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Solar aircraft design is a multidisciplinary problem in which tradeoffs between aero-
dynamic performance, structural integrity, component performance, cost, and manufac-
turability are complex and non-intuitive. By formulating the problem as a Geometric
Program, design configuration trades and parameter sensitivity studies can be achieved
with far greater speed and reliability than possible using more traditional conceptual and
preliminary aircraft design practices. Using the GP approach, trade studies in design pa-
rameters, configurations and requirements are presented for an optimized solar-electric
aircraft. The results of these trade studies are used to inform design decisions and validate
higher order models.

Nomenclature

AR wing aspect ratio
B number of propeller blades
b wing span
c wing chord
Cf skin friction coefficient
CL lift coefficient
CL0 zero-α lift coefficient
CLh horizontal tail lift coefficient
CLh0

zero-α horizontal tail lift coefficient

Cm moment coefficient
∆W wing section weight
∆y wing section length
e span efficiency factor
E Young’s Modulus
Ebatt energy stored in battery
g gravitational constant
h flight altitude
hbatt battery specific energy
hcap spar cap separation
i motor current
i0 motor zero-load current
I spar-section area moment of inertia
I0 tailboom root section area moment of inertia
KV electric motor speed constant
k tailboom taper index
kpod pod pressure-drag form factor

Lh horizontal tail lift
Lw wing lift
lpod pod length
lh horizontal tail moment arm
Mcg moment about center of mass
q freestream dynamic pressure
N load factor
Ngust gust load factor
Q prop torque
Qmotor motor torque
Rpod pod radius
R propeller radius
Rmotor motor resistance
Re Reynolds number
S reference area (wing planform area)
Spod pod wetted surface area
Sh horizontal tail planform area
SMmin minimum static margin
S shear load
tcap spar cap thickness
tcore spar core thickness
tshear shear web thickness
T torsion load
V true airspeed
Vpod pod volume
Vh horizontal tail volume
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v motor voltage
va prop axial induced velocity
vt prop tangential induced velocity
Wa prop blade-relative axial velocity
Wt prop blade-relative tangential velocity
Wbatt battery weight
wcap spar cap width
Wpod pod weight
Wh horizontal tail weight
wmax maximum deflection limit
WMTO max take-off weight
Wpay payload weight
Wspar wing spar weight
Wwing wing weight
xcg center of gravity
xac aerodynamic center
α angle of attack

Γ prop blade circulation
ε downwash angle
ηcharge battery charging efficiency
ηdischarge battery discharging efficiency
ηprop propulsive efficiency
ηsolar solar cell efficiency
θ wing deflection angle
φ wing twist angle
ρAcfrp area density of carbon fiber
ρcfrp density of carbon fiber
ρfoam density of foam
σcfrp maximum carbon fiber stress
τt wing thickness to chord ratio
τw cap spar width to chord ratio
Ω propeller rotation rate
Ωmotor motor rotation rate

I. Introduction

Solar-electric, high-altitude, long-endurance (HALE) aircraft are being investigated and developed to
serve as effective communication-relay platforms [1]. The basic concept is that during the day the aircraft
gathers solar energy, part of which is used for propulsion and the rest is stored in batteries, and the battery
energy is then used for propulsion during the night. A major difficulty with such aircraft is that they
require extreme aerodynamic and propulsive efficiencies, and very high solar cell efficiencies and battery
specific energies for the design to achieve energy closure. Another source of difficulty is the multifaceted
and non-intuitive interactions between aerodynamics, structural weight, solar energy collection, and flight-
environment factors [2]. This complexity makes exhaustive evaluation of Solar HALE configuration options
difficult or impractical if traditional ad-hoc design space investigation procedures are used.

An established approach to complex aircraft design problems is Multidisciplinary Design Optimization
(MDO) [3]. MDO methods typically consist of a collection of discipline-specific modules (aerodynamics,
structures, propulsion, etc.) each of which has a specific set of inputs and outputs, with the inputs provided
by the design problem or from the outputs of another module. Hence, the input/output sequence of all
the modules must be set during problem formulation. However, in a tightly-coupled design problem the
distinction between inputs and outputs is often not clear. For example, should the spar-stress equations be
used to size the spar material gauges and thus the spar weight for a given airload and wingspan, or should
they be used to size the wingspan for a given airload and spar weight budget? An MDO method typically
resolves this ambiguity by iteration so that some combination of spar weight and span is the final result. But
if the a priori chosen input/output sequence is nearly in the “wrong direction” (i.e. the span is imposed on
the spar-stress model but in reality the model strongly dictates the span), then the MDO design iteration
convergence will be very slow or may even fail.

An alternative to traditional MDO, particularly in the conceptual design phase, is the geometric pro-
gramming (GP) modeling approach. This is described by Hoburg and Abbeel [4] for general aircraft design,
and more recently by Burton and Hoburg [5] for the Solar HALE problem. In summary, a GP method is a
collection of constraint equations expressed in terms of design variables and design parameters, but unlike
MDO it does not require the definition of equation inputs and outputs, nor does it require a specific equation
application sequence. Hence it is more natural to apply in complex and tightly-coupled design problems such
as Solar HALE, where such variable and equation-application hierarchies are not obvious at the outset.

A soft barrier to the use of GP is that it typically requires higher fidelity models to be approximated as
convex constraints [4]. However, this paper will show that for the Solar HALE problem this barrier is not a
major impediment, and that even fairly complex models can be formulated in the necessary GP form.

One very strong benefit of the GP approach is its speed and reliability. Because GPs can solve for
thousands of variables in seconds [6], a very large number of potential designs and configurations can be
examined and evaluated. In addition to giving the optimal solution, GP provides post-optimum sensitivities
to every design parameter as a by-product, with negligible additional cost. This allows for immediate
identification of driving design parameters, which informs design decisions on further development and
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refinement. More exhaustive conceptual design then allows definition of a relatively robust design as the
starting point for the higher-fidelity methods used in subsequent preliminary and detailed design procedures.
This paper will illustrate these capabilities for the Solar HALE design problem. The focus will be on modeling
refinements from the work of Burton and Hoburg [5], to demonstrate that higher fidelity models can be
written in a GP form and used to capture important physical effects and corresponding design tradeoffs.
The specific model refinements include spanwise-distributed battery pods, effects of tailboom flexibility on
pitch stability, and a coupled propeller+motor performance and weight model.

II. Solar HALE Baseline Design

The basic assumptions of the GP model of Burton and Hoburg are summarized as follows:

• Configuration: The wing is assumed to have a constant taper, and a conventional aft tail is used. The
batteries are placed inside the wing to achieve span loading. Solar panels are placed on the wing only.

• Operations: The aircraft is assumed to fly above 50, 000ft to avoid cloud coverage and to reach the
local minimum wind speeds that occur around 60, 000ft [5]. The model trades air density with wind
speed to achieve the optimum altitude. Solar flux is calculated as a function of latitude and day of the
year and assumes the wing is flat.

• Structural: The aircraft is subjected to two load cases: a standard g-loading and a spanwise 1–cosine
distribution gust load. The wing spar is assumed to take all of the bending loads and is a cap spar with
a shear/torsion wrap. The tailboom is a tube with a linearly-tapered wall thickness. All materials are
carbon fiber and foam, with non-structural surface skins.

The GP model of Burton and Hoburg captures trade offs between latitude, altitude, required battery size,
solar panels and overall aircraft size. The higher fidelity changes to be presented here include:

• Wing torsional divergence analysis to capture the tradeoff between wing aspect ratio and the weight
of the spar torsion material.

• Battery pods along the wing to capture the trade off between outboard bending relief on the wings
and the added weight and drag of the pods.

• Tailboom flexibility resulting in decreased horizontal tail effectiveness, to capture the tradeoff between
tailboom weight and horizontal tail weight and drag.

• Refined solar flux model to capture trade off between season requirement and aircraft size.

• Expanded airfoil data fitting to capture the airfoil thickness-related trade offs between structural merit
and profile drag.

• Motor and propeller matching to capture the trade off between motor weight and propeller efficiency
and weight for multiple operating scenarios.

For a given set of requirements (Table 1) and baseline assumptions (Table 2), this comprehensive GP
model is solved for 702 variables in 0.187 seconds on a desktop computer. One benefit of GP models is
that any design parameter can be changed and the model resolved in a fraction of a second. Table 2 shows
a partial list of design parameters that can be changed, with each change resulting in a new re-optimized
aircraft. These design parameter values are generally representative of current technology, and were chosen
as a suitable baseline for the refined models and parameter studies to be presented.

Table 1: Mission Requirements

Requirement Value

Station Keeping 90% winds

Season all seasons

Latitude ±20◦
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Table 2: Typical design parameter values and resulting design variables

Design Parameter Specified Value

Wpay 10lb

ηcharge,discharge 0.98

hbatt 350Whr/kg

ηsolar 0.22

Nmax 2

Nsafety 1.5

e 0.95

Design Variable Optimum Value

WMTO 436 lbf

Wbatt 244 lbf

Wwing 67.9 lbf

AR 38.1

b 123 ft

V 22.9 m/s

CL 1.3

III. Sensitivity Analysis

In geometric programming the sensitivity to a parameter is defined as the percentage change in the
objective function for a corresponding one percent change in that parameter value. For the present example,
the sensitivity to battery specific energy hbatt is −4.74, so that if the battery specific energy were increased
by 1% this would result in a 4.74% decrease in the aircraft total weight. Sensitivities are local approximations
in that they will change along a parameter sweep, but they are nevertheless useful for understanding relative
parameter importance. Figure 1 shows the largest-magnitude sensitivities for the design parameters in
Table 2.
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Figure 1: Parameters with highest sensitivity have largest effect on objective function.

These sensitivities can help identify the most important aspects of a design. In this Solar HALE example,
the sensitivity of the gross weight to the payload weight is less than unity, which is most likely due to the
Reynolds number benefit of larger aircraft size. In contrast, the sensitivities to the propeller efficiency,
battery specific energy and solar cell efficiency are all far above unity. This suggests that higher fidelity
models should be used, if possible, to better estimate the performance of these components to meet the
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design requirements.
Another useful application for sensitivities is to evaluate return on investment costs of improving technol-

ogy. Batteries and solar cells both have high costs, but it is not immediately obvious which one, if improved,
will have greater impact on reduction of aircraft size and weight. If it is assumed that the cost of improving
solar cells and the cost of improving batteries for a given percentage are the same, then by using the sensi-
tivities it becomes clear that investing in battery technology will have a greater impact on the design than
by investing in solar cells.

IV. Configuration Trade Studies

A. Spar Configuration and Twist Load Calculation

The model of Burton and Hoburg assumes a simple foam-filled box spar consisting of sparcaps and a
shear wrap. The foam is needed to stabilize the sparcaps against buckling, but adds significant weight. This
section presents an alternative hollow box spar, shown in Figure 2, in which each sparcap is a thin sandwich
to provide the cap with its own bending stiffness for buckling resistance. A separate torsion analysis will
also be presented to effectively size the shear wrap.

Wing Skin Spar Cap

Foam Core

Shear Web

Figure 2: Cross sectional view of a box spar.

A characteristic feature of GP modeling is that model equalities become replaced with inequality con-
straints, so that the problem is put into the form required by the GP solver. For example, the spar’s local
bending inertia is defined by the constraint

Ii ≤ wcapitcapih
2
capi

(1)

and the solver will then drive the Ii variable onto the constraint boundary since that is most favorable, and
thus we recover the equality. Similarly, the defining constraint for the weight of a spanwise ∆yi spar section
is

∆Wi ≥ g
[
ρcfrp

(
4wcapitcapi + 2tsheari(hcapi+4tcapi + 2tcorei)

)
+ 2ρfoamwcapitcorei

]
∆yi (2)

Additional geometric constraints are imposed on the width and thickness for both the cap spar and box spar
configurations. For example, the overall spar height cannot exceed the airfoil thickness, and the spar width
cannot exceed a specified fraction τw of the chord.

hcapi + 4tcapi + 2tcore ≤ ci τt (3)

wcapi ≤ ci τw (4)

Burton and Hoburg consider two loading cases in their model: a standard g-loading and a spanwise
1–cosine gust load. The spar must meet both strength and stiffness constraints for both load cases. The
sparcap stress must be below the max allowable stress for unidirectional carbon fiber, assumed here to be
σcfrp = 1500MPa [7]. The tip deflection at max load is constrained to be less than 20% of the half span,
wmax/(b/2) = 0.2, with this value picked here somewhat arbitrarily. In general, only one of these constraints
will be active in the optimum solution returned by the GP solver.

An additional constraint is added to limit the maximum twist deflection of the wing to some value (here
assumed 15◦ at the tip), to prevent aeroelastic torsional divergence at the never-exceed dynamic pressure
qNE . This in effect sizes the spar’s polar moment of inertia J , related to the shear wrap geometry by the
constraint

Ji ≤
ti wcapi tsheari

3
(ti + wi). (5)
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The spanwise torsion loads Ti and twist angles φi, defined positive nose down, are defined by the beam-torsion
model constraints

Ti+1 ≥ Ti − cm qNE

c2i+1 + c2i
2

∆y (6)

φi+1 ≥ φi +
1

2

(
Ti+1

GJi+1
+
Ti
GJi

)
∆y (7)

where qNE is the never exceed dynamic pressure and cm is the airfoil pitching moment. The aerodynamic
torsion load term in (6) does not include the contribution of the lift, but at qNE this is usually relatively
small compared to the cm term. Furthermore, for the usual negative cm the lift would also reduce the torsion
load so omitting it is a conservative approximation.

This model captures the tradeoff between wing aspect ratio and the weight of the spar torsion wrap
thickness and weight. Table 3 shows that the twist constraint drives down the optimum aspect ratio as
expected, and also results in a substantial design penalty in the form of increased gross weight and span.

Table 3: Effect of Twist Constraint

Variable Baseline Value With Twist Constraint

WMTO 436 lbf 525 lbf

Wwing 67.9 lbf 96.7 lbf

Wspar 39.7 lbf 63.7 lbf

AR 38.1 36

b 123 ft 129 ft

B. Battery Placement Trade Study

For a solar aircraft, placing the batteries inside the wings achieves a span-loaded weight distribution and
allows for overall lower bending moments on the aircraft. Additionally, this configuration will have less drag
and weight than if the batteries were placed in pods along the wing. However, for ease of manufacturing and
battery swapping, it is desirable to place the batteries in pods along the span of the wing. A trade study
between number of pods and overall aircraft weight is accomplished by modeling the pods as ellipsoids and
accounting for the bending relief of those pods if placed along the span.

The volume of an ellipsoid pod is constrained by the volume of the battery

Vpod ≥
Ebatt

Vbatt
(8)

where Ebatt is the required battery energy to operate through the duration of the night on the winter’s
solstice and Vbatt = 800Whr/l is the battery energy density. The dimensions of the pod are constrained by

Vpod ≤
4

3
π
lpod

2
R2

pod (9)

where lpod is the length of the pod and Rpod is the radius. Using the length and radius, the surface area can
be calculated using Thomsen’s approximation,[8]

3

(
Spod

π

)1.6075
≥ 2 (2lpodRpod)1.6075 + (4R2

pod)1.6075. (10)

The weight of the pod is defined by the constraint

Wpod ≥ Spod ρAcfrp
g (11)

where ρAcfrp
= 0.243g/cm2, or the area density of about 5 plies of carbon fiber.[9] The surface area is also

used to calculate the drag assuming a skin friction based drag model,

Dpod ≥ Cf kpod
1
2ρV

2Spod (12)

Cf/mfac ≥
0.455

Re0.3
(13)
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where mfac = 1.1 is a margin factor to account for interference drag with the nearby wing, and where kpod
is the pressure-drag form factor approximated by[10]

kpod ≥ 1 +
60

(lpod/2Rpod)3
+

(lpod/2Rpod)

400
. (14)

For the zero-pod case (batteries placed inside the wing), the moment and bending calculations are
implemented in the GP model exactly as described by Burton and Hoburg. If there are pods, the distributed
shear load is offset by the pod weight at the location of the pod as shown in Figure 3. Specifically, at each
spanwise location i which has a pod, the shear-load equation of the Burton and Hoburg model is modified
here to

Si+1 ≥ Si +
NWcent/2

S

ci+1 + ci
2

∆y − NW ′pod (15)

where the new NW ′pod term is the concentrated total pod-weight (pod+battery) load. This produces the
shear discontinuities shown in Figure 3.

NW ′
pod

S(y)

ypod ypod

M(y)

NW ′
pod

Figure 3: Shear and bending moment loads with outboard pods.

With these pod loads included in the wing beam model, the optimum solution captures the trade off
between the bending relief from the pod weight loads and the added drag and weight of the pods. This
analysis can also be used to quantify the benefit from having no pods vs one or more pods. Figure 4 shows
the minimized takeoff weight for varying number of pods and with no pods. The overall aircraft weight is
not very sensitive to the number of pods, so their use is attractive for the battery modularity and isolation
they offer.

V. Resizing for Different Requirements

Because solar flux and wind speed vary with both season and latitude, it is not clear how aircraft size
and weight would vary for different seasonal and latitude requirements. For the seasonal requirement, time
is centered on the summer solstice such that 6-month availability corresponds to availability between March
21st and September 21st. Again using the solar GP model described by Burton and Hoburg, the model was
solved 13 times for different requirements in a total of 2.67 seconds. Figure 5 shows the results of this study.
Returned solutions for 10 and 12 month availability at 28◦ latitude were infeasible and therefore not shown.
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Figure 4: Maximum take off weight vs number of pods along the span.
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Figure 5: Resizing study for various latitude and seasonal requirements.

This trade study shows that different latitude and seasonal requirements can have drastic effects on
aircraft size. Using these results as a baseline, a family of solar aircraft of various sizes and capabilities could
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be estimated to fulfill operational requirements.

VI. Tailboom Flexibility

Burton and Hoburg size the horizontal tail based on a specified tail volume coefficient [5]. However, for
highly flexible aircraft, the horizontal tail effectiveness is decreased by the flexibility of the tailboom which
must be countered by a greater horizontal tail area. The following model accounts for the tail effectiveness
loss, and thus allows optimization of the tradeoff between the tailboom weight and the drag and weight of
the horizontal tail.

A tube tailboom of diameter d has a total mass, root bending inertia, and bending stiffness distribution

m = πρcfrp t0 d lh
(
1− 1

2k
)

(16)

I0 = π t0 d
3/8 (17)

EI(x) = EI0 (1−kx/lh) (18)

where the index k = 0 corresponds to a uniform wall thickness and stiffness, and k = 1 corresponds to linear
dropoffs to zero. Intermediate k values correspond to partial linear dropoffs. When the tailboom is loaded
at the endpoint x = lh by the horizontal tail lift Lh, the end deflection angle θh at the tail then follows from
standard beam analysis.

θh =
Lh l

2
h

EI0

1+k

2
=

q Shl
2
h

EI0

1+k

2
CLh

(19)

The aircraft’s overall pitching moment and corresponding coefficient, about the center of gravity, are

Mcg = Mw + (xcg − xac)Lw − lhLh (20)

Mcg

qSc
≡ Cm = Cmw

+
xcg − xac

c
CLw

− Vh CLh
(21)

where we’ve assumed that the tailboom’s effective root location is at the wing’s aerodynamic center xac, and
that the tail’s pitching moment about its own aerodynamic center is negligible.

The moment and lift coefficients are approximated by

Cmw = constant (22)

CL = CL0 +mw α (23)

CLh
= CLh0

+ mh

[(
1− dε

dα

)
α− θh

]
(24)

mw =
2π

1 + 2/AR
(25)

mh =
2π

1 + 2/ARh
(26)

where in (24) both the wing downwash angle ε and the tailboom deflection angle θh both influence the tail
lift. A bound-vortex representation for the high aspect ratio wing gives the following estimate for the wing
downwash derivative.

dε

dα
=

mw

4π

c

lh
(27)

Combining equations (24) and (19) gives the direct relation between the tail lift coefficient and aircraft
angle of attack,

CLh
=

mh

F

(
1− dε

dα

)
α (28)

F = 1 + mh
q Sh l

2
h

EI0

(
1− k

2

)
(29)
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where F is a tailboom flexibility factor which decreases the tail’s stabilizing power. The total pitching
moment coefficient (21) and its derivative now become

Cm = Cmw
+

xcg − xac
c

(CL0
+mwα)

− Vh
F
mh

(
1− dε

dα

)
α (30)

dCm

dα
=

xcg − xac
c

mw −
Vh
F
mh

(
1− dε

dα

)
. (31)

Dividing this by dCLw
/dα = mh gives the static margin

− dCm/dα

dCLw
/dα

= SM =
Vh
F

mh

mw

(
1− dε

dα

)
− xcg − xac

c
. (32)

The minimum required static margin is defined at the never-exceed dynamic pressure qNE where the tailboom
flexibility is most adverse, and when the c.g. is at its aft-most position.

SMmin =
Vh
FNE

mh

mw

(
1− dε

dα

)
− (xcg)aft − xac

c
(33)

Dividing equation (21) by CLw
gives a requirement on the minimum (most negative) tail lift coefficient

(CLh
)min required to achieve the pitch trim condition Cm = 0.

0 =
Cmw

CLw

+
(xcg)fwd − xac

c
− Vh

(CLh
)min

CLw

(34)

Adding (33) and (34) results in the horizontal tail sizing equation

SMmin +
∆xcg
c
− Cmw

CLmax

≤ Vh
FNE

mh

mw

(
1− dε

dα

)
+ Vh

−(CLh
)min

CLmax

. (35)

where ∆xcg = (xcg)aft − (xcg)fwd is the maximum allowable c.g. travel distance. This set of equations is GP
compatible with the exception of Equations 25 and 35, which require signomial programming (SP) to solve.
SP models solve a difference of convex programs as described by Boyd [6].

Table 4 shows relevant design variable values with and without the tailboom flexibility model. As
expected, with the presence of tailboom flex the optimum (minimum weight) aircraft is heavier and has a
larger horizontal tail surface area. The presence of tailboom flex also favors increasing the tailboom length,
which is not obvious a priori.

Table 4: Effect of tail boom flexibility on design variables

Variable Baseline Value With Tail Flex

WMTOW 436 lbf 418 lbf

Vh 0.45 0.132

lh 25.4 ft 22.2 ft

Sh 23.3 ft2 7.44 ft2

Wh 2.38 lbf 0.737 lbf

VII. Airfoil Thickness Trade Study

There is a trade off between structural efficiency and airfoil profile drag that is driven by the thickness
of the airfoil. Increased thickness improves the y moment of inertia of the wing spar which improves wing
stiffness and bending. However, increased thickness generally means higher profile drag. To capture this
tradeoff in the GP model, a family of airfoils is evaluated for different Reynolds numbers and angles of attack
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Figure 6: Airfoil family used to calculate fitted GP profile-drag function

in XFOIL. This data is fit to a posynomial function and incorporated into the GP model. The family of
airfoils that is considered is scaled from the DAI1336 airfoil used for the Daedalus human-powered aircraft,
and is shown in Figure 6.

The fitted function is outputs a profile drag coefficient as a function of thickness to chord ratio, Reynolds
number, and lift coefficient

cdp ≥ f(τ, CL, Re) (36)

When incorporated into the overall model, each input is optimized for best performance. A portion of this
fitted function is shown in Figure 7

As a practical matter the maximum thickness of the airfoil is constrained to be no greater than 0.144
to prevent poor stall characteristics at higher thicknesses. The maximum allowable thickness is an input
parameter to the model and is varied to capture the sensitivity to that parameter. The resulting plot of
maximum allowable thickness to aircraft weight is shown in Figure 8

VIII. Propeller/Motor Sizing

A major tradeoff in a Solar HALE aircraft is the tradeoff between propeller efficiency, which favors a large
prop diameter and low RPM, and motor weight which favors a small prop diameter and high RPM. Tradi-
tionally this tradeoff is performed by designing a sequence of prop/motor combinations for a specified thrust
and varying propeller diameter, and then estimating the aircraft performance resulting from the efficiency
and system weight of each combination. A considerable difficulty here is that each prop/motor combination
will result in a different aircraft after re-optimization, so that the specified thrust is not completely known a
priori. Here we will show that such design coupling between the prop, the motor, and the rest of the aircraft
can be captured in a GP model, so that the entire system can be optimized simultaneously.

A. Blade-Element Theory

The present formulation is that of QPROP [11], which is primarily the blade-element/vortex model of
Betz [12] and Glauert [13], with a few modifications to improve accuracy at high disk loadings. The main
development here is the re-casting of the QPROP model into a GP-compatible form.
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Figure 8: Maximum allowable thickness vs aircraft weight

Figure 9 shows the velocity triangle at some blade radius r. The total blade-relative speed W is formed
from the total axial and tangential components Wa and Wt.

Wa ≥ V + va (37)

Ωr ≥ Wt + vt (38)

W =
√
W 2

t +W 2
a (39)

The total relative velocity W is constrained to be an equality in the solar aircraft model. This requires the
use of the signomial programming extension of geometric programming, which is discussed in more detail in
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Figure 9: Velocities relative to propeller blade section at radial location r

[14]. The perturbation velocities va and vt at the blade are associated with the propeller’s trailing vorticity.
The tangential component is related to the blade circulation at that radius by

vt =
BΓ

4πr

1

F̄
(40)

where F̄ is a modified Prandtl tip correction factor which differs from the standard factor only over the inner
radii.

F̄ =
2

π
arccos(e−f )

√
1 + (4λwR/πBr)2 (41)

1 ≥ 2λw
B

f +
r

R
(42)

This formulation for F̄ also requires signomial programming. A necessary modification here is the replace-
ment of the arccos(e−f ) term in (41) with the GP-compatible approximation

arccos(e−f ) ≈ 1.25 f0.4587 (43)

The accuracy of this approximation is discussed in Appendix A. The axial perturbation velocity is obtained
from the other velocities by the assumption that it is orthogonal to the total velocity W .

va = vt
Wt

Wa
(44)

The kinematic relations above incorporate the local wake advance ratio defined by

λw =
r

R

Wa

Wt
(45)

which differs from the standard advance ratio λ ≡ V/ΩR by the inclusion of the propeller’s own perturbation
velocities. This modification improves accuracy for high disk loadings, and in particular it makes the model
consistent with actual disk theory in the limit of infinite blades and zero advance ratio, B →∞ and λ→ 0.

The model is closed with the local Kutta-Joukowsky lift/circulation relation,

Γ =
1

2
Wccl (46)

and the blade airfoil lift and profile drag characteristics.

cl ≤ min ( clαα+ cl0 , cl,max ) (47)

cd = cd(cl, Re) (48)

Re =
ρWc

µ
(49)
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The cd(cl, Re) function here is a posynomial fit to data generated by XFOIL. The accuracy of this fit is also
discussed in Appendix A. The local angle of attack is obtained from the local velocity triangle,

α = β − arctan(Wa/Wt) (50)

where β is the local blade angle.
The incremental thrust and torque of a radial blade interval ∆r are given by

∆T ≤ ρBΓ (Wt − εWa) ∆r (51)

∆Q ≥ ρBΓ (Wa + εWt) r ∆r (52)

ε =
cd
cl

(53)

and the total thrust and torque defining constraints are obtained by summing over all the radial intervals.

T ≤
N∑
i=1

∆Ti , Q ≥
N∑
i=1

∆Qi (54)

The overall propeller efficiency is then

η̄ =
V T

ΩQ
=

V T

P
(55)

where P = ΩQ is the shaft power. We also define the local total efficiency

η =
V ∆T

Ω ∆Q
=

V

Ωr

Wt − εWa

Wa + εWt
(56)

which can be decomposed into induced and viscous (profile) efficiencies,

η = η i ηv (57)

η i =
1− vt/Ωr
1 + va/V

(58)

ηv =
1− εWa/Wt

1 + εWt/Wa
(59)

which are used for optimum design, and are also useful for performance diagnosis.

B. Propeller analysis problem

As written, the relations above are suitable for the analysis problem where the blade geometry c(r), β(r),
typically defined at n discrete locations ri, is specified. In addition specifying the flight speed V , and also
one of Ω, T , or P , allows the blade circulations Γi to be computed and all other aerodynamic quantities then
follow.

C. Propeller design problem

The design problem is also defined entirely by the above relations, but the inputs and outputs differ
slightly. Specifically, in the design problem we determine the radial circulations Γi implicitly from the
Minimum Induced Loss (MIL) condition,

1− vti/Ωri = η̄ (1 + vai/V ) ; i = 1 . . . n (60)

T = Tspec (61)

where (60) requires that the local induced efficiency is constant everywhere and equal to one radially-constant
value η̄. This is analogous to specifying an elliptic loading shape on a wing. Setting ε to zero in (56) gives
a GP-compatible expression for induced efficiency.

η̄ =
V

Ωr

Wt

Wa
(62)

The MIL condition can then be met by adding the constraint

η̄i = η̄i−1 ; i = 2 . . . n (63)

which will give the correct cl(r), c(r), and β(r) distributions.
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D. Propeller weight model

The propeller weight is assumed to scale linearly with thrust and area.

Wprop = Tmax(R/RW )2 (64)

The weight-reference radius RW = 50ft is calibrated based on the 11ft diameter Daedalus human-powered
aircraft propeller, which weighed 2lbm and was stressed for 40lbf of maximum static thrust. Any other
posynomial weight model could be used here.

E. Motor performance model

The motor performance model is also based on the QPROP formulation [15], with its equivalent circuit
is shown in Figure 10. It assumes a constant motor resistance Rmotor, a zero-load current i0, and a motor
speed constant KV which is also used as the torque constant. The motor torque is assumed to be a function

+

−

i

+

−

K

ΩQ

υ

R

i

motor

motor

V/motorΩ

motor

Figure 10: DC motor equivalent circuit

of the the current and speed constant, with some losses for motor friction.

Qmotor ≥ (i− i0)/KV (65)

The equivalent circuit gives the defining constraint for the motor terminal voltage v, in terms of the rotation
rate Ωmotor and internal resistive voltage drop,

v ≥ Ωmotor

KV
+ iRmotor (66)

which then gives the motor electrical and shaft powers, and the corresponding efficiency.

Pelec = vi (67)

Pmotor = ΩmotorQmotor (68)

ηmotor =
Pmotor

Pelec
(69)

F. Motor weight and parameter models

The design variables chosen to parameterize the motor are the motor weight Wmotor, and the speed
constant KV . The motor parameters are W1, which is a measure of motor power/weight technology, and
i01 , which is a measure of motor windage and bearing losses. The motor parameters are then obtained by
the relations

Rmotor =
W1

WmotorK2
V

(70)

i0 = i01KV (71)

which closely capture the characteristics across families of similar motors. The parameter values assumed
here are W1 = 312kg W/rpm2, and i01 = 0.01W/rpm, obtained from the best-available large RC model
motors. As for the prop weight model, any other posynomial models (with more parameters) could be used
in lieu of the simple definitions above.
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G. Motor-Propeller Integration

Without a gearbox the propeller and motor torque and speed are equal,

Q = Qmotor , Ω = Ωmotor (72)

which strongly links the propeller and motor performance models. This allows the simultaneous design of a
propeller and motor to meet some thrust requirement Tspec with no intermediate assumptions on available
torque, rotation rate, and propeller geometry. The optimal balance between efficiency and weight is thus
determined in the context of the entire aircraft system. This addresses the shortcoming in current propeller
design methods discussed at the beginning of this section. Only a small number of fixed parameters are
required; those related to motor internal losses, the blade airfoil sections, and number of propeller blades
used.

IX. Vehicle Requirements Analysis

By incorporating the higher fidelity models described herein, the GP model can used to better estimate
vehicle weight for different requirements for given technology assumptions. Figure 11 shows how vehicle
weight trades off for different latitude requirements. Figure 12 shows contours of latitude for different

±20 ±25 ±30 ±35 ±40
Latitude Requirement [deg]

0

100

200

300

400

M
a
x
 T

a
ke

 O
ff

 W
e
ig

h
t 

[l
b
f]

80%

90%

95%

Figure 11: Vehicle weight vs latitude requirement

battery and solar technology assumptions. Figure 13 shows vehicle weight as a function of the number
of propulsors and motor-weight technology parameter W1. This shows it is most efficient to have a small
number of larger propellers; the propeller efficiency decreases with propeller count. Finally, Figure 14 shows
vehicle feasibility at different latitude for various payload requirements.

X. Conclusions

This paper described the use of GP to perform design parameter, configuration, and mission requirement
trade studies for solar-electric powered aircraft. The inherent computational speed and robustness of existing
GP solvers allows these trade studies to be performed very rapidly, which allows more extensive exploration
of the design parameter space than would be possible with more conventional MDO methods. Furthermore,
this paper demonstrates that models with higher fidelity than used in typical conceptual design procedures
can be implemented with the GP framework, allowing development of relatively robust conceptual designs
in a timely manner. The results are shown to capture important trends to guide conceptual and preliminary
solar aircraft design. Specifically, it is observed that the box spars can significantly reduce aircraft weight.
It is also shown through design sensitivities that improving battery technology will have a larger impact on
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Figure 13: Vehicle weight vs number of propulsors and motor-weight technology parameter

aircraft performance that improving solar cell efficiency. A resizing study shows that much smaller solar
aircraft can be designed by relaxing latitude and seasonal requirements.

A. Geometric Programming Approximations

Periodic or non-convex functions can generally be fit with a suitable GP-compatible approximation over
the relevant range of interest using the method outlined in [16]. In this paper two such approximations are
used. The first is an approximation to the function arccos(e−x) over the range 0 < x ≤ 3, which is typical
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for values in this model. The comparison of the fit with the exact values is shown in Figure 15. The RMS
error for this fit is 0.067.
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Figure 15: GP-compatible fit (dashed line) vs exact value (solid line) of arccos(e−x)

The second is a fit of cd(cl, Re) for the DAE51 propeller airfoil, used in the coupled propeller/motor
model. Figure 16 shows the comparison of this fit (solid lines) with XFOIL results (open circles) across a
relevant range of cl and Re. This fit agrees reasonably well with the data, especially at lower cl.
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