value, the actually encoded frame size value (or true_size) is 
used to make corrections for the rate control buffer level and bit 
prediction model as soon as it becomes available. The difference 
between previously predicted frame size and the actual frame size is 

2060

Authorized licensed use limited to: IEEE Xplore. Downloaded on September 13,2021 at 18:15:58 UTC from IEEE Xplore.  Restrictions apply. 



computed when the later is available, and this delta in formula (2) is 
added to the predicted size of the next coded frame as shown in 
formula (3), below, where n is a current encoded frame number, k is 
a frame delay in the encoder pipeline. 

prediction_deltan-k =  true_bytesn-k - size_predictedn-k            (2) 
For the next frame update: 

size_predicted_new = size_predictedn + prediction_deltan-k (3)  
Then the function “postencode rate control update” is called with the 
corrected value size_predicted_new. Due to this correction, the 
computed bits budget and buffer level errors will not grow 
unbounded over time and are bound by the error of frame size 
prediction for k consecutive frames at most. Table 1 represents the 
coding efficiency results for the simulated pipeline delay of the 
encoder from 1 to 5 frames, using Bjontegaard delta (BD-rate) [9] 
with respect to three popular video quality metrics (QM): SSIM 
[10], PSNR, VMAF [11]. The dataset used is Facebook (FB) internal 
dataset [12] which are 400 top-viewed public videos from FB Pages. 
These videos were tested in an anonymized manner without 
subjective analysis. BD-rate metric gives average bit-rate reduction 
(-ve) or increase (+ve) for the same quality between two encoding 
methods. Our anchor is encoded without any frame delay. The cq-

level values used are {33, 37, 41, 45}. Command line used is given 
below - 
--codec=vp9 --passes=2 --limit=300 --i420 --profile=0 --cpu-

used=1 --fps=30 --kf-min-dist=150 --kf-max-dist=150 --arnr -

maxframes=7 --arnr-strength=5 --lag-in-frames=25 --aq-mode=0 -

-end-usage=cq --target-bitrate={bitrate} --cq-level={cq-level} --

min -q=0 --max-q=63 --bias-pct=50 --minsection-pct=20 --max 

section-pct=400 --auto-alt-ref=6 --frame-parallel=0 --threads=1 -

-tile-columns=0 

Table 1. Average increase in BD-rate (% of rate loss). 
QM delay = 1frame delay = 3frame delay = 5frame 

SSIM 0.066% 0.87% 1.29% 
PSNR -0.04% 0.67% 0.99% 
VMAF 0.036% 0.70% 0.93% 

 
Table 1 results show that the prediction of frame size can be 

further improved. If the frame size prediction model worked 
perfectly, the result with delayed pipeline would be the same as the 
baseline, i.e the no-delay encoder. It can also be extrapolated that 
the frame size prediction model in Eq. (1) used in the original libvpx 
[8] encoder can be tuned further. Main deficiency of the Eq. (1) is 
that rate correction factor Rcf   is calculated based on statistics of 
previously coded frames of the same coded type. The assumption is 
made that consecutive frames have the same coding complexity. It 
does not account for changes in the frame complexity over time, and 
the assumption potentially breaks in the beginning of the stream or 
at every scene cut or transition, i.e. at places where the libvpx [8] 
encoder has no prior initial knowledge of frames complexity and 
initial values of rate correction factor for the first frames starts with 
a default value. Although the number of keyframes in the stream is 
few, one out of 150 frames in a 30fps, 5-sec GOP, keyframes have 
the largest size out of all frame types. This misprediction in 
keyframe size may result in large error of bit buffer and bits budget 
estimation in rate control. 
 
4.1. Improved Prediction Model for Frame Size 

 
First-pass statistics in a two-pass encoding can give some 
information about coding complexity of each frame. Using the first-

pass statistics, the prediction model for frame size can be improved. 
In the first-pass statistics, there are five types of raw data being 
calculated: 

• SSE of intra prediction 
• SSE of inter prediction with LAST_FRAME 
• SSE of inter prediction with GOLDEN_FRAME 
• Block noise energy 
• Motion vectors 

The raw data is compared with thresholds or directly accumulated 
for 23 statistics at the frame-level, which can later be employed by 
the rate control algorithm. In the original libvpx [8] encoder, first-
pass data is used for planning allocation of bits for future frames 
within each GOP interval. In addition to that, the first-pass data can 
also be used for an improved frame size prediction model. The 
proposed rate correction factor Rn, for the frame n can be computed 
as 

Rn  = R1st x Rcf                                                                           (4) 
where R1st  is a rate factor that can be predicted from 1st pass 
statistical data, for the frame coding type. The rate factor value 
R1st  can be computed by linear or nonlinear prediction model from 
the 1st pass data. Rcf is a content-dependent correction factor which 
is updated dynamically, based on the last frame of the same coding 
type. This parameter will compensate for a possible discrepancy 
between the rate factor value R1st  and the actual video stream 
content, i.e. R1st reflects the initial predicted complexity of the frame, 
and Rcf represents a dynamically updated correction value, which 
depends on size of previously encoded frames. The rate factor 
R1st can be computed using a linear or nonlinear prediction model as 
a function of computed first pass statistics data for the given video 
frame. 

As a machine learning problem to train a prediction model, data 
samples for each encoded frame (frame sizes and first pass statistics 
data) is used. These data samples are then classified into bins, 
according to a frame coding type in VP9, i.e. level in a GF structure 
(Inter, ARF, GF_ARF, KF). The prediction model for rate factor R1st 
was trained separately for each frame type bin. For each frame type 
bin, a number (~10K) of samples for the training data set, and 
(~10K) samples for test data set was randomly selected for the 
purpose of machine learning. Since the number of keyframes (Intra) 
is few, fewer samples (about 1.5K) were used. 
 
4.1.1. Training prediction model for R1st for keyframe (Intra) 

A simple linear model with the assumption that the scale factor is a 
linear function of one parameter, intra_error is tried as a first 
experiment and regression statistics are: 

R square = 0.658707139  
Standard Error = 0.178272478 
For improving prediction model, 4 parameters relevant for the 

keyframe complexity estimate from the 1st pass statistics data were 
selected: intra_error (an estimate of per-pixel intra coding error), 
frame_noise_energy (an estimate of per-block (16x16) noise level), 
intra_skip_pct, and intra_smooth_pct (both intra_skip_pct and 
intra_smooth_pct indicate the percentage of blocks whose intra 
coding error is less than a threshold, while intra_skip_pct uses a 
much smaller threshold value). Linear regression model with these 
input variables (4 variables + intercept) gives significantly better 
result: 

R square = 0.765029423 
Standard Error = 0.093895134 

To test the effect from using the above linear regression model for 
predicting R1st  rate factor for keyframe size in VP9 encoder, we 
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repeated the same test conditions with same anchor as Table 1 and 
the results are shown in Table 2. 
Table 2. Keyframe size prediction results - average BD-rate delta 

QM delay = 1frame delay = 3frame delay = 5frame 
SSIM -0.14% 0.24% 0.44% 
PSNR -0.19% 0.13% 0.20% 
VMAF -0.22% 0.18% 0.26% 

  
4.1.2. Training prediction model for R1st for Inter frames 
The first problem to address is to select the appropriate variables out 
of the more than 20 first pass statistics since not all variables have 
equal significance for rate prediction.  Principal Component 
Analysis (PCA) is used to a) determine how many variables 
(dimensions) are sufficient for the model b) which of the variables 
can have highest significance for the top principal components 
(which are eigenvectors of the covariance matrix). As a result, the 
following set of variables for the model were selected:  
sr_coded_error (estimate of per-block inter coding error with GF), 
frame_noise_energy, pcnt_motion (percentage of blocks coded with 
last frame), pcnt_second_ref (percentage of blocks coded with GF), 
pcnt_intra_low, pcnt_intra_high (pcnt_intra_low and 
pcnt_intra_high are percentage of intra coded blocks with low and 
high variances, respectively), intra_skip_pct, intra_smooth_pct.  (8 
variables + intercept) 

Inter frames are classified by levels, where 0 is a basic inter 
frame, level 2 is reference frame (ARF), level 3 is a GF ARF frame. 
A linear regression method with 8 input variables is used to create a 
prediction model on the training data for frames at level 3 (GF ARF). 
Measuring model accuracy on a training data set is not enough and 
it is important to check how the model generalizes for different sets 
of data. The statistics results for linear regression on the training data 
and test data set are shown in Table 3 (Root MSE - lower value is 

better, R square - higher value is better). The accuracy of the model 
on the test data set above is slightly lower, but still within acceptable 
margins, i.e. the model is not overtrained. 

Table 3. Statistics results for linear regression model. 
 Training Data Test Data 

Root MSE 0.109148 0.11430165 
R square 0.5744763 0.5571709 

 
To explore if a nonlinear function gives better prediction results 

for the same training and test data sets, two different powerful 
nonlinear prediction methods, a Random Forest and a multilayer 
neural network (ANN), were also tested. Both models are available 
in a Scikit-learn [13], a machine learning library in python, which 
was used for data analysis and modeling experiments. Random 
Forest is a supervised learning algorithm, with a group of decision 
trees, trained with a bagging method. Results on the training data 
and test data set are shown in Table 4: 

Table 4. Results using Random Forest and ANN models 
 Training Data Test Data 

Root MSE (RF) 0.02760262 0.06280004 
R square (RF) 0.97278597 0.86632477 

Root MSE (ANN) 0.08088808 0.090404541 
R square (ANN) 0.76629876 0.72297972 

 
Compared to the prediction results on a training data set, the 

results of evaluating a Random Forest model on a test data set is 

considerably worse, which is a typical indication of an over-trained 
model, although the results on the test set above are still better than 
the results with a linear regression model.  

A multilevel neural network model (ANN) with the same 
training data was also evaluated with 5 layers, with the following 
size of each layer 90, 90, 90, 90, 20. Results on the training data and 
test data set are shown in Table 4. ANN model has better accuracy 
than linear regression, but accuracy on the training data set is not as 
good as Random Forest. However, from a complexity perspective, a 
linear regression method is preferable. It simplifies implementation, 
especially for the firmware memory limitations involved in the HW 
encoder. Similar deductions were done for other inter frame levels. 

 

5. ENCODING RESULTS 

 

After implementing the frame size prediction using linear regression 
models discussed above, for both Inter and Intra frames, the BD-rate 
results are shown in Table 5. 

Table 5. Frame size prediction results using linear regression - 
average BD-rate delta. 

QM delay = 1frame delay = 3frame delay = 5frame 
SSIM -0.18% -0.15% -0.19% 
PSNR -0.29% -0.28% -0.43% 
VMAF -0.39% -0.40% -0.65% 

 
Negative BD-rate values mean average bit-rate reduction for 

the same quality between two encoding methods, i.e, the target 
encoder is better than the anchor. Our anchor is the original libvpx 
[8] encoding without frame delay. The proposed prediction models 
improve quality for the encoder even with a frame delay pipeline, 
compared to the original libvpx encoder without frame delay. 

As discussed in Section 4, the frame size prediction model in 
Eq. (1), used in the original libvpx [8] encoder, can be tuned for 
further improvement as it does not account for changes in the frame 
complexity of frames over time. To add to this observation, we 
experimented using the proposed prediction model in the original 
libvpx encoder without frame delay and the average BD-rate results: 

SSIM : -0.46% 
PSNR : -0.31% 
VMAF : -0.31% 

Evidently, the proposed frame prediction model improves quality 
and rate control operation, due to better frame size prediction and 
choice of quant parameter Qp for each frame. 
 

6. CONCLUSION 

In this work, to address the inherent latency issue of obtaining 
accurate frame size in hardware rate control, we presented a novel 
scheme to predict the frame size using the 1st-pass statistics. Two 
sets of feature statistics are discovered using the PCA method for 
both key frames and inter frames, respectively. We compare the 
prediction accuracy using linear regression, ANN, and Random 
Forest, and present the associated coding performance. In the case 
of no frame delay, but also with up to 5 frame delay, experimental 
results show improved BD-rate performance compared to the 
original libvpx algorithm.  
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