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Abstract. Product-adoption scenarios are often theoretically modeled
as “influence-maximization” (IM) problems, where people influence one
another to adopt and the goal is to find a limited set of people to “seed”
so as to maximize long-term adoption. In many IM models, if there is
no budgetary limit on seeding, the optimal approach involves seeding
everybody immediately. Here, we argue that this approach can lead to
suboptimal outcomes for “social products” that allow people to commu-
nicate with one another. We simulate a simplified model of social-product
usage where people begin using the product at low rates and then ramp
their usage up or down depending upon whether they are satisfied with
their experiences. We show that overambitious seeding can result in peo-
ple adopting in suboptimal contexts, where their friends are not active
often enough to produce satisfying experiences. We demonstrate that
gradual seeding strategies can do substantially better in these regimes.
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1 Introduction

How should product developers optimally introduce a new product to the people
who they hope will adopt it? These scenarios are commonly theoretically mod-
eled as “influence maximization” (IM) problems [9]. In IM, it is assumed that
people can influence one another’s decisions to purchase or adopt a product.
Meanwhile, there is a budgetary constraint on the number of people to whom
the developers can directly give or market the product. Then, the problem is to
identify the set of people to whom the developers should introduce the product
so as to maximize the expected long-term adoption. In most IM models, if there
is no budgetary constraint, then the optimal approach is to seed everybody im-
mediately [12]. In this paper, we argue that this approach can lead to suboptimal
long-term usage in the case of products that enable people to communicate with
their friends (i.e., “social products”).

Prior research has identified several reasons why overambitious seeding can be
detrimental, including direct costs of product rejection [1], downstream negative
word-of-mouth [10], and aversion to products that are too popular [2]. These are
all important considerations, but we argue that there can be a distinct negative
mechanism at play, specifically for social products.
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To identify this mechanism, we study a simplified model of social-product
usage that takes into account the experiences of people who use the product, not
just their binary adoption decisions. Our model encodes some plausible aspects
of user experience in social products:

1. Need for social support: a person’s satisfaction with a product experience
depends upon how many of their friends are using it.

2. Rate-of-usage adjustments: When people gain access to the product, they
begin using it at a low rate p0 and then gradually ramp their rate of usage up
or down depending upon whether they are satisfied with their experiences.

3. Possibility of permanent churn: if people have enough unsatisfying prod-
uct experiences, they churn permanently and are unwilling to try the product
again.

We simulate our model on synthetic and real-world networks and ask the follow-
ing question: is long-term activity maximized by giving everyone access imme-
diately, or is it preferable to seed only a subpopulation and then expand access
out gradually?

Summary of Results We show that there is a key tradeoff at play in our
model:

1. There is a cost to giving someone access early on, because that person’s
friends are (by assumption) using the product at low rates, so the risk of
unsatisfying experiences is relatively high.

2. There is also a cost to not giving someone access early on: others miss out on
that person’s social support, and their experiences may therefore be worse.

Suppose we can identify a subpopulation of people who can sustain long-term
activity of the product on their own, without needing the social support of
their friends in other parts of the social network. Then, it may be advantageous
to introduce the product to just that set of people at time t = 0 and then
gradually expand access. In this way, we can avoid some of the costs of item 1
above, because we can expand access in conditions that are conducive to good
experiences. In the case of real-world social networks, we show that the tradeoff
generally favors this approach.

These findings cast the well-studied IM problem in a new light, by high-
lighting how thinking about people’s experiences after the initial adoption can
fundamentally change our perspective on the optimal deployment approach.

2 The Model, the Networks, and the Simulations

Model Definition We study a model of social-product usage on an undirected
social network. Each node v represents a person who may use or not use the
product in a given time step t. Each edge e represents a friendship tie between
two people.

Our model proceeds in a sequence of time steps, beginning with t = 0. At
any given time t, a person v can either have access to the product or not. If
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the person has access, then the person uses the product in that time step with
probability pv(t) and abstains otherwise. At the time tv when a person v initially
gets access, pv(tv) is initialized to a value p0.

We associate a threshold sv with each person. If v uses the product in time
step t, then sv is the number of friends of v who also need to use the product at
time t for v to be satisfied. Then, v adjusts his or her probability of subsequent
usage up or down as follows:

pv(t+ 1) = pv(t) + δ if > sv friends use in time step t

= pv(t) if sv friends use in time step t

= pv(t)− δ if < sv friends use in time step t

This encodes the “need for social support” and “rate-of-usage adjustment” as-
sumptions. We allow pv(t) to grow to 1 or drop to 0. The latter case encodes
the “possibility of permanent churn” assumption, because the person in question
will no longer have any opportunities to have positive experiences. On the other
hand, pv(t) = 1 is not necessarily a permanent state.

In our simulations, for simplicity, we consider situations where the threshold
sv can take on two values, 1 or 2. We refer to people who people who need
only sv = 1 active friend to be satisfied as “enthusiasts.” Meanwhile, we refer to
people who require sv = 2 active friends as “skeptics.”

We typically simulate our model on networks that share the modular struc-
ture of many empirical social networks, where certain groups of nodes (a.k.a.
clusters) are more densely connected to one another than they are to the other
nodes in the network [4,13]. We allow the average propensity for adopting social
products to vary between these clusters by assigning to each cluster c a probabil-
ity fsk,c that a person within c is a skeptic. If we assign fsk,c = 0.4, that means
that each person in c is randomly designated as a skeptic with probability 40%
and is otherwise an enthusiast.

Within these scenarios, we ask whether it is optimal to adopt the “single-
shot universal seeding policy” of seeding all clusters at once, or if it is better to
initially seed a few clusters and then gradually expand access. In the latter case,
we need some protocol for implementing the gradual expansion of access. We
expand access to a new person when they have had at least two friends using
the product in each of five consecutive time steps, so that a skeptic would have
been consistently satisfied. This is one example of what we have called a “gradual
seeding strategy,” and we refer to it below as the gradual access expansion
rule1.

Our model intentionally excludes (a) a budgetary constraint on seeding, (b)
rejection of the product upon gaining access, and (c) negative word-of-mouth
or nonconformism effects. Thus, the negative costs of overambitious seeding in
our model arise through different mechanisms than those studied previously
[1, 2, 7, 10].

1Other variants of this rule can certainly be considered and may even lead to better
long-term outcomes, but this choice suffices to demonstrate our main results.
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Synthetic Networks As mentioned above, we are interested in studying the
performance of various cluster-level seeding strategies on networks composed
of several modular clusters. To build synthetic clusters, we generate kic-regular
random graphs, where kic denotes the “in-cluster” degree. The random graphs
are built using the NetworkX Python package [5, 11, 16]. Then, with three kic-
regular random graphs in hand, we connect them by randomly activating a set
of intercluster links. We activate sufficiently many links such that the average
“out-of-cluster” degree 〈koc〉 matches a prescribed value2.

Example Synthetic Network Example Social-Hash Network

Fig. 1. On the left, an example synthetic three-cluster network, where each cluster is
a 10-regular random graph of 1000 nodes and 〈koc〉 = 1. On the right, an example
social-hash network. One randomly chosen node is highlighted (in red) in each cluster:
that node’s within-cluster edges are shown in yellow and out-of-cluster edges are shown
in cyan. These networks were generated for illustrative purposes at a later date than
the networks used in the simulations.

Facebook Friendship Networks Real social networks can exhibit properties
such as clustering and assortativity that are absent from our synthetic networks.
To argue that overambitious seeding can be problematic on real-world networks,
we also run our simulations on portions of the Facebook friendship graph. The
Social Hash (SH) clustering was originally developed to enable faster data re-
trieval by physically collocating data for people who communicate frequently.
Thus, many (but not all) of a person’s frequently contacted friends belong to
the same SH cluster [8, 15].

This property is well matched to the type of cluster-level approaches that we
want to test, so we simulate our model on SH clusters containing US Facebook
users who visited in the 28 days leading up to and including 2018-04-29. We
use the clusters in a deidentified fashion, where we never access any information
about the identity of individual people within the clusters or even aggregate
demographic properties of the cluster (e.g., location within the US, age group,
etc.). We also identify three-cluster networks such that each cluster has average

2We set 〈koc〉 < kin, so the average person has many more friendships within the
same cluster than with people in the other clusters.
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SH Cluster Properties
ID Nc 〈kic〉 P5 kic P50 kic P95 kic C r
A 3772 8.6 1 6 26 0.27 0.25
B 1572 23.6 1 7.5 93 0.44 -0.21
C 527 4.3 1 2 30 0.25 0.97
D 7362 13.8 1 8 48 0.34 0.24
E 2174 7.5 1 5 24 0.27 0.32
F 3413 10.8 1 7 33 0.28 0.25
G 1488 7.2 1 5 20 0.28 0.28
H 806 7.7 1 4 27.75 0.32 0.4
I 835 17.9 1 7 70.3 0.22 0.22
J 11942 145.2 6 83 517 0.22 0.18
K 1473 75.0 2.6 54 220 0.34 0.03
L 22774 64.1 9 51 165 0.29 0.31
M 1849 27.6 1 20 82.6 0.29 0.26
N 17255 35.7 4 29 89 0.20 0.14
O 2372 13.0 1 6 49 0.27 0.47
P 9839 26.4 3 20 73 0.23 0.39
Q 12917 54.5 5 44 139 0.21 0.23
R 1692 18.2 1 10 65 0.31 0.30
S 1479 10.3 1 6 37 0.24 0.34
T 3036 12.0 1 8 35 0.21 0.27

Table 1. Statistics of individ-
ual SH clusters. C refers to
the average clustering coeffi-
cient over all nodes, and r is
the degree assortativity.

〈koc〉 >= 13. Tables 1 and 2 show that there is considerable structural diversity
amongst the SH clusters and three-cluster networks respectively4.

SH Network Properties
Percentage of nodes where koc

ID N = 0 = 1 = 2 = 3 > 3 C r
FGH 5783 49.1% 17.6% 9.3% 6.3% 17.7% 0.27 0.23
IJK 14259 64.8% 13.3% 6.6% 3.6% 11.7% 0.23 0.22
LMN 41797 46.9% 22.2% 11.0% 5.7% 14.2% 0.24 0.36
OPQ 25222 41.3% 22.3% 13.0% 7.0% 16.4% 0.20 0.35
RST 6268 53.8% 16.4% 8.9% 5.2% 15.7% 0.22 0.36

Table 2. Statistics of
networks composed of
three SH clusters from
Table 1.

3On average, each person in each cluster has at least one out-of-cluster friend.
4The size of the three-cluster network can differ slightly from the size of the three

clusters individually because, in both cases, we exclude people with zero degree, who
would inevitably churn under our model. In a small percentage of cases, a person
who has no within-cluster friends may still have friends in another cluster when three
clusters are considered together.
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3 Simulation Results and the Costs of Overambitious
Seeding

3.1 Synthetic Networks

Simulations on Individual Clusters Figures 2 and 3 report the results of
simulations on individual synthetic clusters, where the entire cluster is given
access at t = 0. Figure 2 shows examples of full time series on individual clus-
ters. These time series illustrate that 104 time steps are generally sufficient to
reach the steady-state regime in terms of activity. Meanwhile, they also provide
a window into what is going on dynamically. There are cases, for example when
p0 = 0.16, where the average activity initially drops but eventually rebounds.
This indicates two different processes are going on simultaneously early on: some
people are finding their product experiences unsatisfying and decreasing their
usage while others are finding their experiences satisfying and increasing their
usage. Initially, the former process dominates the trend in average activity. Even-
tually however, the latter process takes over and dominates the curve, with the
activity rate of the non-churned population steadily rising. In our simple model
of social-product usage, the non-churned population is actually active in every
time step in the steady state, so the percent that is not active at late times
represents the population that has churned.

Fig. 2. Average time series of the
active percentage in simulations on
single synthetic clusters. Everyone
in the cluster is given access at
time t = 0. In this and all subse-
quent plots, we include 95% confi-
dence intervals, but they are often
smaller than the plot line. [Param-
eters: kic = 10, Nc = 104, fsk,c =
0.75, δ = 0.005, 100 simulations per
time series.]

In Figure 3, we plot the asymptotic level of activity for various values of p0
and fsk,c. There is an approximate but intuitive pattern that emerges5. When
everyone is an “enthusiast” (fsk,c = 0) and is satisfied with one active neighbor,
then p0 = 1

kic
approximately demarcates the boundary between a regime where

people are typically satisfied by their early experiences (p0 >
1
kic

) and where
they are not. Meanwhile, when everyone is a “skeptic” (fsk,c = 1), this dividing
point gets shifted to approximately p0 = 2

kic
. Intermediate skeptic fractions

interpolate between these two extremes, with a crossover occurring somewhere
between p0 = 1

kic
and p0 = 2

kic
.

5Figure 3 shows the case of kic = 10, but this approximate pattern holds for kic = 50
as well.
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Fig. 3. Average asymptotic activ-
ity vs. initial activity probability p0
in simulations on single synthetic
clusters. Everyone in the cluster is
given access at time t = 0. Here
and in all subsequent plots, “aver-
age asymptotic activity” refers to
an average over the last 100 of 104

time steps. [Parameters: Nc = 104,
kic = 10, δ = 0.005, 100 simulations
per data point.]

Comparison of Seeding Strategies on Three-Cluster Networks We now
turn our attention to simulations on networks composed of three synthetic clus-
ters, as shown on the left-hand side of Figure 1. We label the three clusters C0,
C1, and C2, such that fsk,C0

≤ fsk,C1
≤ fsk,C2

. When seeding n clusters, we
choose the n with the lowest values of the skeptic fraction. We then ask if the
optimal strategy is to seed n = 3 clusters at t = 0 or if n < 3 leads to a better
long-term outcome.

Figure 4 shows how the asymptotic activity varies with the seeding strategy
as p0 is varied. Consider the case in Figure 4b where p0 ≤ 0.02 and kic = 50. In
this regime, if the cluster C0 had no connections to C1 and C2, we would expect
from the argumentation around Figure 3 that activity would die out. We see
from Figure 4b that adding the social support of the other two clusters does not
change this situation. As p0 grows however, it eventually reaches levels where:

1. The value of p0 is high enough that C0 can sustain activity in isolation.
2. The value of p0 is high enough that the combination of activity in C0, C1, and
C2 at early times provides enough social support to C0 to sustain activity
in that cluster.

Note that the value of p0 where case 2 occurs cannot be higher than the value
of p0 where case 1 occurs, since the support from C1 and C2 strictly adds to
within-cluster social support. This implies that, as p0 grows, there will initially
be a regime where the single-shot universal seeding strategy will be optimal, as
we see in the p0 = 0.022 curve in Figure 4b.

As p0 continues to grow however, eventually C0 and C1 collectively will be
able to sustain activity in isolation from C2. An example of this is the p0 = 0.105
curve in Figure 4a. Here, the single-shot universal seeding strategy results in
lower asymptotic activity than seeding two clusters. At still higher p0, the long-
term activity is monotonically decreasing in the number of clusters that are
initially seeded, because C0 can sustain activity entirely on its own, and access
and usage can then successfully diffuse into C1 and C2.

However, Figure 4 also suggests that the regime of p0 where seeding strategy
matters at all is small. We will now see that, when we look at more realistic
networks, the gradual seeding strategies win over wide ranges of p0.
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Fig. 4. Average asymptotic activ-
ity vs. number of initially seeded
clusters in simulations on three-
cluster synthetic networks. Clus-
ters are prioritized for seeding by
their skeptic fraction fsk,c, as de-
scribed in the text. [Parameters:
Nc = 104, 〈koc〉 = 1, kic = 10
in (a) and 50 in (b), fsk,C0 = 0,
fsk,C1 = 0.25, fsk,C2 = 0.5, δ =
0.005, 100 simulations per data
point.]

3.2 Simulations: Facebook Friendship Graphs

Simulations on Individual Clusters In Figure 5, we report the results of
simulations on individual SH clusters from Table 1. Here, as in Figure 3, we
simulate a situation where the entire cluster is given access at time t = 0.
Compared to the results for kic-regular random graphs in Figure 3, the crossover
from low asymptotic activity to high asymptotic activity is now smoothed out
over a broader range of p0.

This is because the SH clusters exhibit variance in the degree distribution,
while the kic-regular random graphs have none. At the same level of initial ac-
tivity p0, people with a higher number of friends are more likely to be satisfied
with their early experiences. Furthermore, most of the SH clusters exhibit as-
sortativity, so people with higher degree are relatively likely to be friends with
one another. This means that there can be local patches of the cluster that can
sustain long-term activity, even at low values of p0. Other patches of the cluster,
with lower typical degree, will cross over at higher values of p0, leading to the
smeared out crossover observed in Figure 5.

Comparison of Seeding Strategies on Three-Cluster Networks We now
turn our attention to simulations in networks composed of three SH clusters, as
described in Table 2. Here, for simplicity, the three SH clusters have the same
skeptic fraction, but there are still differences in how much activity the three
clusters can sustain in isolation, owing to the between-cluster variance in kic.
Thus, we can prioritize clusters for seeding in decreasing order by the median
within-cluster value of kic.

Figure 6 shows the asymptotic activity in network RST under various seeding
strategies. Compared to the case of synthetic networks, we observe a much wider
range of p0 where the asymptotic activity monotonically decays with the number
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Fig. 5. Average asymptotic activ-
ity vs p0 in simulations on SH clus-
ters. Everyone in the cluster is given
access at time t = 0. The curves
are grouped by median kic. [Param-
eters: fsk,c = 0.75, δ = 0.005, 50
simulations per data point]

of initially seeded clusters. In Figure 7, we plot full time series for the case of
p0 = 0.04. The bottom panel shows time series under the single-shot universal
seeding approach. Here, we can see that all three clusters incur the costs of early
seeding. They all achieve higher asymptotic activity than we would expect from
Figure 5, because people in each cluster experience social support from friends
in the others. However, the top panel shows that it is possible to do much better.
When we seed only cluster R, enough long-term activity develops in R to allow
access to diffuse into the other clusters. When access does diffuse into S and T,
it does so in contexts that are favorable for continued usage, leading to much
higher asymptotic activity in these clusters.

Why does this story hold, as Figure 6 suggests, over a much broader range
of p0 than in the synthetic case? Even at low p0 values, long-term activity can
be sustained in at least some patches of the single seeded cluster. Often, these
patches are sufficient to induce the diffusion of access (and subsequently usage) to
the other clusters. Thus, we should expect gradual seeding strategies to generally
outperform single-shot universal seeding on realistic networks.

In Figure 8, we plot the difference in asymptotically active percentage under
the two strategies, on RST and four other SH networks. This plot confirms that
gradual seeding strategies lead to better results over wide ranges of p0 for most
networks, despite the structural differences reported in Table 26.

4 Conclusion

In this paper, we have identified a mechanism through which overambitious seed-
ing can harm long-term usage of social products, which depends crucially on the
contextual value of products that enable social communication: if people begin
using these products before their friends are doing so sufficiently frequently, this
can lead to people having unsatisfying experiences and eventually abandoning
the product. Seeding policies that involve distributing the product as widely as
possible as soon as possible, though favored by usual IM models, are likely to

6There is only one network (FGH) where single-shot universal seeding wins, and
then only at high p0
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Fig. 6. Average asymptotic activ-
ity vs. number of clusters initially
seeded in simulations on SH net-
work RST. Clusters are prioritized
for seeding by their median kic, as
described in the text. [Parameters:
fsk,c = 0.75, δ = 0.005, 50 simula-
tions per data point.]

Fig. 7. Average time series of the
percentage with access (dashed
lines) and the active percentage
(solid lines) in simulations on SH
network RST. The cluster with
the highest median kic is seeded
in (a), and all three clusters are
seeded in (b). [Parameters: p0 =
0.04, fsk,c = 0.75, δ = 0.005, 50
simulations per time series.]

Fig. 8. Difference in asymptotic ac-
tivity under two seeding strategies
(seed one cluster at t = 0 vs.
seed three clusters) vs. initial activ-
ity probability p0 in simulations on
three SH-cluster networks. [Param-
eters: fsk,c = 0.75, δ = 0.005, 50
simulations for one-cluster strategy
and 50 simulations for three-cluster
strategy per data point.]
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lead to more of these events than are strictly necessary. Our simulations suggest
that relatively simple gradual seeding approaches can do dramatically better7.

Although we have demonstrated the costs of overambitious seeding only in a
simplified model of social-product usage, we feel that the core assumptions of our
model are very plausibly relevant to real-world scenarios. The “need for social
support” (assumption 1 in the Introduction) is, almost by definition, a feature
of social products. It also seems reasonable that people will adjust their rate of
usage up or down in some way depending upon their satisfaction (assumption 2)
and that people will churn if they are consistently dissatisfied (assumption 3)8.

Future work can probe the generality of our results by relaxing or changing
some of the modeling assumptions. For example, in our model, new people are
given access through the hard-coded gradual access expansion rule, triggered by
the activity of their friends in the social network. A different modeling choice,
which is well-motivated by real-world scenarios, is for access to expand via invita-
tions sent by current users to their friends in the social network. Another fruitful
direction would be to study what happens when the objective changes: although
IM usually focuses on maximizing long-term usage, the goals of real-life product
deployment scenarios can be considerably more nuanced (e.g., to maximize an-
other notion of consumer satisfaction). Finally, we have also assumed that people
care about the number of their friends who are active. What would happen if
people care about having a structurally diverse set of active friends [17]? Or,
if we consider products that enable asynchronous communication, what would
happen if people care about the amount of content produced by their friends in
the last n time steps? Would there still be costs to overambitious seeding in all
of these scenarios?

Although we leave a definitive answer to that question for future research, we
conclude by connecting our study to recent work by Sela et al. that may show
a similar phenomena in a rather different model. These authors study product
adoption through an SIR model, where a person transitions from the influen-
tial (I) to non-influential (R) state a fixed time after adoption. When there is a
seeding budget b and people are prioritized for seeding by eigenvector central-
ity, the final adoption rate is non-monotonic in the budget b (a phenomenon
Sela et al. call the “flip anomaly”) [14]. A plausible explanation for the “flip
anomaly” is the context in which the seeded people adopt. If a seeded person is
the only adopting friend in a non-seeded person’s local network, then the non-
seeded person may not adopt before the seeded person becomes non-influential.
In this way, overambitious seeding can incur downstream costs, as in our model.
However, Sela et al. note that their “flip anomaly” must reverse as the budget
grows, because adoption is universal [14]. This is also true of other models with
similar properties that have recently been reviewed by Centola [3]. Our results
show how an analogue of the flip anomaly of Sela et al. can still persist with
universal adoption and no seeding budget.

7For other recent explorations of the advantages of gradual seeding, see references [6]
and [14].

8Although it is definitely questionable whether churn is ever completely irreversible.
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