
ResiliNet: Failure-Resilient Inference in Distributed Neural Networks

Ashkan Yousefpour∗1 Brian Q. Nguyen2 Siddartha Devic2 Guanhua Wang3

Aboudy Kreidieh3 Hans Lobel4 Alexandre M. Bayen3 Jason P. Jue2

1Facebook AI 2UT Dallas 3UC Berkeley 4PUC Chile

Abstract

Federated Learning aims to train distributed deep models
without sharing the raw data with the centralized server. Sim-
ilarly, in Split Learning, by partitioning a neural network
and distributing it across several physical nodes, activations
and gradients are exchanged between physical nodes, rather
than raw data. Nevertheless, when a neural network is parti-
tioned and distributed among physical nodes, failure of physi-
cal nodes causes the failure of the neural units that are placed
on those nodes, which results in a significant performance
drop. Current approaches focus on resiliency of training in
distributed neural networks. However, resiliency of inference
in distributed neural networks is less explored. We introduce
ResiliNet, a scheme for making inference in distributed neural
networks resilient to physical node failures. ResiliNet com-
bines two concepts to provide resiliency: skip hyperconnec-
tion, a concept for skipping nodes in distributed neural net-
works similar to skip connection in resnets, and a novel tech-
nique called failout, which is introduced in this paper. Failout
simulates physical node failure conditions during training us-
ing dropout, and is specifically designed to improve the re-
siliency of distributed neural networks. The results of the ex-
periments and ablation studies using three datasets confirm
the ability of ResiliNet to provide inference resiliency for dis-
tributed neural networks.

Introduction
Deep neural networks (DNNs) have boosted the state-of-
the-art performance in various domains, such as image
classification, segmentation, natural language processing,
and speech recognition (Krizhevsky, Sutskever, and Hin-
ton 2012; Hinton et al. 2012; LeCun, Bengio, and Hinton
2015; Sutskever, Vinyals, and Le 2014). In certain DNN-
empowered IoT applications, such as image-based defect
detection or recognition of parts during product assembly,
or anomaly behavior detection in a crowd, the inference task
is intended to run for a prolonged period of time. In these
applications, a recent trend (Teerapittayanon, McDanel, and
Kung 2017; Tao and Li 2018) has been to partition and dis-
tribute the computation graph of a previously-trained neu-
ral network over physical nodes along an edge-to-cloud path

∗Part of this work was done when the author was at UC Berke-
ley and UT Dallas. E-mail: yousefpour@fb.com.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(e.g. on edge servers) so that the forward-propagation oc-
curs in-network while the data traverses toward the cloud.
This inference in distributed DNN architecture is motivated
by two observations: Firstly, deploying DNNs directly onto
IoT devices for huge multiply-add operations is often infea-
sible, as many IoT devices are low-powered and resource-
constrained (Zhou et al. 2019a). Secondly, placing the DNNs
in the cloud may not be reasonable for such prolonged in-
ference tasks, as the raw data, which is often large, has to
be continuously transmitted from IoT devices to the DNN
model in the cloud, which results in the high consumption
of network resources and possible privacy concerns (Jeong
et al. 2018; Teerapittayanon, McDanel, and Kung 2017;
Vepakomma et al. 2019).

A natural question that arises within this setting is whether
the inference task of a distributed DNN is resilient to the fail-
ure of individual physical nodes. Our failure model is crash-
only non-Byzantine; physical nodes could fail due to power
outages, cable cuts, natural disasters, or hardware/software
failures. Providing failure-resiliency for such inference tasks
is vital, as physical node failures are more probable during
a long-running inference task. Failure of a physical node
causes the failure of the DNN units that are placed on the
node, and is especially troublesome for IoT applications that
cannot tolerate poor performance while the physical node is
being recovered. The following question is the topic of our
study. How can we make distributed DNN inference resilient
to physical node failures?

Several frameworks have been developed for distributed
training of neural networks (Abadi et al. 2016; Paszke et al.
2019; Chilimbi et al. 2014). On the other hand, inference
in distributed DNNs has emerged as an approach for DNN-
empowered IoT applications. Providing failure-resiliency
during inference for such IoT applications is crucial. Au-
thors in (Yousefpour et al. 2019) introduce the concept of
skip hyperconnections in distributed DNNs that provides
some failure-resiliency for inference in distributed DNNs.
Skip hyperconnections skip one or more physical nodes in
the vertical hierarchy of a distributed DNN. These forward
connections between non-subsequent physical nodes help in
making distributed DNNs more resilient to physical failures,
as they provide alternative pathways for information when a
physical node has failed. Although superficially they might
seem similar to skip connections in residual networks (He

ar
X

iv
:2

00
2.

07
38

6v
3 

 [
cs

.L
G

] 
 2

0 
Se

p 
20

20



et al. 2016a), skip hyperconnections serve a completely dif-
ferent purpose. While the former aim at solving the vanish-
ing gradient problem during training, the latter are based
on the underlying insight that during inference, if at least
a part of the incoming information for a physical node is
present (via skip hyperconnections), given their generaliza-
tion power, the neural network may be able to provide a rea-
sonable output, thus providing failure-resiliency.

A key observation in the aforementioned work is that the
weights learned during training using skip hyperconnections
are not aware that there might be physical node failures. In
other words, the information about failure of physical nodes
is not used during training to make the learned weights
aware of such failures. As such, skip hyperconnections by
themselves do not make the learned weights more resilient
to physical failures, as they are just a way to diminish the
effects of losing the information flow at inference time.

Key Contributions: Motivated by this limitation, (1)
we introduce ResiliNet, which utilizes a new regularization
scheme we call failout, in addition to skip hyperconnections,
for making inference in distributed DNNs resilient to phys-
ical node failures. Failout is a regularization technique that
during training “fails” (i.e. shuts down) the physical nodes
of the distributed DNN, each hosting several neural network
layers, thus simulating inference failure conditions. Failout
effectively embeds a resiliency mechanism into the learned
weights of the DNN, as it forces the use of skip hypercon-
nections during failure. The training procedure using failout
could be applied offline, and would not necessarily be done
during runtime (hence, shutting down physical nodes would
be doing so in simulation). Although in DFG framework
(Yousefpour et al. 2019) skip hyperconnections are always
active both during training and inference, in ResiliNet skip
hyperconnections are active during training and during in-
ference only when the physical node that they bypass fails
(for bandwidth savings).

(2) Through experiments using three datasets we show
that ResiliNet minimizes the degradation impact of physical
node failures during inference, under several failure condi-
tions and network structures. Finally, (3) through extensive
ablation studies, we explore the rate of failout, the weight
of hyperconnections, and the sensitivity of skip hypercon-
nections in distributed DNNs. ResiliNet’s major novelty is
in providing failure-resiliency through special training pro-
cedures, rather than traditional “system-based” approaches
of redundancy, such as physical node replication or backup.

Resiliency-based Regularization for DNNs
Distributed neural networks
A distributed DNN is a DNN that is split according to a par-
tition map and distributed over a set of physical nodes (a
form of model parallelism). This concept is sometimes re-
ferred to as split learning, where only activations and gra-
dients are transferred in the distributed DNN, which can re-
sult in improvements in privacy (Vepakomma et al. 2019).
This article studies the resiliency of previously-partitioned
distributed DNN models during inference. We do not study
the problem of optimal partitioning of a DNN; the optimal

DNN partitioning depends on factors such as available net-
work bandwidth, type of DNN layers, and the neural net-
work topology (Hu et al. 2019; Kang et al. 2017; Zhou et al.
2019b). We do not consider doing any neural architecture
search in this article. Nevertheless, in our experiments, we
consider different partitions of the DNNs.

Since a distributed DNN resides on different physical
nodes, during inference, the vector of output values from
one physical node must be transferred (e.g. through a TCP
socket) to another physical node. The transfer link (pipe)
between two physical nodes is called a hyperconnection
(Yousefpour et al. 2019). Hyperconnections transfer infor-
mation (e.g. feature maps) as in traditional connections be-
tween neural network layers, but through a physical com-
munication network. Unlike a typical neural network con-
nection that connects two units and transfers a scalar, a hy-
perconnection connects two physical nodes and transfers a
vector of scalars. Hyperconnections are one of two types:
simple or skip. A simple hyperconnection connects a phys-
ical node to the physical node that has the next DNN layer.
Skip hyperconnections are explained next.

Skip Hyperconnections
The concept of skip hyperconnections is similar to that of
skip connections in residual networks (ResNets) (He et al.
2016a). A skip hyperconnection (Yousefpour et al. 2019) is
a hyperconnection that skips one or more physical nodes in
a distributed neural network, forwarding the information to
a physical node that is further away in the distributed neu-
ral network structure. During training, the DNN learns to
use the skip hyperconnections to allow an upstream physical
node receive information from more than one downstream
physical node. Consequently, during inference, if a physical
node fails, information from the prior working nodes are still
capable of propagating forward to upstream working phys-
ical nodes via these skip hyperconnections, providing some
failure-resiliency (Yousefpour et al. 2019).

ResiliNet also uses skip hyperconnections, but in a
slightly different manner from the DFG framework. When
there is no failure during inference, or no failout during
training (failout, to be discussed), the skip hyperconnections
are not active. When failure occurs during inference (fail-
ures can be detected by simple heartbeat mechanisms), or
failout during training, skip hyperconnections become ac-
tive, to route the blocked information flow. This setup in
ResiliNet significantly saves bandwidth, compared to DFG,
which requires skip hyperconnections to be always active.
The advantage here is in routing information during failure,
that is otherwise not possible. Also, the bandwidth for the
routed information over the failed node is the same as when
there is no failure (skip hyperconnection only finds a de-
tour). In the experiment we also show through experiments
that if skip hyperconnections are always active, the perfor-
mance only increases negligibly.

Failout Regularization
In the DFG framework (Yousefpour et al. 2019), the infor-
mation regarding failure of the physical nodes is not used
during training to make the learned weights more aware



of such failures. Although skip hyperconnections increase
the failure-resiliency of distributed DNNs, they do not make
the learned weights more prepared for such failures. This is
because all neural network components are present during
training, as opposed to inference time where some physical
nodes may fail. In order to account for the learned weights
being more adapted to specific failure scenarios, we intro-
duce failout regularization, which simulates inference-time
physical node failure conditions during training.

During training, failout “fails” (i.e., shuts down) a physi-
cal node, to make the learned weights more adaptive to such
failures and the distributed neural network more failure-
resilient. By “failing” a physical node, we mean temporar-
ily removing the neural network components that reside on
the physical node, along with all their incoming and outgo-
ing connections. Failout’s training procedure could be done
offline, and would not necessarily be employed during run-
time. Therefore failing physical nodes would be temporarily
removing their neural network components in simulation.

When the neural components of a given physical node
shut down using failout, the neural layers of the upstream
physical node that are connected to the failing physical node
will not receive information from the failing physical node,
forcing their weights to take into account this situation and
utilize the received information from the skip hyperconnec-
tion. In other words, failout forces the information passage
through the skip hyperconnections during training, hence
adapting the weights of the neural network to account for
these failure scenarios during inference.

Formally, consider a neural network which is distributed
over V different nodes vi, i ∈ [1, V ], where for each vi, we
define its failure rate (probability of failure) fi ∈ [0, 1]. Fol-
lowing this, we define a binary mask b with V components,
where its i-th element bi follows a Bernoulli distribution,
with a mean equal to 1−fi, that is bi ∼ Ber(1−fi). During
training, for each batch of examples, a new mask b is sam-
pled, and if bi = 0, the neural components of physical node
vi are dropped from computation (vi’s output is set to zero
in simulated off-line training), thus simulating a real failure
scenario. Formally, if Yi denotes the output of node vi, then
Yi = biHi(Xi), where Hi(.) is a non-linear transform on
Xi, the input of physical node vi.

Consider a vertically distributed DNN where the nodes
are numbered in sequence 1, 2, . . . , V from downstream to
upstream (cloud). In this setting, for ResiliNet we can derive
an equation for Xi+1, the input to node vi, as

Xi+1 = Yi � Yi−1, (1)

where the operator � is defined as: in Xi+1 = Yi � Yi−1,
when node vi is alive Xi+1 = Yi, and when node vi fails,
Xi+1 = Yi−1. In this definition, we can see that the skip hy-
perconnection is only active when there is a failure, which
corresponds to ResiliNet. In the experiments, we also con-
sider a case where skip hyperconnections are always active
(we call it ResiliNet+), for which eq. (1) is modified to

Xi+1 = Yi ⊕ Yi−1. (2)

Although, superficially, failout seems similar to dropout
(Srivastava et al. 2014), failout removes a whole segment of

n1

i

n2

n3

n4

m1

i

m2

m3

Health MobileNet

z1

i

z2

z3

ResNet

1

2

3

4

3

5

5

4

4

9

111

Figure 1: Distributed
neural network setup and
number of layers on each
node.

Config Health + Vanilla Health + dFG Health + ResiliNet
Low 55.66 75.33 88.16
Medium 75.58 86.69 94
High 86.57 92.21 95.88
No-Failure 97.86 97.91 97.03

 A
vg

 A
cc

ur
ac

y 
(%

)  

49

59

69

79

89

99

(a) Health Experiment
Hazardous Poor Normal NoFailure

Vanilla DFG ResiliNet

Config Camera + Vanilla Camera + dFG Camera + ResiliNet
Low 78.41 88.32 91.09
Medium 91.26 95.04 95.54
High 97.86 98.33 98.79
No-Failure 98.86 98.54 99.1

 A
vg

 F
-m

ea
su

re
 (%

)  

75

80

85

90

95

100

(b) Camera Experiment
Hazardous Poor Normal NoFailure

Raw result (incorrect by keras)

imagenet + Vanilla imagenet + dFG imagenet + 
ResiliNet

0,0 0.1 0.1 0.1

0,1 0.1 3.23 37.41

1,0 0.1 7.3 41.94

1,1 58.5619 57.84 53.0

Low 39.854092 40.9628 47.662
Medium 50.0849245 50.29255 50.98325
High 55.10095552 54.764128 52.2248
No Failure 58.5619 57.84 53.0

Raw result corrected

imagenet + Vanilla imagenet + dFG imagenet + 
ResiliNet

0,0 0.1 0.1 0.1
0,1 0.1 10.23 46.41
1,0 0.1 14.3 52.94
1,1 65.0619 64.84 66.0
Low 44.274092 47.7528 59.452
Medium 55.6424245 57.25755 63.54825
High 61.21615552 61.758528 65.0592
No Failure 65.0619 64.84 66.0

Config imagenet + Vanilla imagenet + dFG imagenet + 
ResiliNet

Low 44.274092 47.7528 59.452
Medium 55.6424245 57.25755 63.54825
High 61.21615552 61.758528 65.0592
No Failure 65.0619 64.84 66.0

 A
vg

 A
cc

ur
ac

y 
(%

)  

36

42

48

54

60

66

(b) MobileNet Experiment
Hazardous Poor Normal NoFailure

Config resnet + Vanilla resnet + dFG resnet + ResiliNet
Low 66.8715896 75.2779844 77.5998442
Medium 80.9894727 84.3155412 84.5
High 87.9141416 89.1371939 88.24
No Failure 92.692013 92.377987 90.7

 A
vg

 A
cc

ur
ac

y 
(%

)  

45

54.8

64.6

74.4

84.2

94

(c) ResNet Experiment
Hazardous Poor Normal NoFailure

1

Figure 2: Average performance

neural components, including neurons and weights, for a dif-
ferent purpose of failure-resiliency of distributed DNNs (and
not only regularizing the neural network). Another distinc-
tion between failout and dropout is in their behavior during
inference. In dropout, at inference, the weights of connec-
tions are multiplied by the probability of survival of their
source neuron to account for model averaging from expo-
nentially many thinned models. Furthermore, DNN units are
not dropped during inference in dropout, making the model
averaging a necessity. In contrast, failout does not multiply
weights of hyperconnections by the probability of survival,
since, during inference, physical nodes may fail, though not
necessarily at the same rate as during training. Said differ-
ently, failout does not use the model ensemble analogy as
used in standard dropout, hence does not need the mixed
results of the model ensembles. To verify our hypothesis,
we conducted experiments using different datasets in a set-
ting where the weights of hyperconnections are multiplied
by the probability of survival of the physical nodes, and we
observed a sheer reduction in performance.

Experiments
We compare ResiliNet’s performance with that of DFG
(Yousefpour et al. 2019) and vanilla (distributed DNN with
no skip hyperconnections and no failout).

Scenarios and Datasets
Vertically distributed MLP: This is the simplest scenario
for a distributed DNN in which the MLP is split vertically
across physical nodes shown in the left of fig. 1.

For this scenario, we use the UCI health activity classifi-
cation dataset (“Health” for short), described in (Banos et al.
2015). This dataset is an example of an IoT application for
medical purposes where the inference task will run over a
long period of time. The dataset is comprised of readings
from various sensors placed at the chest, left ankle, and right
arm of 10 patients. There are a total of 23 features, each cor-
responding to a type of data collected from sensors. For this



experiment, we split a DNN that consists of ten hidden lay-
ers of width 250, over 4 physical nodes as follows. The phys-
ical node n1 hosts one hidden layer, n2 two, n3 three, and
n4 four (also summarized in table 2). The dataset is labeled
with the 12 activities a patient is performing at a given time,
and the task is to classify the type of activity. We remove
the activities that do not belong to one of the classes. Af-
ter reprocessing, the dataset has 343,185 data points and is
roughly uniformly distributed across each class. Hence, we
use a standard cross-entropy loss function for the classifica-
tion. For evaluation, we separate data into train, validation,
and test with an 80/10/10 split.

Vertically distributed CNN: The two architectures in the
right in fig. 1 present the neural network structure proposed
for these scenarios and how the CNNs are split. For these
scenarios, we use two datasets, ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) and CIFAR-10. We utilize
the ILSVRC dataset for measuring the performance of Resi-
liNet in distributed CNNs. However, for ablation studies for
distributed CNNs, we use the CIFAR-10 dataset, since we
run several iterations of experiments with different hyper-
parameters. We also employ data augmentation to improve
model generalization.

For CIFAR-10 and ImageNet datasets, we use the Mo-
bileNetV1 CNN architecture (Howard et al. 2017) and split
it across 3 physical nodes. We chose version 1 of MobileNet
(MobileNetV1), as it does not have any of the skip con-
nections that are present in MobileNetV2. Moreover, since
non-residual models cannot effectively deal with layer fail-
ure (Veit, Wilber, and Belongie 2016), we also consider neu-
ral networks with residual connections and experiment with
ResNet-18 (He et al. 2016a). The ResNet-18 architecture has
18 layers, and we partition these stacked layers across the
three physical nodes: z1 contains four layers, z2 four, and z3
9 plus the remaining layers. The MobileNetV1 architecture
has 13 “stacked layers”, each with the following six layers:
depth-wise convolution, batch normalization, ReLU, convo-
lution, batch normalization, and ReLU. We partition these
13 stacked layers across the three physical nodes.

Experiment Settings
We implemented our experiments using TensorFlow and
Keras on Amazon Web Service EC2 instances. Batch sizes
of 1024, 128, and 1024 are used for the Health, CIFAR-
10, and ImageNet experiments, respectively. The learning
rate of 0.001 is used for the health activity classification and
CIFAR-10 experiments. Learning rate decay with an initial
rate of 0.01 is used for the ImageNet experiment. The image
size of 160× 160× 3 pixels is used for the ImageNet exper-
iment. The rate of failout for ResiliNet is set to 10% (other
rates of failout are explored later in ablation studies).

Failure probabilities: To empirically evaluate different
schemes, we use three different failure settings outlined in
table 2. A failure setting is a tuple, where each element i is
the probability that the physical node vi fails during infer-
ence. For example, the setting Normal could represent more
reasonable network condition, where the probability of fail-
ure is low, while the settings Poor and Hazardous represent
failure settings (only for experiments) when the failures are

Failing Top-1 Accuracy (%)
Nodes Prob. (%) ResiliNet+ ResiliNet DFG Vanilla

H
ea

lth

None 87.43 97.85 97.77 97.90 97.85
n1 7.01 97.35 93.26 64.42 7.95
n2 3.64 94.32 95.59 22.49 7.99
n3 0.88 97.74 97.12 92.48 8.10
n1, n2 0.32 8.02 8.12 8.2 7.93
n1, n3 0.08 97.33 91.12 60.13 7.98
n2, n3 0.04 7.99 7.86 7.98 7.97
n1, n2, n3 0.003 7.98 8.11 7.89 7.91

Average 97.36 97.02 92.21 86.57

M
ob

ile
N

et

None 94.08 88.11 87.75 87.54 86.64
m1 3.92 78.98 75.55 69.42 10.27
m2 1.92 75.65 59.18 62.76 9.85
m1,m2 0.08 9.71 10.11 10.02 10.07

Average 87.45 86.66 86.29 82.1

Table 1: Individual physical node failures

very frequent in the physical network. It is worth noting that
the specific values of failure probabilities do not change the
overall trend in the results and are only chosen so we have
some benchmark for three different failure conditions.

To obtain values for the failure probabilities, we have the
following observations: 1) the top physical node (n4, m3, z3
in fig. 1) is the cloud, and hence is always available; 2) the
nodes closer to the cloud are more available than the ones
far from the cloud; 3) the physical nodes closer to the cloud
and data centers (e.g., backbone nodes) have relatively high
availability of around 98% (Meza et al. 2018): such nodes
have a mean time between failures (MTBF) of 3521 hours
and a mean time to repair (MTTR) of 71 hours. Thus, the
availability of those nodes is around 98%, while presumably
the physical nodes closer to end-user are expected to have
less availability, of around 92%-98% (in failure setting Nor-
mal). Once we obtain values for failure setting Normal, we
simply increase them for settings Poor and Hazardous.

Performance Evaluation
Table 1 shows the performance of different schemes for cer-
tain physical node failures. The first two columns show the
failing nodes, along with the probability of occurrence of
those node failures under Normal failure setting. Recall that
Vanilla is a distributed DNN that does not have skip hy-
perconnections and does not use failout. We assume that,
when there is no information available to do the classifica-
tion task due to failures, we do random guessing. ResiliNet+
is a scheme based on ResiliNet where skip hyperconnec-
tions are always active, during inference (or validation) and
training. (In this table, for MobileNet experiment CIFAR-10
dataset is used).

(a) Health: In the health activity classification experi-
ment, we see that the failure of even a single physical node
compromises the performance of Vanilla due to random
guessing, resulting top-1 accuracy of around 8%. On the
other hand, DFG, ResiliNet, and ResiliNet+ subvert Vanilla’s
inability to pass data over failed physical nodes, thereby
achieving significantly greater performance. The results also



Table 2: Experiment settings

Experiment Dist. MLP Dist. MobileNet Dist. ResNet-18

Dataset UCI Health ImageNet, CIFAR-10 CIFAR-10

Nodes Order [n4, n3, n2, n1] [m3,m2,m1] [z3, z2, z1]

Failure Setting
Normal [0%, 1%, 4%, 8%] [0%, 2%, 4%] [0%, 2%, 4%]
Poor [0%, 5%, 9%, 13%] [0%, 5%, 10%] [0%, 5%, 10%]
Hazardous [0%, 15%, 20%, 22%] [0%, 15%, 20%] [0%, 15%, 20%]

Table 1

Health MobileNet ResNet Camera

Hazardous 0.09 0.2 0.15 0.74%
Poor 0.29 0.22 0.25 0.80%
Normal 0.44 0.31 0.33 0.17%
No Failure 0.6 0.55 0.5 0.15%

Ac
cu

ra
cy

 
ST

D
EV

 (%
)

0
0.2
0.4
0.6
0.8

1

Hazardous Poor Normal No Failure

Health
MobileNet
ResNet

Table 1-1

Health 0.99 0.96 0.92

0 0 0
0.01 0.04 0.08 0.000032 0.0032

Camera 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98

1 1 1 0 0 1 1 0

0.99 0.99 0.99 0.01 0.02 0.98 0.98 0.02 0.00000372750063840.00037275006384

CIFAR 0.98 0.96

1 0

0.98 0.04 0.0392 3.92

1

Figure 3: Impact of hypercon. weight in ResiliNet

show that, in this experiment, ResiliNet and ResiliNet+ per-
form better than DFG in all of the cases, except for when
there is no failure. In certain physical nodes failures, such
as when n1, n2, or {n1, n3} fail, ResiliNet and ResiliNet+
greatly surpass the accuracy of the both DFG and Vanilla,
providing a high level of failure-resiliency. When physical
node failures {n1, n2} and {n2, n3} occur, all schemes do
not provide high accuracy, due to inaccessibility of the path
for information flow.

(b) MobileNet on CIFAR-10: In the MobileNet ex-
periment with CIFAR-10 dataset, Vanilla is outperformed
by other three schemes when there is any combination
of failures. ResiliNet and ResiliNet+ both offer a great
performance when m1 fails; nevertheless, DFG performs
marginally better than ResiliNet when m2 fails. ResiliNet+
consistently has the highest accuracy in this experiment.

We can see that ResiliNet overall maintains a higher accu-
racy than DFG and vanilla. We can also see that ResiliNet+
outperforms all of the schemes. However, this benefit comes
at a cost of having the skip hyperconnections always active,
which results in higher bandwidth usage. In the rest of the
experiments, we choose ResiliNet among the two ResiliNets.
This is a pessimistic choice and it is justified by the band-
width savings.

Previously, we discussed and showed how the accuracy is
affected when particular physical nodes fail. Nevertheless,
some of the physical node failures are not as probable as oth-
ers (e.g. multiple physical nodes failure vs. single physical
node failure), and hence it is interesting to see the average
accuracy in different node failure settings. fig. 2 shows the
average top-1 accuracy of the three methods under different
failure settings, with 10 iterations for the health activity clas-
sification experiment, and 2 iterations for the MobileNet ex-
periment on ImageNet (confidence intervals are very small
and negligible and are omitted). Key result 1: as expected, in
both experiments, ResiliNet seems to outperform DFG and
Vanilla. The high performance of ResiliNet is more evident
in severe node failure conditions.

Ablation Studies
Now that the validity of failout has been empirically shown
to provide an increase in failure-resiliency of distributed
neural networks, we now investigate the importance of in-
dividual skip hyperconnections, their weights, as well as the
optimal rate of failout. To do so, we raise four important
questions in what follows and empirically provide answers
to these questions. We use the CIFAR-10 dataset for ablation
studies of the distributed CNN, and use Health for ablation
studies of distributed MLPs.

1. What is the best choice of weights for the hypercon-
nections? Hyperconnections can have weights, similar to the
weights of the connections in neural networks. We begin by
assessing the choice of weights of the hyperconnections. Al-
though by default, the weight of hyperconnections in Resi-
liNet is 1, we pondered if setting the weights relative to the
reliability of their source physical nodes could improve the
accuracy. Reliability of a physical node vi is ri = (1 − pi),
where pi is the probability of failure of node vi. We pro-
posed two heuristics, called “Relative Reliability” and “Re-
liability,” that are described as follows:
Consider two physical nodes v1 and v2 feeding data through
hyperconnections to physical node v3. If physical node v1
is less reliable than physical node v2 (r1 < r2), setting
v1’s hyperconnections weight with a smaller value than that
of v2 may improve the performance. Thus, for the hyper-
connection weight connecting node vi to node vj , in Re-
liability heuristic, we set wij = ri, where wij denotes
the weight of hyperconnection from physical node vi to
node vj . Comparably, in Relative Reliability heuristic, we
set wij = ri∑

k∈Hj
rk

, where Hj is the set of incoming hy-

perconnection indices to the physical node vj .
We experiment with the following four hyperconnection

weight schemes in ResiliNet for 10 runs: (1) weight of 1, (2)
Reliability heuristic, (3) Relative Reliability heuristic, and
(4) uniform random weight between 0 and 1. Key result 2:
surprisingly, all of the four hyperconnection weight schemes
resulted in a similar performance. Since all of the values for
average accuracy are similar in these experiments, we report
in fig. 3 the standard deviation among these weight schemes
in ResiliNet.

We see that the standard deviation among the weight
schemes is negligible, constantly below 1%. This suggests
that there may not be a significant difference in accuracy
when using any of the reasonable weighting scheme (e.g.
heuristic of 1). Key observation 1: we also experimented
with a scheme in which the hyperconnection weight is uni-
formly and randomly distributed between 0 and 10, and ob-
served that the accuracy dropped significantly for the dis-
tributed MLPs. Key observation 2: surprisingly, the accu-
racy of distributed CNNs stays in the same range as in
other schemes, when hyperconnection weight is a uniform
random number between 0 and 10. We hypothesize that,
for distributed MLPs, a reasonable hyperconnection weight
scheme is a scheme that assigns the weights of hypercon-
nections between 0 and 1. Nevertheless, further investigation
may be required in different distributed DNN architectures
to assess the full effectiveness of hyperconnection weights.



Table 3: Impact of failout rate in ResiliNet. Numbers represent average top-1 accuracy in %.

Failout Rate “Failure” 5% 10% 30% 50%

Experiment H M R H M R H M R H M R H M R

Failure Setting
No Failure N/A N/A N/A 97.84 88.23 91.94 97.81 88.53 91.43 97.53 87.75 88.44 96.92 84.60 85.79
Normal 96.32 86.78 89.54 96.64 85.03 89.50 97.07 85.87 88.70 97.04 86.66 86.28 96.52 84.01 84.13
Poor 95.81 81.61 86.16 94.96 80.30 85.81 95.70 81.92 84.59 95.86 84.92 82.97 95.38 82.99 81.55
Hazardous 91.95 77.46 78.60 89.36 70.32 78.82 90.58 73.16 77.03 91.06 79.93 76.97 90.67 79.35 76.65

2. What is the optimal rate of failout? In this ablation ex-
periment, we investigate the effect of failout by setting the
rate of failout to fixed rates of 5%, 10%, 30%, 50%, and a
varying rate of “Failure,” where the failout rate for a physical
node is equal to its probability of failure during inference.
Table 3 illustrates the impact of failout rate in ResiliNet. Key
result 3: ResNet (R) seems to favor Failure failout rate, and
MobileNet (M) favors higher failout rates of around 30%..
Key observation 3: we hypothesize that, since a significant
portion of the DNN is dropped during training when us-
ing failout, higher failout rate results in lower accuracy, as
opposed to standard dropout. Key observation 4: based on
our preliminary experiments, we conclude that the optimal
failout rate should be seen as a hyperparameter, and be tuned
for the experiment.

3. Which skip hyperconnections are more important? It
is important to see which skip hyperconnections in ResiliNet
are more important, thereby contributing more to the re-
siliency of the distributed neural network. This is helpful for
certain scenarios in which having all skip hyperconnections
is not possible (e.g. due to the cost of establishing new con-
nections, or some communication constraints). To perform
these experiments, we shut down (i.e. disconnect) a certain
configuration of skip hyperconnections while keeping other
skip hyperconnections active and every experiment setting
the same, to see changes in the performance. The results are
presented in fig. 4. The bars show the average top-1 accu-
racy of 10 runs, under different “configs” in which a certain
combination of skip hyperconnections are shut down. The
present skip hyperconnections are shown in the tables next to
the bar charts. Letters in the tables indicate the source phys-
ical node of the skip hyperconnection. In the health activity
classification experiment, since there are three skip hyper-
connections in the distributed neural network, there are eight
possible configurations of skip hyperconnections (“Config
1” through “Config 8”). Similarly, in the experiments with
MobileNet and ResNet-18, we consider all four configura-
tions, as we have two skip hyperconnections.

In the health activity classification (fig. 4a), we can see
a uniform accuracy gain, when going from Config 1 to-
wards Config 8. We can also see that, by looking at Config
2 through Config 4, if only one skip hyperconnection is al-
lowed in a scenario, it should be the skip hyperconnection
from input to n2 (labeled as i). This is also evident when
comparing Config 5 and Config 6: the skip hyperconnection
from input to n2 is more important. In the Hazardous relia-
bility scenario, a proper subset of two skip hyperconnections

can achieve up to a 24% increase in average accuracy (Con-
fig 1 vs. Config 6). Key result 4: this hints that individual
skip hyperconnections are more important when there are
more failures in the network. In the experiment with Mo-
bileNet, we also observe a uniform accuracy increase, when
going from Config 1 towards Config 4. We can see that the
skip hyperconnection from input to m2 is more important
that the skip hyperconnection from m1 to m3 (Config 2 vs.
Config 3). Nonetheless, if both skip hyperconnections are
present (Config 4), the performance is at its peak. Compara-
bly, in the experiment with ResNet (fig. 4c), we can see that
the skip hyperconnection from node z1 to z3 is more impor-
tant than the skip hyperconnection from input to z2. We can
also see that, when we have all the skip hyperconnections,
the performance of the distributed DNNs are at their peak.

This ablation study demonstrates that, by searching for
a particular important subset of skip hyperconnections in a
distributed neural network, especially in the Hazardous re-
liability scenarios, we can achieve a large increase in the
average accuracy. We point the interested reader to (He et al.
2016b; Veit, Wilber, and Belongie 2016; Jastrzebski et al.
2018) for more in-depth analyses of representations and
functions induced by skip connections in neural networks.

Related Work
a. Distributed Neural Networks. Federated Learning is a
paradigm that allows clients collaboratively train a shared
global model (Wang et al. 2020; Kairouz et al. 2019;
Bonawitz et al. 2019). Distributed training of neural net-
works has received significant attention (Abadi et al. 2016;
Paszke et al. 2019; Chilimbi et al. 2014). Resilient dis-
tributed training against adversaries is studied in (Chen et al.
2018; Damaskinos et al. 2019). Nevertheless, inference in
distributed neural networks (split learning) is less explored,
although application scenarios that need ongoing and long
inference tasks are emerging (Teerapittayanon, McDanel,
and Kung 2017; Morshed et al. 2017; Liu, Qi, and Baner-
jee 2018; Tao and Li 2018; Hu et al. 2019; Dey, Mondal,
and Mukherjee 2019; Vepakomma et al. 2019).

b. Neural Network Fault Tolerance. A related concept
to failure is fault, which is when units or weights become
defective (i.e. stuck at a certain value, or random bit flip).
Studies on fault tolerance of neural networks date back to the
early 90s, and are limited to mathematical models of small
neural networks (e.g. neural networks with one hidden layer
or unit-only and weight-only faults) (Mehrotra et al. 1994;
Bolt 1992; Phatak and Koren 1995).



Health

Skip Hyper 
Connection 
Config C1 C2 C3 C4 C5 C6 C7 C8
Low 55.62% 63.94% 67.20% 68.47% 75.53% 79.13% 79.90% 90.58%
Medium 75.53% 79.02% 81.96% 85.19% 85.51% 89.27% 91.56% 95.72%
High 86.50% 87.24% 89.59% 93.06% 90.42% 93.92% 96.13% 97.10%
Low STD 0.05% 0.01% 0.11% 0.13% 0.01% 0.17% 0.24% 0.31%
Medium STD 0.06% 0.01% 0.08% 0.13% 0.00% 0.15% 0.22% 0.27%
High STD 0.07% 0.02% 0.05% 0.00% 0.14% 0.13% 0.19% 0.25%

n2, n1, i

0,0,0 1

0,0,1 2

0,1,0 3

0,1,1 4

1,0,0 5

1,0,1 6

1,1,0 7

1,1,1 8

Av
g 

Ac
cu

ra
cy

 (%
)

47%

60%

73%

86%

99%

C1 C2 C3 C4 C5 C6 C7 C8

Hazardous

C1 C2 C3 C4 C5 C6 C7 C8

Poor

C1 C2 C3 C4 C5 C6 C7 C8

Normal
Failure Setting

MobileNet

Skip Hyper 
Connection 
Config Config 1 none Config 2 e Config 3 iot Config 4 all
Low 61.46% 65.39% 69.90% 74.89%
Medium 74.70% 77.11% 80.03% 82.43%
High 81.19% 83.13% 84.15% 85.76%
Low STD 0.39% 0.39% 0.28% 0.28%
Medium STD 0.39% 0.39% 0.28% 0.28%
High STD 0.39% 0.39% 0.28% 0.28%
m1,i

0,0

1,0

0,1

1,1

Av
g 

Ac
cu

ra
cy

 (%
)

54%

65%

76%

87%

C1 C2 C3 C4

Hazardous

C1 C2 C3 C4

Poor

C1 C2 C3 C4

Normal
Failure Setting

(a) Skip Hyperconnection Configuration (Health)

(b) Skip Hyperconnection Configuration (MobileNet)

ResNet

Skip Hyper 
Connection 
Config Config 1 none Config 3 iot Config 2 e Config 4 all
Low 64.46% 67.08% 71.90% 77.88%
Medium 77.85% 79.54% 80.86% 85.27%
High 84.41% 85.37% 85.93% 89.24%
Low STD 0.00% 0.11% 0.28% 0.11%
Medium STD 0.06% 0.14% 0.36% 0.07%
High STD 0.09% 0.33% 0.36% 0.13%
z1,i

0,0

1,0

0,1

1,1

Av
g 

Ac
cu

ra
cy

 (%
)

54%

66%

78%

90%

C1 C2 C3 C4

Hazardous

C1 C2 C3 C4

Poor

C1 C2 C3 C4

Normal

(c) Skip Hyperconnection Configuration (ResNet)

Failure Setting

1

Health

Skip Hyper 
Connection 
Config C1 C2 C3 C4 C5 C6 C7 C8
Low 55.62% 63.94% 67.20% 68.47% 75.53% 79.13% 79.90% 90.58%
Medium 75.53% 79.02% 81.96% 85.19% 85.51% 89.27% 91.56% 95.72%
High 86.50% 87.24% 89.59% 93.06% 90.42% 93.92% 96.13% 97.10%
Low STD 0.05% 0.01% 0.11% 0.13% 0.01% 0.17% 0.24% 0.31%
Medium STD 0.06% 0.01% 0.08% 0.13% 0.00% 0.15% 0.22% 0.27%
High STD 0.07% 0.02% 0.05% 0.00% 0.14% 0.13% 0.19% 0.25%

n2, n1, i

0,0,0 1

0,0,1 2

0,1,0 3

0,1,1 4

1,0,0 5

1,0,1 6

1,1,0 7

1,1,1 8

Av
g 

Ac
cu

ra
cy

 (%
)

48%

61%

74%

87%

100%

C1 C2 C3 C4 C5 C6 C7 C8

Hazardous

C1 C2 C3 C4 C5 C6 C7 C8

Poor

C1 C2 C3 C4 C5 C6 C7 C8

Normal
Failure Setting

MobileNet

Skip Hyper 
Connection 
Config Config 1 none Config 2 e Config 3 iot Config 4 all
Low 61.46% 65.39% 69.90% 74.89%
Medium 74.70% 77.11% 80.03% 82.43%
High 81.19% 83.13% 84.15% 85.76%
Low STD 0.39% 0.39% 0.28% 0.28%
Medium STD 0.39% 0.39% 0.28% 0.28%
High STD 0.39% 0.39% 0.28% 0.28%
m1,i

0,0

1,0

0,1

1,1

Av
g 

Ac
cu

ra
cy

 (%
)

54%

65%

76%

87%

C1 C2 C3 C4

Hazardous

C1 C2 C3 C4

Poor

C1 C2 C3 C4

Normal
Failure Setting

(a) Skip Hyperconnection Configuration (Health)

(b) Skip Hyperconnection Configuration (MobileNet)

ResNet

Skip Hyper 
Connection 
Config Config 1 none Config 3 iot Config 2 e Config 4 all
Low 64.46% 67.08% 71.90% 77.88%
Medium 77.85% 79.54% 80.86% 85.27%
High 84.41% 85.37% 85.93% 89.24%
Low STD 0.00% 0.11% 0.28% 0.11%
Medium STD 0.06% 0.14% 0.36% 0.07%
High STD 0.09% 0.33% 0.36% 0.13%
z1,i

0,0

1,0

0,1

1,1

Av
g 

Ac
cu

ra
cy

 (%
)

54%

66%

78%

90%

C1 C2 C3 C4

Hazardous

C1 C2 C3 C4

Poor

C1 C2 C3 C4

Normal

(c) Skip Hyperconnection Configuration (ResNet)

Failure Setting

1

Health

Skip Hyper 
Connection 
Config C1 C2 C3 C4 C5 C6 C7 C8
Low 55.62% 63.94% 67.20% 68.47% 75.53% 79.13% 79.90% 90.58%
Medium 75.53% 79.02% 81.96% 85.19% 85.51% 89.27% 91.56% 95.72%
High 86.50% 87.24% 89.59% 93.06% 90.42% 93.92% 96.13% 97.10%
Low STD 0.05% 0.01% 0.11% 0.13% 0.01% 0.17% 0.24% 0.31%
Medium STD 0.06% 0.01% 0.08% 0.13% 0.00% 0.15% 0.22% 0.27%
High STD 0.07% 0.02% 0.05% 0.00% 0.14% 0.13% 0.19% 0.25%

n2, n1, i

0,0,0 1

0,0,1 2

0,1,0 3

0,1,1 4

1,0,0 5

1,0,1 6

1,1,0 7

1,1,1 8

Av
g 

Ac
cu

ra
cy

 (%
)

48%

61%

74%

87%

100%

C1 C2 C3 C4 C5 C6 C7 C8

Hazardous

C1 C2 C3 C4 C5 C6 C7 C8

Poor

C1 C2 C3 C4 C5 C6 C7 C8

Normal
Failure Setting

MobileNet

Skip Hyper 
Connection 
Config Config 1 none Config 2 e Config 3 iot Config 4 all
Low 61.46% 65.39% 69.90% 74.89%
Medium 74.70% 77.11% 80.03% 82.43%
High 81.19% 83.13% 84.15% 85.76%
Low STD 0.39% 0.39% 0.28% 0.28%
Medium STD 0.39% 0.39% 0.28% 0.28%
High STD 0.39% 0.39% 0.28% 0.28%
m1,i

0,0

1,0

0,1

1,1

Av
g 

Ac
cu

ra
cy

 (%
)

54%

65%

76%

87%

C1 C2 C3 C4

Hazardous

C1 C2 C3 C4

Poor

C1 C2 C3 C4

Normal
Failure Setting

(a) Skip Hyperconnection Configuration (Health)

(b) Skip Hyperconnection Configuration (MobileNet)

ResNet

Skip Hyper 
Connection 
Config Config 1 none Config 3 iot Config 2 e Config 4 all
Low 64.46% 67.08% 71.90% 77.88%
Medium 77.85% 79.54% 80.86% 85.27%
High 84.41% 85.37% 85.93% 89.24%
Low STD 0.00% 0.11% 0.28% 0.11%
Medium STD 0.06% 0.14% 0.36% 0.07%
High STD 0.09% 0.33% 0.36% 0.13%
z1,i

0,0

1,0

0,1

1,1

Av
g 

Ac
cu

ra
cy

 (%
)

54%

66%

78%

90%

C1 C2 C3 C4

Hazardous

C1 C2 C3 C4

Poor

C1 C2 C3 C4

Normal

(c) Skip Hyperconnection Configuration (ResNet)

Failure Setting

1

Config Skip Hyperconnection
C1 None
C2 n2

C3 n1

C4 i
C5 n1, n2

C6 n2, i
C7 n1, i
C8 All

Config Skip Hyperconnection
C1 None
C2 m1

C3 i
C4 All

Config Skip Hyperconnection
C1 None
C2 i
C3 z1

C4 All

Figure 4: Ablation studies for analyzing sensitivity of ResiliNet’s skip hyperconnections in (a) health activity classification ex-
periment, (b) MobileNet experiment, (c) ResNet experiment. The charts show average top-1 accuracy (with error bars showing
standard deviation). The tables to the right of the charts show the present skip hyperconnections in each skip hyperconnection
configuration. (Notation: letters indicate the source physical node of the corresponding skip hyperconnection)

c. Neural Network Robustness. A line of research re-
lated to our study is robust neural networks (Goodfellow,
Shlens, and Szegedy 2015; Szegedy et al. 2014; Cisse
et al. 2017; Bastani et al. 2016; El Mhamdi, Guerraoui, and
Rouault 2017). Robustness in neural networks has gained
considerable attention lately, and is especially important
when the neural networks are to be developed in commercial
products. These studies are primarily focused on adversarial
examples, examples that are only slightly different from cor-
rectly classified examples drawn from the data distribution.
Despite the relation to our study, we are not focusing on the
robustness of neural networks to adversarial examples. We
study resiliency of distributed DNN inference in the pres-
ence of failure of a large group of neural network units. DFG
framework in (Yousefpour et al. 2019) uses skip hypercon-
nections for failure-resiliency of distributed DNN inference.
We showed how ResiliNet differs from DFG in skip hyper-
connections setup, and in its novel use of failout to provide
greater failure-resiliency.

d. Regularization Methods. Some regularization meth-
ods that implicitly increase robustness are dropout (Srivas-
tava et al. 2014), dropConnect (Wan et al. 2013), Drop-
Block (Ghiasi, Lin, and Le 2018), zoneout (Krueger et al.
2016), cutout (DeVries and Taylor 2017), swapout (Singh,
Hoiem, and Forsyth 2016), and stochastic depth (Huang
et al. 2016). Although there are similarities between failout
and these methods in terms of the regularization procedure,
these methods largely differ in spirit from ours. In particu-
lar, although during training, dropout turns off neurons and
dropConnect discards weights, they both enable an ensem-
ble of models for regularization. On the other hand, failout

shuts down an entire physical node in a distributed neu-
ral network to simulate actual failures in the physical net-
work, for providing failure-resiliency. Stochastic depth is
a procedure to train very deep neural networks effectively
and efficiently. The focus of zoneout, DropBlock, swapout,
and cutout is on regularizing recurrent neural networks and
CNNs, while they are not designed for failure-resiliency.

Conclusion
Federated Learning and Split Learning utilize deep learning
models for training or inference without accessing raw data
from clients. We presented ResiliNet, a framework for pro-
viding failure-resiliency of distributed DNN inference that
combines two concepts: skip hyperconnections and failout.
We saw how ResiliNet can improve the failure-resiliency of
distributed MLPs and distributed CNNs. We also observed
experimentally that, the weight of hyperconnections may not
change the performance of distributed DNNs if the hyper-
connections weights are chosen in certain range. We also
observed that the rate of failout should be seen as a hyper-
parameter and be tuned. Finally, we observed that some skip
hyperconnections are more important than others, especially
under more extreme failure scenarios.

Future Work: We view ResiliNet as an important first
step in studying failure-resiliency in distributed DNNs. This
study opens several paths for related research opportunities.
Firstly, it is interesting to study the distributed DNNs that are
both horizontally and vertically distributed. Moreover, find-
ing optimal hyperconnection weights through training (not
through heuristics) may be a future research direction. Fi-
nally, instead of having only skip hyperconnection to bypass



a node, we can have a skip layer, a layer to approximate the
neural components of a failed physical node.

Broader and Ethical Impact
Energy and Resources: ResiliNet may take longer to con-
verge, due to its failout regularization procedure. More-
over, if a distributed DNN is already trained, it needs to be
re-trained with skip hyperconnections and failout; though,
the training can be done offline. Additionally, some hyper-
parameter tuning may be needed during training. These
training settings depend on the availability of large computa-
tional resources that necessitate similarly substantial energy
consumption (Strubell, Ganesh, and McCallum 2019). We
did not prioritize computationally efficient hardware and al-
gorithms in the experiment. Nevertheless, if ResiliNet is de-
ployed and is powered by renewable energy and, the impacts
of the hyperparameter tuning will be offset over a long pe-
riod of time. Regarding bandwidth usage, ResiliNet+ also
increases the use of bandwidth due the activity of the skip
hyperconnections both during training and inference.

Bias: Secondly, as the large scale deployment of powerful
deep learning algorithms becomes easier and more practical,
the number of new applications that will use the infrastruc-
ture will undoubtedly grow. With the new applications, there
is a risk that models are over-fit and biased to a particular
setting. The bias and over-fit may impact people (e.g. when
the model may not be “fair”), especially when more peo-
ple become users of such applications. Although we do not
provide solutions or countermeasures to these issues, we ac-
knowledge that this type of research can implicitly carry a
negative impact in the future regarding the issues described
above. Follow-up work focusing on applications must there-
fore include this type of consideration.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: a system for large-scale machine learn-
ing. In OSDI, volume 16, 265–283.

Banos, O.; Villalonga, C.; Garcia, R.; Saez, A.; Damas, M.;
Holgado-Terriza, J. A.; Lee, S.; Pomares, H.; and Rojas, I.
2015. Design, implementation and validation of a novel
open framework for agile development of mobile health ap-
plications. Biomedical engineering online 14(2).

Bastani, O.; Ioannou, Y.; Lampropoulos, L.; Vytiniotis, D.;
Nori, A.; and Criminisi, A. 2016. Measuring neural net ro-
bustness with constraints. In Neural Information Processing
Systems (NeurIPS), 2613–2621.

Bolt, G. R. 1992. Fault Tolerance in Artificial Neural Net-
works. Ph.D. thesis, University of York.

Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konecny, J.; Mazzocchi, S.;
McMahan, H. B.; et al. 2019. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046 .

Chen, L.; Wang, H.; Charles, Z.; and Papailiopoulos, D.
2018. DRACO: Byzantine-resilient Distributed Training via

Redundant Gradients. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80, 903–
912. PMLR.

Chilimbi, T. M.; Suzue, Y.; Apacible, J.; and Kalyanaraman,
K. 2014. Project Adam: Building an Efficient and Scalable
Deep Learning Training System. In OSDI, volume 14, 571–
582.

Cisse, M.; Bojanowski, P.; Grave, E.; Dauphin, Y.; and
Usunier, N. 2017. Parseval networks: Improving robustness
to adversarial examples. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, 854–
863. JMLR.

Damaskinos, G.; El Mhamdi, E. M.; Guerraoui, R.; Guir-
guis, A. H. A.; and Rouault, S. L. A. 2019. AGGRE-
GATHOR: Byzantine Machine Learning via Robust Gra-
dient Aggregation Conference on Systems and Machine
Learning (SysML).

DeVries, T.; and Taylor, G. W. 2017. Improved Regulariza-
tion of Convolutional Neural Networks with Cutout. arXiv
preprint arXiv:1708.04552 .

Dey, S.; Mondal, J.; and Mukherjee, A. 2019. Offloaded
Execution of Deep Learning Inference at Edge: Challenges
and Insights. In IEEE International Conference on Perva-
sive Computing and Communications Workshops, 855–861.

El Mhamdi, E.; Guerraoui, R.; and Rouault, S. 2017. On the
robustness of a neural network. In 2017 IEEE 36th Sympo-
sium on Reliable Distributed Systems (SRDS), 84–93.

Ghiasi, G.; Lin, T.-Y.; and Le, Q. V. 2018. Dropblock: A reg-
ularization method for convolutional networks. In Advances
in Neural Information Processing Systems, 10727–10737.

Goodfellow, I.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In International
Conference on Learning Representations.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion (CVPR), 770–778.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity map-
pings in deep residual networks. In European conference on
computer vision, 630–645. Springer.

Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.;
Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath,
T. N.; et al. 2012. Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups. IEEE Signal processing magazine 29(6): 82–97.

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 .

Hu, C.; Bao, W.; Wang, D.; and Liu, F. 2019. Dynamic
Adaptive DNN Surgery for Inference Acceleration on the
Edge. In IEEE Conference on Computer Communications
(INFOCOM), 1423–1431.



Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; and Weinberger,
K. Q. 2016. Deep networks with stochastic depth. In Eu-
ropean conference on computer vision, 646–661. Springer.
Jastrzebski, S.; Arpit, D.; Ballas, N.; Verma, V.; Che, T.; and
Bengio, Y. 2018. Residual Connections Encourage Iterative
Inference. In International Conference on Learning Repre-
sentations.
Jeong, H.-J.; Lee, H.-J.; Shin, C. H.; and Moon, S.-M. 2018.
Ionn: Incremental offloading of neural network computa-
tions from mobile devices to edge servers. In Proceedings
of the ACM Symposium on Cloud Computing, 401–411.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977 .
Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.;
Mars, J.; and Tang, L. 2017. Neurosurgeon: Collaborative
intelligence between the cloud and mobile edge. In ACM
SIGARCH Computer Architecture News, volume 45.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Krueger, D.; Maharaj, T.; Kramár, J.; Pezeshki, M.; Ballas,
N.; Ke, N. R.; Goyal, A.; Bengio, Y.; Courville, A.; and Pal,
C. 2016. Zoneout: Regularizing rnns by randomly preserv-
ing hidden activations. arXiv preprint arXiv:1606.01305 .
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
nature 521(7553): 436–444.
Liu, P.; Qi, B.; and Banerjee, S. 2018. EdgeEye: An Edge
Service Framework for Real-time Intelligent Video Analyt-
ics. In Proceedings of the 1st International Workshop on
Edge Systems, Analytics and Networking, 1–6. ACM.
Mehrotra, K.; Mohan, C. K.; Ranka, S.; and Chiu, C.-t. 1994.
Fault tolerance of neural networks. Technical report. Tech.
Rep. RL-TR-94-93. Syracuse University.
Meza, J.; Xu, T.; Veeraraghavan, K.; and Mutlu, O. 2018.
A large scale study of data center network reliability. In
Proceedings of the Internet Measurement Conference 2018,
393–407.
Morshed, A.; Jayaraman, P. P.; Sellis, T.; Georgakopoulos,
D.; Villari, M.; and Ranjan, R. 2017. Deep osmosis: Holistic
distributed deep learning in osmotic computing. IEEE Cloud
Computing 4(6): 22–32.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026–8037.
Phatak, D. S.; and Koren, I. 1995. Complete and partial fault
tolerance of feedforward neural nets. IEEE Transactions on
Neural Networks 6(2): 446–456.
Singh, S.; Hoiem, D.; and Forsyth, D. 2016. Swapout:
Learning an ensemble of deep architectures. In Advances
in neural information processing systems, 28–36.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. JMLR 15: 1929–1958.
Strubell, E.; Ganesh, A.; and McCallum, A. 2019. Energy
and Policy Considerations for Deep Learning in NLP. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 3645–3650.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing prop-
erties of neural networks. In International Conference on
Learning Representations.
Tao, Z.; and Li, Q. 2018. eSGD: Communication Efficient
Distributed Deep Learning on the Edge. In USENIX Work-
shop on Hot Topics in Edge Computing (HotEdge 18).
Teerapittayanon, S.; McDanel, B.; and Kung, H. 2017. Dis-
tributed deep neural networks over the cloud, the edge and
end devices. In Distributed Computing Systems (ICDCS),
2017 IEEE 37th International Conference on, 328–339.
Veit, A.; Wilber, M. J.; and Belongie, S. 2016. Residual net-
works behave like ensembles of relatively shallow networks.
In Advances in neural information processing systems, 550–
558.
Vepakomma, P.; Gupta, O.; Dubey, A.; and Raskar, R. 2019.
Reducing leakage in distributed deep learning for sensitive
health data. ICLR 2019 Workshop on AI for social good .
Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; and Fergus,
R. 2013. Regularization of neural networks using drop-
connect. In International conference on machine learning,
1058–1066.
Wang, H.; Yurochkin, M.; Sun, Y.; Papailiopoulos, D.; and
Khazaeni, Y. 2020. Federated learning with matched aver-
aging. In International Conference on Learning Represen-
tations.
Yousefpour, A.; Devic, S.; Nguyen, B. Q.; Kreidieh, A.;
Liao, A.; Bayen, A. M.; and Jue, J. P. 2019. Guardians of
the Deep Fog: Failure-Resilient DNN Inference from Edge
to Cloud. In Proceedings of the 1st International Workshop
on Challenges in Artificial Intelligence and Machine Learn-
ing for Internet of Things (AIChallengeIoT). ACM.
Zhou, L.; Su, C.; Hu, Z.; Lee, S.; and Seo, H. 2019a.
Lightweight implementations of NIST P-256 and SM2 ECC
on 8-bit resource-constraint embedded device. ACM Trans-
actions on Embedded Computing Systems 18(3): 1–13.
Zhou, L.; Wen, H.; Teodorescu, R.; and Du, D. H. 2019b.
Distributing Deep Neural Networks with Containerized Par-
titions at the Edge. In 2nd {USENIX} Workshop on Hot
Topics in Edge Computing (HotEdge 19).



Supplementary Material
Different configurations of hyperconnections
In this paper, all of the experiments are conducted on verti-
cally distributed DNNs, as they are more common form of
distributed DNNs. Nevertheless, one could imagine a dis-
tributed DNN that is both vertically and horizontally dis-
tributed. For example, when a DNN is used for image-based
defect detection in a factory or automatic recognition of
parts during product assembly, maybe it is distributed ver-
tically and horizontally for dispersed presence (Teerapit-
tayanon, McDanel, and Kung 2017; Yousefpour et al. 2019).
In these cases, the horizontal distribution of DNN helps to
extend the DNN to multiple regions which may are geo-
graphically distributed. As an example, in a case where in-
ference runs across geographically distributed sites, the first
few layers of the distributed DNN can be duplicated (hor-
izontally) and placed on the corresponding physical nodes
in those sites, so that they can perform the forward pass on
the first few layers. One (or more) upstream node can then
combine the immediate activations sent from those physi-
cal nodes and send the combined activation to the upstream
layers of the DNN.

(a) (b) (c)

Figure 5: ResiliNet’s configurations of hyperconnections.
Boxes denote physical nodes and arrows denote hypercon-
nections. The shaded physical node is the “failing node” that
undergoes failure (during inference) or failout (during train-
ing). (a) The failing node is the only child of its parent and
has only one child, (b) The failing node is not the only child
of its parent and has one child, (c) The failing node is the
only child of its parent and has more than one child.

Figure 5 shows ResiliNet’s different configurations of
hyperconnections. Figure 5a shows a vertically distributed
DNN, and fig. 5b and fig. 5c show a distributed DNN that
is both vertically and horizontally distributed. Other dis-
tributed DNN architectures could be constructed based on
the combination of these three basic hyperconnection con-
figurations. In ResiliNet, skip hyperconnections are active
only during failure or failout; Thus, in fig. 5, the symbol
� represents this behavior, which was defined previously in
the paper as follows: in Xi+1 = Yi � Yi−1, when node vi
(shaded in gray in fig. 5a) is alive Xi+1 = Yi, and when
node vi fails, Xi+1 = Yi−1. The symbol ⊕ simply denotes
addition. For instance, in fig. 5b, the input to the top node is
the sum of the output of the node on the left, and the output
of one of the nodes on the right, depending on if the gray

Config Health + Vanilla Health + dFG Health + ResiliNet
Low 55.69 81.06 90.63
Medium 75.63 90.38 95.76
High 86.63 94.47 97.14
No-Failure 97.94 97.99 97.85

 A
vg

 A
cc

ur
ac

y 
(%

)  

49
59
69
79
89
99

(a) Health Experiment
Hazardous Poor Normal NoFailure

Vanilla DFG ResiliNet

Config mobilenet + Vanilla mobilenet + dFG mobilenet + 
ResiliNet

Low 63.29 75.87 78.845
Medium 77.07 83.21 84.9691666666667
High 83.82 86.67 87.3358666666667

60
66
72
78
84
90

(b) MobileNet Experiment
Hazardous Poor Normal NoFailure

1

Figure 6: Average performance under new partition

node is alive or not. Recall that in ResiliNet+, we replace the
symbol � with the symbol ⊕. Thus, in the figure for hyper-
connection configurations of ResiliNet+, we would just have
a single symbol ⊕ on the input to the top node that adds all
the incoming outputs.

Different Structure of distributed DNN
In this subsection, to verify our claims regarding the supe-
rior performance of ResiliNet, we consider different parti-
tions of DNNs onto distributed physical nodes and measure
their performance. For this ablation study, we consider the
distributed MLP in health activity classification experiment,
and the distributed MobileNet. For the MLP in health activ-
ity classification experiment, instead of the 1→1→2→3→4
partition that we considered in the paper, we experiment
with partition 1→2→3→2→3. For MobileNet, instead of
the 1→3→5→5 partition, we experiment with partition
2→2→4→6.

The results of our experiments with these new two parti-
tions are depicted in fig. 6. We can see that, ResiliNet con-
sistently outperforms both DFG and vanilla, and this verify
our claims regarding the superior performance of ResiliNet
in a new distributed DNN partition. We also experimented
with other partitions, and observed the same trends.


