Halogenated high index polymer coating

Ni Huo Ph.D. Candidate Adviser: Professor Wyatt E. Tenhaeff Department of Chemical Engineering University of Rochester

28th Oct 2021

Introduction: high index materials

What is high index materials?

Antireflective coating

URL: https://www.zeiss.com/vision-care/int/labs/coating-technologies.html

Figure 1. Representation of refractive index versus required lens thickness.

https://www.agc.com/en/products/electoric/optical-glass/high-refractive/applications.html

URL: https://www.oculus.com/quest-2/

With a higher RI, the material can be thinner

High refractive index polymers (HRIPs) compared with inorganic counterparts

Why polymeric high index materials over inorganic high index materials?

- Mechanical flexibility
- Lightweight

٠

- Processability
- Dying ability

Impact resistance

• Low cost

Refractive indices of polymers ranges from 1.3 – 1.7

Polymer has a much lower upper limit of RI compared with inorganic material

Sulfur containing polyimides

Example:
$$\left(\begin{array}{c} & & \\$$

Phosphorous containing high-n polymers

RI = 1.750-1.755

These newly developed HRIPs involve complicated synthesis processes, and yet still didn't achieve a RI higher than 1.8

Polyphenylquinoxalines

A substituent with a high molar refraction and low molar volume will increase the RI of a polymer.

Substituent	R _m ∕(cm³mol⁻¹)	Substinuent	R _m ∕(cm³mol⁻¹)
н	1.100	C≡C	2.398
С	2.418	C = C	1.733
O (in OH)	1.524	4-membered ring	0.400
O (in C = O)	2.211	Phenyl	25.463 Cause
O (in ether)	1.643	Naphthyl	43.000
CI	5.967	S(S - H)	7.691
Br	8.865	S(S - S)	8.112
I	13.900	PH3	9.104

Table 1. Comparison of molar refraction of selected substituents

Strategy: incorporate iodine directly into the polymer chain to increase RI

Poly(4-vinyl pyridine) (P4VP)

P4VP-I₂ Charge transfer complex (CTC)

Preparation of P4VP thin film by using Initiated chemical vapor deposition (iCVD)

Reaction mechanism proposed for iCVD polymerization

gas phase reactions

gas-to-surface processes

primary radical adsorption:	$\mathbf{R} \boldsymbol{\cdot} (\mathbf{g}) \xrightarrow{k_{\mathrm{ad},\mathrm{R}}} \mathbf{R} \boldsymbol{\cdot} (\mathrm{ad})$	(2)
monomer adsorption:	$M(g) \xrightarrow{k_{ad,M}} M(ad)$	(3)

surface reactions

1.4		-
	initiation: $\mathbf{R} \cdot (\mathrm{ad}) + \mathbf{M}(\mathrm{ad}) \xrightarrow{k_i} \mathbf{M}_1 \cdot (\mathrm{ad})$	(4)
	propagation: $M_n \cdot (ad) + M(ad) \xrightarrow{k_p} M_{n+1} \cdot (ad)$	(5)
	termination: $M_n \cdot (ad) + M_m \cdot (ad) \xrightarrow{k_t} M_{n+m}(ad)$ and $M_n(ad) + M_m(ad)$	(6)
	primary radical termination: $M_n \cdot (ad) + R \cdot (ad) \xrightarrow{k'_1} M_n(ad)$	(7)
,	primary radical recombination: $\mathbf{R} \cdot (\mathrm{ad}) + \mathbf{R} \cdot (\mathrm{ad}) \xrightarrow{k_1''} \mathbf{R}_2(\mathrm{ad})$	(8)

https://doi.org/10.1002/adem.201700622

iCVD vs. PVD

ICVD:

Conformal	Fast deposition rate
Low cost	Room temperature
Scale up	Coat on flexible substrate

PVD:

Light of sight deposition Small deposition range Expensive Slow deposition rate High vacuum requirement High temperature

Preparation of P4VP-I₂ Charge transfer complex (CTC)

A charge-transfer complex (CTC) is an association of two or more molecules, in which a fraction of electronic charge is transferred between the molecular entities.

P4VP-I₂

The FTIR results demonstrated the formation of charge transfer compounds between P4VP and iodine

P4VP-I₂ high index film

After 24hrs environmental stability test at 20C: The refractive index of P4VP-I₂ decreased by **7.9%**

The RI of P4VP-I2 is tunable by altering the iodine solution treatment time

The maximum achievable refractive index for P4VP-I₂ is higher than 2.0+

Thermal stability needs further improvement

ICI and IBr are stronger Lewis acids compared with iodine, and can form more stable CTC with P4VP

After 24hrs environmental stability test at 20C: The refractive index of P4VP-I₂ decreased by **2.6%**

The RI of P4VP-IBr is tunable by altering the IBr vapor treatment time P4VP-IBr is more thermally stable and has a lower extinction coefficient than P4VP-I2

P4VP-ICI is more thermally stable than both P4VP-IBr and P4VP-I2. The extinction coefficient of P4VP-ICI in visible wavelength range is negligible.

By increasing the degree of ionization of the prepared CTC, the stability of P4VP-IX is greatly improved

Absorption of halogenated polymer films

P4VP-ICI and P4VP-IBr has negligible absorption in visible wavelength range

Next generation halogenated high index polymer

A new generation of halogenated high index polymers exhibit higher refractive index (2.1+), lower average extinction coefficient compared with P4VP-I2, and remains stable up to 250°C.

- 1. Developed a series of halogenated polymer thin films with high refractive indices (n =1.58 2.0+) and outstanding optical transparency prepared via vapor deposition followed by a halogen vapor treatment
- 2. The P4VP-I₂ complex is demonstrated to have an RI of 2.0 and is transparent above a wavelength of 600nm. In another formulation, P4VP complexed with ICl achieved an RI up to 1.77, while still retaining the outstanding optical transparency throughout visible range.
- 3. The RI of the halogenated polymer can be fine-tuned from 1.58 to 2.0 by controlling the concentration of CTC in the polymer film via copolymerization with monomers that inert to halogen compounds.
- 4. A new generation of halogenated high index polymers exhibit higher refractive index and lower extinction coefficient compared with P4VP-I₂, and remains stable until 250C.

Appendix

