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ABSTRACT
Distributed training is a solution to reduce DNN training time

by splitting the task across multiple NPUs (e.g., GPU/TPU). How-

ever, distributed training adds communication overhead between

the NPUs in order to synchronize the gradients and/or activation,

depending on the parallelization strategy. In next-generation plat-

forms for training at scale, NPUs will be connected through multi-

dimensional networks with diverse, heterogeneous bandwidths.

This work identifies a looming challenge of keeping all network di-

mensions busy and maximizing the network BW within the hybrid

environment if we leverage scheduling techniques for collective

communication on systems today. We propose Themis, a novel col-

lective scheduling scheme that dynamically schedules collectives

(divided into chunks) to balance the communication loads across

all dimensions, further improving the network BW utilization. Our

results show that on average, Themis can improve the network

BW utilization of the single All-Reduce by 1.72× (2.70× max), and

improve the end-to-end training iteration performance of real work-

loads such as ResNet-152, GNMT, DLRM, and Transformer-1T by

1.49× (2.25×max), 1.30× (1.78×max), 1.30× (1.77×max), and 1.25×
(1.53× max), respectively.
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1 INTRODUCTION
Deep Neural Networks (DNNs) are constantly growing in demand

due to their vast applicability in different areas such as computer

vision [38, 42, 43], language modeling [62], and recommendation

systems [49]. In order to improve accuracy and enable emerging

applications, the general trend has been towards an increase in

both model size and the training dataset [24]. This makes the task

of training these DNNs extremely challenging, requiring days or

even months if run on a single accelerator [41, 60]. For example,

in 2020, OpenAI set the record for training one of the largest NLP

models ever, GPT-3, with 175B parameters. The training required

355 GPU years, or the equivalent of 1,000 GPUs working contin-

uously for more than four months [16]. By 2021 we have already

moved to training 1 Trillion parameter models as Google recently

demonstrated [17].

Distributed Training Platforms. The challenge of training
AI models has opened up a sub-field of systems research specif-

ically aimed at designing efficient acceleration platforms for dis-
tributed training. These platforms are built by connecting tens of

high-performance accelerators (e.g., GPUs or TPUs, which we call

Neural Processing Units (NPU)) together. To leverage the com-

pute capabilities of these platforms, the training workload (model

+ dataset) needs to be sharded across the accelerators via a paral-
lelization strategy. The two most popular parallelization strategies

are: (i) data-parallel, where a mini-batch is split, and (ii) model

parallel, where a model is divided across NPUs. Recent efforts have

also looked into hybrid [49] and pipelined [37, 39] parallelization

strategies.

We identify two key trends in the network architecture of the
next-generation training platforms [2, 3, 6, 18, 65].

(i) The high number of network dimensions. Training plat-

forms are built hierarchically. SOTA platforms today [5, 8] typically

employ 2D network topologies — high BW proprietary links such as

NVlink [45] to interconnect NPUs on the same server followed by

https://orcid.org/0000-0002-6472-9920
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Figure 1: Distributed training platform with multi-dimensional interconnection networks. Usually, the lower dimensions have higher BW, as
indicated by thicker lines in the figures. There are some exceptions such as Intel Habana Gaudi [3, 6] platform, where multiple dimensions can
be configured to have the same BWs.

scaling out via NICs connected to ethernet or InfiniBand [11, 15, 36].

Fig. 1.a shows the abstraction of such a multi-dimensional net-

work. Fig. 1.b and Fig. 1.c are two realizations of such platforms,

resembling today’s TPU-like [5] and DGX-2-like [8] topologies,

respectively.

Next-generation platforms are expected to include multiple net-

work dimensions. The reason for this is the growing compute and

memory demand for ML models [17], which necessitates adding

more NPUs. Adding more network dimensions is a natural way to

increase scalability and overall BW per each NPU [3, 54]. Further,

a suite of interconnect technologies is being developed to enable

scalability. For instance, there is growing interest in (i) multi-chip

packaging technologies to connect several NPU dies on a pack-

age [14, 25, 54, 57], (ii) high-bandwidth rack-scale interconnects

(NVLink [21] from NVIDIA, XeLink [9] from Intel, Infinity Fab-

ric [13] from AMD) to connect NPU packages together, and (iii)

high-speed NICs and switches (e.g., Mellanox SHARP [11]) to drive

high-bandwidth over Infiniband or Ethernet.

(ii) Heterogeneity in the bandwidth of each dimension.
Generally, network bandwidth (BW) decreases as we go to the next

network dimensions. However, due to recent technological advance-

ments, the overall BW across different network dimensions can

be within a comparable range. Multi-chip packaging technology

allows from 400
1
Gbps [57] to 3200 Gbps [14, 54] BW per NPU (for

NPU-to-NPU communication within a package). NVLink provides

up to 2400 Gbps [21]. Moreover, recently 400 Gbps NICs are intro-

duced [15], and 800 Gbps NICs will be available in the near future

[36]. Hence, the BW difference of the first-to-last dimension can be

within 0.5–4×.
These two trends lead to a challenge that this work identifies:

maintaining high BW utilization across all network dimensions.

This is due to the nature of collective communication patterns

observed in distributed training. State-of-the-art collective commu-

nication (e.g., All-Reduce) scheduling algorithms use hierarchical

algorithms, breaking the collective into phases (e.g., All-Reduce bro-

ken into Reduce-Scatter and All-Gather) and chunks from various

phases of the collective moving through the network dimensions in

1
In this paper, all BWs are uni-directional values. The BW value gets doubled if both

directions (i.e., send and receive) are considered.

a pipelined manner (Sec. 2.3). Unfortunately, as we identify in this

work, a mismatch between the chunk (scheduling unit) size and BW

per dimension can lead to unbalanced pipeline stages. This in turn

means that the overall communication performance is dictated by

the slowest stage, leading to network BW underutilization in other

dimensions of the topology. This mismatch arises because the vol-

ume of data being sent per dimension depends on the workload (i.e.,

the DNN model being trained, its parallelism strategy, collective

algorithm, and collective scheduling) while the bandwidth per di-

mension depends on system size, dollar costs, and other constraints

(e.g., performance, cabling, power, etc.). While this is not a major

problem in systems today which use few dimensions with signif-

icant BW gap across dimensions, this can lead to severe network

BW underutilization for next-gen platforms with the characteristics

described earlier.

In this paper, we propose Themis
2
, a novel chunk scheduling

scheme that dynamically gives different chunks distinct pipeline

schedules to maximize the utilization of all network dimensions.

We leverage the insight that algorithmically there is no strict or-

dering to perform Reduce-Scatter or All-Gather stages. In other

words, to perform Reduce-Scatter/All-Gather stages a chunk may

start at any network dimension and traverse dimensions in any

order. The only synchronization point is that the Reduce-Scatter

stage must be completed before starting All-Gather. Themis uses

this fact and schedules chunks differently to balance loads of all

network dimensions. Having intelligent schedulers like Themis
is a key enabler for building next-gen platforms, letting sys-
tem designers design the network with respect to their metrics
(e.g, cost, performance), without concerning how to efficiently
utilize the network BW.

In short, we make the following contributions:

• This is the first work, to the best of our knowledge, exploring

the problem of multi-rail collective-communication scheduling

at scale (1024 NPUs in this case) over next-gen hierarchical

topologies.

• This is the first work to identify the problem of unbalanced

stage latencies in multi-rail collective scheduling algorithms

2
Themis refers to the goddess of justice, analogous to our approach that tries to

uniformly balance the loads of all network dimensions.
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Figure 2: The Mathematical Implications of the Reduce-Scatter, All-
Gather, and All-Reduce patterns executing on four NPUs. The left
part shows the initial data on each communicating NPU before the
collective operation. The right part shows data residing on each NPU
after the completion of the collective operation.

and show why this leads to BW underutilization for next-gen

platforms.

• We propose Themis, a novel chunk scheduling scheme for multi-

dimensional networks that dynamically schedules the chunks to

maximize the utilization of each dimension. Themis is the first

method, to the best of our knowledge, that proposes dynamic
scheduling for different chunks for maximum BW utilization.

• Our results (see Sec. 5 for methodology) show that, on av-

erage, Themis achieves 1.72× All-Reduce time speedup and

95.14% BW utilization. This improves end-to-end training la-

tency for ResNet-152, GNMT, DLRM, and Transformer-1T by

1.49× (2.25× max), 1.30× (1.78× max), 1.30× (1.77× max), and

1.25× (1.53× max), respectively.

• Using our analysis of efficient scheduling, we formulate dif-

ferent scenarios regarding the network BW distribution and

give insights to the network designers for efficient BW distribu-

tion for the multi-dimensional networks tailored for large-scale

training.

2 BACKGROUND
2.1 Collective Communication Patterns
Communication is the inevitable overhead to pay in distributed

training workloads. The exact communication patterns each train-

ing workload requires depend on the parallelization strategy, and

also the communication mechanism (i.e. parameter server vs. ex-

plicit NPU-to-NPU). When using explicit NPU-to-NPU commu-

nication mechanisms, All-Reduce is the most dominant pattern

observed in distributed training [44]
3
.

3
For example, in the case of a data-parallel parallelization strategy, each NPU works

on a subset of the global mini-batch in each iteration, thus, their calculated weight

Table 1: Topology options per dimension and corresponding
contention-free topology-aware All-Reduce algorithms.

Topology Topology-aware Collective
Ring Ring [59]

FullyConnected Direct [59]

Switch HalvingDoubling [35]

AR can be broken into a Reduce-Scatter (RS) followed by an All-

Gather (AG) communication pattern. Fig. 2 shows the mathematical

implications of these patterns performed on four NPUs. RS performs

reduction among initial data such that at the end, each NPU holds

a portion of the globally reduced data. AG, on the other hand,

broadcasts data residing on each NPU to all other NPUs. Therefore,

it is clear that when performing RS/AG on 𝑃 participating NPUs,

the data size residing on each NPU shrinks/multiplies by 𝑃×.

2.2 Basic Collective Communication
Algorithms

Each of the collective communication patterns described in Sec. 2.1

can be performed through different collective communication
algorithms. For example, tree-based [50], ring-based [31], and

halving-doubling [35] algorithms are proposed to realize AR pattern

and are implemented in communication frameworks such as Intel

oneCCL [40] or NVIDIA NCCL [4]. Fig. 3 shows an example of the

ring-based AR algorithm running on four NPUs.

The optimal collective algorithm is usually dependent on the

physical topology and communication size [59]. For example, ring-

based collective algorithms are a natural fit for NPUs connected via

a physical ring, as it leads to zero contention. Table 1 presents some

topology-aware collective algorithms, which are typically chosen

dynamically by communication libraries [4, 40] depending on the

underlying topology. Such basic collective algorithms provide a

basis to design more complex and tuned algorithms that are opti-

mized for multi-dimensional network topologies, as we describe

next.

2.3 Multi-Rail Hierarchical Collective Comm.
Algorithms

As stated in Sec. 2.2, the optimal collective algorithm depends on

the physical topology. Hence, the basic algorithms are not a good

fit when having multi-dimensional physical networks with variable

BW and latencies in each dimension. This is because the collective

algorithms are inherently synchronous and in this case, the links

with the least BW will become the bottleneck, making other high-

BW links underutilized. To cope with this, recent works propose

multi-rail hierarchical algorithms to exploit different dimensions’

BW and latency [32, 63]. Suppose the topology has 𝐷 dimensions

as shown in Fig. 1.a, the AR algorithm breaks into the following

2×D pipeline stage scheduling:
• A sequence of RS stages starting from dim1 and ending at dim𝐷

(𝐷 stages in total). After these stages, data is globally Reduce-

Scattered across all NPUs.

gradients must be globally reduced (i.e. All-Reduce) before updating the weights and

starting the new training iteration.
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Figure 3: An example of the ring All-Reduce algorithm to perform the All-Reduce pattern. Steps a-d perform Reduce-Scatter pattern and steps
e-g perform All-Gather pattern. Step h shows the final result.

• Next, a sequence of AG stages are performed in the reverse

order (𝐷 stages in total); starting from dim𝐷 and ending at

dim1.

The above order is the baseline collective scheduling, used
by SOTA collective libraries today [32, 63]

4
. The main reason for

such hierarchical phases is to reduce traffic as the collective goes to

the next dimension, which usually has lower BW compared to the

previous dimension. The RS/AG algorithm for each stage is a basic

topology-aware collective (Sec. 2.2) and is independently selected

by the collective scheduler [32, 40]. For example, a topology with

rings in the first and switches in the second dimension may run

a series of RS/AG stages using ring-based and halving-doubling

algorithms, respectively.

Fig. 1.b and Fig. 1.c show two examples of how this AR algorithm

is applied on a 2-dimensional network. In both examples, the first

dimension comprises the NPUs with the same color, meaning that

the peer NPUs for the communication is the NPUs with the same

color. The second dimension is shown based on the NPUs with

the same number. Throughout this paper, we use the notation

𝑃1×𝑃2× ....×𝑃𝐷 to refer to the size of a multi-dimensional network

where 𝑃𝑖 is a number referring to the size of peer NPUs participating

in the communication on the i’th dimension. For example, the size

of both Fig. 1.b and Fig. 1.c is 4 × 4.

Chunks. Communication data is usually broken into multiple

chunks [33, 47, 56] and then these chunks are fed into this 2×D-
stage pipeline to keep all dimensions busy. A chunk is a portion of

data to participate in the collective, and the collective algorithm

can work on each chunk independently. For example, a 256MB AR

can be broken into four independent chunks of 64MB All-Reduces.

In this paper, we assume the size of each chunk in each stage to

be the size of the corresponding chunk data residing on each NPU

before the stage begins. Similar to the explanation of Sec. 2.1, each

chunk size changes after each stage of RS/AG.

3 MOTIVATION - NETWORK BW
UNDERUTILIZATION

As discussed in Sec. 2.3, hierarchical collectives are the SOTA

method for the multi-dimensional networks with variable BW. How-

ever, we identify that reaching the maximum possible network

utilization is quite challenging for next-gen platforms.

4
If the requested collective is only RS/AG, only the first/second half of AR stages

described above, that is RS/AG stages, are performed.

Definition: Average BW Utilization.We define avg. BW uti-

lization is the weighted average of BW utilization across all di-

mensions of the network, with respect to the BW budget of each

dimension (i.e., dimensions with higher BW get higher weight).

In the case of real workloads, it is estimated only during the time

when there are communication operations issued by the workload

(excluding the times when there is no pending communication

operation due to compute/memory operations [54]).

3.1 Next-Gen Distributed Training Platforms
Today’s high-performance training platforms (e.g., NVIDIA DGX)

[8] typically use 2-dimensional topologies – one to connect several

NPUs within the same server node together using high-speed links

(e.g., NVlinks), followed by node-to-node communication via Net-

work Interface Cards (NICs). We model such 2D networks with high

bandwidth across both dimensions as a result of recent technology

advancements such as NVlinks [21] and high-speed NICs [15, 36].

However, as workload model sizes increase [62], the need for

more NPUs and higher communication bandwidth increases. There

is thus a growing industry trend [2, 6, 18–20, 65] to increase the

number of dimensions before getting to the NIC to reduce the NIC

traffic. We model multiple such futuristic 3-dimensional training

platforms in this work as described in Table 2. The first dimension

(dim1) represents the intra-node dimension where NPUs on the

same server node are connected through a high-BW rack-scale fab-

ric. Several nodes are then connected by allocating a portion of the

rack-scale fabric to create pod (dim2) [2, 6, 18, 65], again, using high-
BW dedicated links

5
. In the third dimension, NPUs within dim2

are connected to the dim3 switches through NICs. 4-dimensional

topologies extend the 3D topologies by adding Multi-Chip pack-

aging [25, 57] as the first dimension to incorporate multiple NPUs

within a package [13, 25, 54]. Sec. 5 provides more details of our

methodology for modeling these platforms.

3.2 Quantifying Network BW Underutilization
Fig. 4 shows the overall (normalized) training time reduction as the

avg. network BWutilization increases for three different DNNswith

a high ratio of communication to compute. The modeled platforms

are a suite of 2D, 3D, and 4D topologies as explained in Sec. 3.1

and Table 2. Each line in Fig. 4 shows the normalized runtime (y-

axis) for different BW utilization (x-axis) of a specific topology.

The runtime curves are relatively similar across the three training

5
One instance is the Intel Gaudi platform [6], where each NPU has multiple rack-scale

links that can be split for intra-node and inter-node (pod) connectivity.
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utilization when the multi-rail hierarchical algorithm with baseline scheduling (discussed in Sec. 2.3) is used. Inf (i.e., infinite) BW is when
communication overhead is 0% and runtime stems from compute only. The ideal is the achievable runtime if the network BW across all
dimensions is fully utilized. For a fair comparison, we assume DGX-2 compute model is the same as our next-gen systems (Sec. 5).

a)  The baseline chunk scheduling pipeline corresponding a 2-dimensional network with 4X4 size and 
BW(dim1)=2BW(dim2). The initial size of each chunk (before the operation starts) is shown above each 
chunk operation. The latency is normalized according to the 64MB/16MB Reduce-Scatter/All-Gather 
on dim1. Unbalanced pipeline stage latency (due to variable chunk size & network BW in different 
stages) leads to idle times (shown as red) for some stages. Such idle times reduce network BW 
utilization.     
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Figure 5: The execution of a 256MB All-Reduce running on a 4×4 2-dimensional network where BW(dim1)=2BW(dim2). The All-Reduce is
broken into 4×64MB chunks.

workloads. This is because these workloads are communication

bound, hence, their runtime is mainly dictated by the underlying

network performance.

As Fig. 4 shows, adding more network dimensions usually results

in lower end-to-end training runtime, due to increased network BW

per NPU. This is the motivation for the next-generation training

platforms to add more network dimensions. However, the overall

network BW utilization starts to drop as we add more dimensions,

as we discuss next.

We observe from Fig. 4 that a DGX-2-like topology can achieve

97.7% BW utilization with the baseline collective scheduling policy

as discussed in Sec. 2.3. This is primarily due to the huge BW differ-

ence between dim1 and dim2 (i.e. 1200 Gbps vs. 100 Gbps), making

underutilization of dim2 play an insignificant role in overall perfor-

mance. However, as stated earlier, next-gen platforms have high

BW across dimensions, as well as having more network dimensions.

Fig. 4 also shows how baseline collective communication sched-

uling fails to efficiently utilize the available BW on these next-gen

topologies, reaching the average BW utilization of 59.7% (35.1%

min), when averaging across all the workloads and topologies. To

obtain linear (perfect) speedup as we scale the number of NPUs

for training, the communication overhead should remain 0% (the

Inf BW case in Fig. 4). However, this is not feasible due to finite
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network BW resources (technology constrained in each dimension).

Hence, for a given topology, the maximum achievable speedup is

when BW utilization is 100% (“Ideal" in Fig. 4), and any network

underutilization diminishes the benefits of scaling. For the next-

gen topologies, if the ideal utilization (100%) can be achieved, the

training performance on average can be improved by 1.54× (2.34×
max), 1.32× (1.81× max), and 1.26× (1.54× max) over the baseline

for ResNet-152, GNMT, and Transformer-1T, respectively.

3.3 Understanding Network BW
Underutilization

To illustrate the problem, Fig. 5.a shows how a 256MB baseline

hierarchical AR is performed on a 2-dimensional network with

the second dimension having half BW of the first dimension. The

collective is broken into 4×64MB chunks. There are 4 pipeline stages

for performing hierarchical AR on this network: 1○ RS on dim1, 2○
RS on dim2, 3○ AG on dim2, 4○ AG on dim1.

A 64MB chunk size will be shrunk by 4× when entering stage 2,

meaning that RS on the stage injects
1

4
× data to the dim2 compared

to the stage 1 injecting to dim1. However, dim2 has
1

2
× BW com-

pared to the dim1. If we assume the 64MB RS (or 16MB AG) takes 1

unit of time when running on dim1, then the latency of that chunk

for the stage 2 is:
0.25𝐷𝑎𝑡𝑎
0.5𝐵𝑊

= 0.5. Therefore, stage 2 is performing

2× faster than stage 1. Stage 3 injects the same amount of data as

stage 2 and operates on the same dimension, hence its latency is

similar to stage 2. Using the same argument, stage 4 has the same

latency as stage 1. The faster processing of stage 2 and stage 3

means they are underutilized many times. This indicates that their

corresponding network dimension (i.e. dim2) is underutilized as

shown in Fig. 5.a.

We note that the only place where the baseline algorithm can

reach near 100% utilization is when the BW reduction ratio in the

next dimension is proportional to the size of the current dimension.

Again, consider the 4 × 4 system size. For the baseline system to

be efficient, the BW(dim1)=4×BW(dim2) because dim1 shrinks the

chunk size by 4×. It is only in this case that stage latencies will

be equal using the baseline algorithm. Any excess BW of dim2

beyond this point will be wasted, as when we show in Fig. 5.a

where BW(dim1)=2BW(dim2).

In general, this concept can be generalized to any D-dimensional

network of size 𝑃1 × 𝑃2 × .... × 𝑃𝐷 . For the baseline to be efficient,

we must have:

BW(dim1) = 𝑃1 × BW(dim2) = 𝑃1 × 𝑃2 × BW(dim3) = ... =

𝑃1 × 𝑃2 × .... × 𝑃𝐷−1 × BW(dimD).

However, this creates an unpleasant requirement for the net-

work as a result of the poor scheduling of the baseline algorithm.

If we plug the above formula for a DGX-2-like platform, we find

out that all dim1 BW (1200 Gbps) and 75 Gbps (out of 100 Gbps)

of dim2 are utilized using baseline collective scheduling, justify-

ing its high BW utilization in Fig. 4. But the underlying network

dimensions can have more BW available in next-gen systems and

the algorithm must be able to utilize excess BW provided by the

network dimensions.

Note that in the above example, our analysis was based on the

assumption that the network BW is the primary factor that deter-

mines communication latency (which is true for large collectives).

Dim 
load 

Tracker Scheduler

Latency 
Model

New collective from
the training loop1

Get the current
loads3

Splitter

2 Divide into
multiple chunks 

Generate the 
schedule of 
one chunk

4

5
get chunk 
latency (load)

Update the
 loads

6

Themis Architecture

Figure 6: An overview of Themis components. 1) A collective oper-
ation is requested from the upper layer training workload. 2) The
collective is split into multiple equal size chunks. Steps 3–6 are per-
formed on an individual chunk basis. 3) the current load of network
dimensions (in terms of total communication latency) is retrieved
from the Dim Load Tracker. 4) Scheduler sorts the dimension loads
in ascending/descending orders and the sorted list order is the sched-
ule for the current chunk through the Latency Model. 5) Based on
the schedule generated, Scheduler finds out the latency of the new
schedule for each dimension. 6) Scheduler updates the total loads of
each dimension to take into account the load of the new chunk.

However, the concept of unbalanced stage latencies remains true

even if we take into account other factors (e.g. link latency) as we

show in Sec. 4 and Sec. 6. We also wish to emphasize that the under-
utilization we are referring to is a fundamental challenge due to chunk
size and bandwidth mismatch (as our example indicated) and not due
to any network stalls because of compute/memory bottlenecks that
limit network performance [44, 54] (which may further exacerbate
this issue) but are not the focus of this work.

4 THEMIS
In this section, we present Themis that performs dynamic and dis-

tinct scheduling for each chunk to balance the loads across different

network dimensions. Themis is specifically designed to maximize

the multi-dimensional network BW forAll-Reduce (AR), Reduce-
Scatter (RS), and All-Gather (AG).

4.1 Themis Intuition and Overview
Themis has its roots in two main observations:

Observation 1. From the algorithm’s correctness point of view,
there is no restriction on how each chunk should traverse the RS/AG

stages. For example, in the case of AR on a 2D network explained in

Sec. 3, the RS stage on the second dimension can precede the RS on

the first stage. Similar ordering independence is true for AG stages.

Furthermore, the ordering of RS stages can be different than AG

stages. The only synchronization point is that the RS stages should

be finished before starting the AG stages. Thus, the following 4

different schedules are all possible for the AR collective on a 2D

topology:

(1) (i) RS on dim1, (ii) RS on dim2, (iii) AG on dim2, (iv) AG on

dim1 (this is the baseline scheduling).

(2) (i) RS on dim2, (ii) RS on dim1, (iii) AG on dim2, (iv) AG on

dim1.

(3) (i) RS on dim1, (ii) RS on dim2, (iii) AG on dim1, (iv) AG on

dim2.
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Figure 7: An example of Baseline Scheduling vs. Themis Scheduling corresponding to the chunk scheduling problem of Fig. 5. Each of the
steps b-d shows scheduling for one chunk. Dim load shows the total communication time of each dimension. As shown in the figure, baseline
scheduling always uses a constant schedule for all chunks, resulting in the underutilization of abundant BW provided by dim2. However,
Themis uses a greedy scheme to schedule new chunks in a way that puts more load on the dimensions with lower loads. In Themis: step b) all
dim loads are zero, thus, the first chunk schedule is similar to the baseline. In step c) dim2 has a lower load, hence the chunk scheduling starts
from dim2 to fill the gap with dim1. In step d) and step e) Chunk schedule starts from dim1 to fill the gap with the overloaded dim2.

(4) (i) RS on dim2, (ii) RS on dim1, (iii) AG on dim1, (iv) AG on

dim2.

In general, for any D-dimensional network, there are 𝐷! × 𝐷!

valid ways to schedule an AR data chunk (𝐷! for RS/AG only).

Observation 2. Different chunks can have different schedules.

Hence, if we divide a collective into C chunks, the space of all

possible schedules for all chunks on an N-dimensional network

is (𝐷! × 𝐷!)𝐶 for AR (𝐷!𝐶 for RS/AG), indicating the exponen-

tial growth as the network dimensions and the number of chunks

increase.

Together, observation 1 and observation 2 motivate the Themis idea
which is to independently schedule chunks across network dimensions
based on the available bandwidth, rather than following a strict order
like previous works [4, 32, 63]. For each dimension, each chunk uses
the topology-aware collective algorithm for that dimension (Sec. 2.3),
just like the baseline hierarchical algorithm.

Themis Overview. Fig. 6 shows the general overview of Themis.

Splitter component simply divides the collective intomultiple equally-

sized chunks. Dim Load Tracker maintains the load of each net-

work dimension in terms of the total communication time of the

chunks when executing on that dimension. The Latency Model

predicts the RS/AG communication time for a given chunk size

running on any network dimension. Finally, Scheduler generates

a dynamic schedule for each chunk based on the information pro-

vided by the Dim Load Tracker and Latency Model. Fig. 6 also
shows the series of steps when a new collective communication is

issued from the training workload layer. We describe its workflow

next.

4.2 Themis Algorithm
In Sec. 4.1 we showed how the space of available schedules grows

exponentially. Therefore, it is not practical to search all possible

schedules, even for modest network and chunks granularity
6
. In-

stead, Themis is a type of greedy algorithm that tries to schedule

new chunks in a way that puts more load (in terms of communi-

cation time) on the dimension with an already lower load. Themis

leverages the two observations explained in Sec. 4.1 for more flex-

ible scheduling. Algorithm 1 shows the pseudo-code for Themis.

The SCHEDULE_COLLECTIVE procedure (line 1) is called whenever

a new collective is requested by the training workload. Lines 2–4

6
For example, when 𝐷=3, and𝐶=8, all the space of all All-Reduce schedules is (3! ∗
3!)8 = 2821109907456.
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Algorithm 1 Themis Algorithm

Inputs: CollectiveType (𝐶𝑇 ), CollectiveSize (𝐶𝑆),

ChunksPerCollective (𝐶𝑃𝐶), TotalNPUs (𝑃 )

Output: A 2D list 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 [] [] where 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 [𝑖] [] gives the
order of dimensions the i’th chunk should traverse for the

collective.

1: procedure Schedule_Collective(𝐶𝑇,𝐶𝑆,𝐶𝑃𝐶)
2: DimLoadTracker.reset(𝐶𝑇 )

3: ChunkSize=𝐶𝑆/𝐶𝑃𝐶
4: i=0

5: for i++ < 𝐶𝑃𝐶 do
6: if 𝐶𝑇 == All-Reduce then
7: RS_Sch=SCHEDULER.SCHEDULE(𝑅𝑆,𝐶ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒)

8: AG_Sch=reverseOrder(𝑅𝑆_𝑆𝑐ℎ)

9: 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 [𝑖] []=concatenate(RS_Sch, AG_Sch)
10: else
11: 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 [𝑖] []=SCHEDULER.SCHEDULE(
12: 𝐶𝑇 , ChunkSize)

13: end if
14: end for
15: return 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒

16: end procedure
17: procedure Scheduler.Schedule(𝐶𝑇,𝐶ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒) ⊲ Schedules

a chunk
18: loads=DimLoadTracker.getLoads()

19: if loads.max_dim_load - loads.min_dim_load < Threshold then
20: schedule=getBaselineScheduling(𝐶𝑇 )

21: else
22: if 𝐶𝑇 == Reduce-Scatter then
23: schedule=getIndexOfSortedList(𝑙𝑜𝑎𝑑𝑠, 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)

24: end if
25:

26: if 𝐶𝑇 == All-Gather then
27: schedule=getIndexOfSortedList(𝑙𝑜𝑎𝑑𝑠, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)

28: end if
29: end if
30: newLoad=LatencyModel.calcLoads(

31: 𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒, 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒,𝐶𝑇 )

32: DimLoadTracker.update(newLoad)

33: return schedule

34: end procedure

are for initialization. The for loop in line 5 is for chunking the data

while the lines 6–13 are executed to call the scheduler to deter-

mine the schedule of each chunk through SCHEDULER.SCHEDULE
procedure. Note that Themis assumes the AG schedule is the re-

verse order of obtained RS schedule (line 8). The scheduler first
retrieves the current loads of all network dimensions via the Dim
Load Tracker component (line 18). Dim Load Tracker is sim-

ply a list that contains the total load (chunk runtimes predicted

by the Latency Model) that is placed on each dimension by the

current schedules of the chunks. Lines 19–21 are for the robustness

of Themis and check if the current load difference between the

dimensions with maximum and minimum load is below a threshold.

If this is true, then Themis reverts to the baseline scheduling to

prevent oversubscribing the network dimensions with lower BW

just because their current load is slightly lower than the dimensions

with higher BW.

If the condition of line 19 is false, Themis schedules the current

chunk in a way to balance the loads across different dimensions.

It first gets the index of dimensions sorted from least (most) load

to most (least) load if the collective type is RS (AG) (lines 21–28).

This sorted list is the schedule for the new chunk, since such a

schedule puts more load on the dimensions with currently lower

loads, leading to filling the gap between the high-load and low-

load dimensions. Next, the Latency Model predicts the load of the

newly scheduled chunk (lines 30–31), and then Dim Load Tracker
is updated (increased) accordingly (line 32). The Latency Model is

a function that inputs chunk size, network dimension, and chunk

operation (RS/AG), and returns the predicted runtime for that chunk

operation running on the specific dimension. Then, the scheduling

process for the next chunk begins.

Example. Fig. 7 shows how baseline vs. Themis scheduling

works (i.e. assigns schedules) for the example of Fig. 5. As Fig. 7

shows, the baseline scheduling scheme always assigns a constant

schedule for all chunks, hence, the gap between dim1 and dim2

preserves as new chunks are scheduled. However, Themis sched-

ules the chunks differently to balance the dimension loads. In this

example, Themis schedules the second chunk to start from dim2 to

fill the gap between dim1 and dim2 (step c). After that, the last two

chunks start from dim1 to fill the gap of dim1 with now overloaded

dim2 (steps d&e). Fig. 5.b shows the Themis time diagram that is

based on the schedule generated in Fig. 7.b. As Fig. 5.b shows, such

dimension load balancing results in better network utilization and

reduced total communication time. We used a 2-dimensional exam-

ple for simplicity. However, in general, the lack of ability to utilize

the network BW in the baseline scheduling is more pronounced

as the number of network dimensions and available extra BW of

dimensions increase.

4.3 Intra-Dimension Chunk Scheduling
So far, we have discussed how Themis schedules chunks across

different dimensions to balance the loads (inter-dimension schedul-

ing). Another question to answer is how different chunks within a

dimension are ordered for processing because at any given point

there might be multiple chunks available for each dimension. Ad-

verse intra-dimension scheduling can lead to starvation of some

dimensions since their, yet to come, chunks are stuck within the

queues of other dimensions.

We found out that in the baseline scheduling scheme, intra-

dimension scheduling has minimal effects on the performance due

to the identical schedule of all chunks. In other words, no matter

how each dimension selects chunks to process, the average BW

utilization remains fixed. The only difference is in the periods of

time where the dimensions are utilized. Moreover, a monotonic

schedule means each network dimension always receives the same

chunk sizes. Hence, we assume the baseline scheme uses a simple

FIFO-based intra-dimension chunk execution.

But for Themis, chunk intra-scheduling is important due to

the different schedules of chunks, that result in variable chunk

sizes per dimension. We empirically found the best policy to be
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Smallest-Chunk-First (SCF). The underlying intuition is that pro-

cessing smaller chunks takes a shorter time and allows the chunk

to be fed to other dimensions faster. This reduces the chance of

a network dimension momentarily being idle due to not having

collective chunks to process (i.e., dimension starvation).

Also note that if the chunk is small, processing one chunk per

dimension underutilizes the network BW since small messages

cannot saturate the given BW (e.g., due to the link latency). Hence,

in this case, multiple chunks per dimension (if available) should be

run in parallel to fully saturate a dimension’s available BW (similar

to the collective fusion concept in NCCL [4]).

4.4 Understanding All Latency Parameters
The techniques presented in Sec. 4.2 and Sec. 4.3 aim to balance
the total latency across different network dimensions, since
the collective performance is dictated by the slowest dimension.

In general, the total latency of the K’th network dimension (dimK)

can be calculated as follows:

Latency(dimK) = 𝐴𝐾 + (𝑁𝐾 × 𝐵𝐾 ) + 𝑖𝑑𝑙𝑒𝐾
While 𝐴𝐾 refers to the fixed delay caused by the collective al-

gorithm and system latencies, 𝑁𝐾 is the total amount of bytes

scheduled, 𝐵𝐾 is the per-byte latency, and 𝑖𝑑𝑙𝑒𝐾 is the idle time,

all corresponding to dimK. Among these parameters, 𝐴𝐾 and 𝐵𝐾
are given by the system specification and/or collective algorithm,

while Themis controls 𝑁𝐾 and 𝑖𝑑𝑙𝑒𝐾 .

𝐴𝐾 is the fixed delay to pay to run a certain collective type on a

network dimension and is determined by:

𝐴𝐾 = number_of_steps × step_latency

number_of_steps is determined by the basic collective communi-

cation algorithm (Sec. 2.2) employed on dimK. For example, ring-

based All-Reduce require 2𝑃𝐾 −2 steps on dimK. On the other hand,

step_latency is determined by the network component latencies

(e.g., NIC latency, link latency, etc.) when transferring a minimum-

size message between two NPUs [56]. On real systems, 𝐴𝐾 can be

calculated by running a minimum size collective on dimK.

To account for this delay in Themis, the Dim Load Tracker
initializes each dimension’s load to its respective 𝐴𝐾 for the target

collective type (line 2 in Algorithm 1). Note that 𝐴𝐾 of different

dimensions are considered to be negligible and not shown in the

example of Fig. 7 for more readability.

The per-byte latency (𝐵𝐾 ) is directly proportional to the inverse

of link BW [29], while 𝑁𝐾 corresponds to the total data size each

NPU sends out on dimK and is calculated as follows:

𝑁𝐾 =

𝐶𝑃𝐶∑︁
𝑖=1

𝑛𝑖𝐾

Where 𝑛𝑖
𝐾
is the total amount of data each NPU sends out on

dimK to process chunk #i with respect to its schedule and collective

algorithm
7
.

Effectively, Themis (Sec. 4.2) controls 𝑁𝐾 , through dynamic

scheduling of chunks, to balance the overall latency across differ-

ent dimensions. Since 𝑁𝐾 only participates with 𝐵𝐾 , the Latency

7
For example, if chunk #i size is 4MB on dimK, then for ring-based RS/AG algorithm

we have: 𝑛𝑖
𝐾

=
𝑃𝐾 −1
𝑃𝐾

× 4MB.

Model only considers 𝑛𝑖
𝐾
× 𝐵𝐾 as the latency of chunk #i on dimK

(lines 30–31 in Algorithm 1).

The other factor is 𝑖𝑑𝑙𝑒𝑘 that corresponds to the times where

dimK network is idle, while there are other chunks stuck on other di-

mensions and yet have some pending stages on dimK to be executed

later. To minimize the 𝑖𝑑𝑙𝑒𝑘 , we make 2 provisions as described in

Sec. 4.3. First, we employ SCF intra-dimension chunk scheduling

to reduce the chance of dimension starvation. Second, if multiple

available chunks are available, we execute multiple chunks per

dimension if one chunk cannot fully saturate the network BW.

4.5 Supporting In-Network Collective Offload
In recent years, several works have shown the communication per-

formance improvement by offloading collectives to the switches

belonging to different network dimensions [20, 34, 44, 46]. Switch

collective offload reduces the collective’s network traffic (i.e., 𝑛𝑖
𝐾
)

and fixed delay (i.e.,𝐴𝐾 ) [34]. However, the concept of running hier-

archical collectives, as described in Sec. 2.3, to cope with the hetero-

geneous multi-dimensional networks remains the same. Therefore,

Themis is applicable to balance the loads across different network

dimensions.

4.6 Chunk Schedule Consistency
To design a distributed chunk scheduling algorithm, it is important

that all NPUs execute the same order of chunks operations on their

different dimensions. Failing to do so can lead to chunk schedule

inconsistency and create a deadlock, since different NPUs wait on

executing different chunk operations, and hence, no chunk can pro-

ceed [4]. To maintain consistency, we must make sure that: (i) all

NPUs produce the same chunk schedule (Inter-Dimension Sched-

ule Consistency) and (ii) for a given dimension, all NPUs execute

the same order of chunk operations (Intra-Dimension Schedule

Consistency).

4.6.1 Inter-Dimension Schedule Consistency. Inter-dimension sched-

ule consistency is guaranteed since both the Latency Model and
Dim Load Tracker are similar across all NPUs, and behave in the

same way as explained in Sec. 4.4. This is possible because both 𝐴𝐾
and 𝐵𝐾 parameters can be obtained offline and replicated across

all NPUs. Therefore, different NPUs produce exactly the same

schedule for the chunks of a collective operation.

4.6.2 Intra-Dimension Schedule Consistency. Runtime variation

might rarely result in chunks being available for a given dimension

in different orders across different NPUs. For example, suppose the

chunk operations C1.1 and C2.1
8
are under execution on dim1 and

dim3, respectively, and their next operation (i.e., C1.2, and C2.2)

is scheduled on dim2. Runtime effects (e.g., packet drop, endpoint

congestion) might cause C1.1 to slightly finish sooner than others,

followed by the immediate start of C1.2 on dim2 on some NPUs.

Now suppose on some NPUs with unfinished C1.1, C2.1 is finished

sooner, and hence, those NPUs begin running C2.2 on dim2, creating

a potential deadlock case.

To prevent this, once Inter-Dimension Schedules are determined

(according to Sec. 4.6.1), Themis simulates their execution to get an

estimation of when each chunk operation will be available on each

8
The notation is based on Fig. 5.
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Table 2: List of target topologies and their BW/latency configurations per each dimension. The naming convention starts with the number of
dimensions followed by dimension topology time in increasing order. For example, 3D-FC_Ring_SWmeans a 3-dim topology where dim1 is
FullyConnected, dim2 is Ring, and dim3 is Switch. Each color shows a dimension in which the network connects the NPUs together. The BW
and latency in each dimension are selected according to the predicted ranges for link technologies in the future systems, listed below the table.
We note that based on technology trends, there is a wide range of BW and latency options for each dimension depending on the technology
and other constraints. All combinations cannot be presented here due to the lack of space. We create a diverse set of topologies with a different
BW ratio to motivate the problem and demonstrate the applicability of Themis on various platforms. The Aggr BW/NPU is the product of the
BW/link determined by the technology and Links/NPU is determined by the topology.

Name NPUs Size BW/Link (Gb/s)** #Links/NPU Aggr BW/NPU (Gb/s) Network Latency (ns)**
2D-SW_SW 1024 16×64 (200, 800) (6, 1) (1200, 800) (700, 1700)

3D-SW_SW_SW_homo 1024 16×8×8 (200, 200, 800) (4, 4, 1) (800, 800, 800) (700, 700, 1700)

3D-SW_SW_SW_hetero 1024 16×8×8 (200, 200, 400) (8, 4, 1) (1600, 800, 400) (700, 700, 1700)

3D-FC_Ring_SW 1024 8×16×8 (200, 200, 400) (7, 4, 1) (1400, 800, 400) (700, 700, 1700)

4D-Ring_SW_SW_SW 1024 4×4×8×8 (1000, 200, 200, 400) (2, 8, 4, 1) (2000, 1600, 800, 400) (20, 700, 700, 1700)

4D-Ring_FC_Ring_SW 1024 4×8×4×8 (1500, 200, 200, 800) (2, 7, 6, 1) (3000, 1400, 1200, 800) (20, 700, 700, 1700)

**Link Technologies for each Dimension: chiplet-to-chiplet (within a package) [13, 25, 54, 57], package-to-package (within a server node) [6, 21, 56, 65], node-to-node [6, 15, 36, 56],

pod-to-pod. [7, 15, 36, 56]. Note - for all topologies, the last dimension uses NICs, which is node-to-node for 2D, and pod-to-pod for 3D and 4D. The network latency (i.e.,

step_latency in Sec. 4.4) corresponds to the direct NPU-to-NPU latency when sending a minimum-length message.

Table 3: Target Collective Schedulers
Method Comment

Baseline

Uses multi-rail hierarchical algorithm [32] as explained

in Sec. 2.3 with FIFO intra dimension scheduling.

Themis+FIFO Uses Themis with FIFO intra-dimension scheduling.

Themis+SCF Uses Themis with SCF intra-dimension scheduling.

Ideal

Assumes 100% BW is utilized. Communication latency

is simply calculated by (collective size / total BW).

dimension. Once chunk operation availability is estimated, Themis

enforces this intra-dimension ordering on runtime. Even if some

chunks are available sooner on the NPU, Themis does not execute

them if it is not their turn to be executed.

Note that the simulation is deterministic, so all NPUs produce

the same intra-dimension ordering. In addition, the simulation does

not need to consider detailed network modeling and is performed

fast, since the aim is the order of chunk availability on each dimen-

sion, and not their exact availability time. Once a certain collective

schedule and its ordering are generated by Themis, it is saved and

reused on later training iterations. So, there is no need to repeat

the process in later training iterations.

5 METHODOLOGY
In this section, we provide our methodology and the target systems

and workloads to evaluate Themis and baseline.

5.1 Simulation Platform
We use the ASTRA-SIM simulator [10, 55] to implement our scheme

and compare it with the baseline system. ASTRA-SIM provides the

flexibility to define various large-scale hierarchical training plat-

forms, enabling us to demonstrate the efficiency of Themis on future

platforms. ASTRA-SIM simulates the communication performance

of the distributed training workloads in detail and uses a modi-

fied version of gem5-garnet [22, 27] as its network simulator to

model heterogeneous bandwidth topologies. It also supports differ-

ent collective communication algorithms and different paralleliza-

tion strategies. For compute times (in the case of real workloads),

we use A100 [12] profiling.

We note that, since we are targeting next-gen systems, using

simulation as our evaluation methodology is our only option to

show the necessity of Themis for such systems. Recall that regular

topologies and hierarchical topology-aware collective communi-

cation algorithms (Sec. 2.2) per dimension lead to congestion-less

network traffic, enabling detailed simulators to accurately model

and match real system measurements for collectives [10, 55].

5.2 Training Platforms and Workloads
Table 2 shows our target topologies all consisting of 1024 NPUs

to resemble large-scale next-generation systems. Sec. 3.1 presents

more description of trends and previous works that leads to the

topologies presented in Table 2. We do not consider in-network

collective offload support due to the lack of space, although we

expect Themis still improves the network BW utilization in this

case, as explained in Sec. 4.5.

All-Reduce Algorithm. Table 1 lists the topology-aware and
contention-free AR algorithms we employ.

Target Workloads and Parallelization. Themis is a solution

to maximize the BW utilization of pervasive collective communica-

tions on multi-dimensional networks. Collective communication is

an integral part of any synchronous training job with an NPU-to-

NPU communication mechanism. Moreover, collective usage is not

limited to training only, and has been widely used in other domains

(e.g., in HPC applications and distributed inference). However, we

limit the scope of our evaluations in this work to DL training given

its importance.

For real workload training, we selected four DNNs from different

domains of deep learning applications: ResNet-152 [38] (from com-

puter vision), DLRM [49] (from recommendation models), GNMT

[64], and Transformer-1T (one trillion parameter) [17] (both from

NLP domain). For DLRM, we use the model described in [53]. The

gradient precision is FP16 in all workloads and the per-NPU mini-

batch size is set to be 32, 512, 128, and 16 for ResNet-152, DLRM,

GNMT, and Transformer-1T, respectively. Such workloads have a

high ratio of communication-to-computation and hence, benefit

most from applying Themis.
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In terms of parallelization strategy, ResNet-152 and GNMT use

the complete data-parallel partitioning since they can fit within

single NPU’s memory. DLRM uses data-parallel partitioning for

its MLP layers, while its sparse features (embedding tables) are

partitioned in model-parallel. To reduce the memory requirements

for DNN training, Transformer-1T uses Microsoft ZeRO optimizer

stage 2 [52]. Transformer-1T is partitioned in a model-parallel man-

ner across the first dimensions up to 128 NPUs, and data-parallel

across the remaining dimensions. The reason is that a single NPU

memory is usually within the range of 48–64GB [6, 65]. Thus, the

entire parameters of Transformer-1T (even after applying ZeRO

optimizer) can not fit on a single NPU, requiring model-parallel to

split the model.

Multi-Tenancy. We target systems that are private training

clusters dedicated to training a DNN workload at a time without

other interfering workloads
9
. Therefore, the NPU network only

observes a single workload training traffic. Such platforms are com-

mon enough to be considered separately and are widely deployed

in the industry to train critical workloads [5, 18, 48].

5.3 Target Configurations
Target Scheduling Configurations. Table 3 shows the scheduling
policies we implement. The baseline uses FIFO intra-dimension

policy as different intra-dimension policies have no effect on its

performance (discussed in Sec. 4.3).

To decompose the effect of inter-dimension and intra-dimension

scheduling, we present two flavors of Themis: i) Themis+FIFO

that uses the default FIFO intra-dimension scheduling policy, and

ii) Themis+Smallest-Chunk-First (SCF) with optimized SCF intra-

dimension policy. Moreover, for the real workloads, we implement

an Ideal method that assumes 100% network BW utilization. The

ideal method determines the upper bound for maximum achievable

speed-up and guarantees that no chunk scheduling scheme can

exceed its performance.

Themis Parameter Values. According to Fig. 6 and Algorithm

1, Themis has two important parameters to be set: the number

of chunks per collective and the Threshold (line 19 in Algorithm

1). Unless mentioned otherwise, we set the number of chunks per

collective to be 64 in all our experiments for both the baseline

and Themis. We set the Threshold to be the estimated runtime

(predicted by the Latency Model) when running an RS/AG of size

chunkSize

16
on the dimension with the lowest current load.

6 RESULTS
In Sec. 6.1, we first present the single collective microbenchmark

results and dive deep into the reasons for Themis showing benefits

over the baseline scheduling scheme. Next, in Sec. 6.2 we present

the end-to-end training iteration results for real workloads such as

ResNet-152, GNMT, DLRM, and Transformer-1T. Finally, in Sec. 6.3,

we give insights on how next generation networks should be de-

signed in terms of BW distribution for distributed training.

9
In fact, many previous collectives algorithm works have assumed the same environ-

ment (e.g., [29, 63]).

6.1 Microbenchmark Results
Fig. 8 shows the All-Reduce communication results of the baseline

and Themis, ranging from 100 MB to 1 GB. We pick this range

to represent the (relatively) large models’ collectives that are the

target of such large-scale distributed training systems. This range

also covers our target workloads collectives in Sec. 6.2.

As Fig. 8 shows, applying Themis significantly reduces the com-

munication time. When averaging across all topologies and comm

sizes, Themis+FIFO and Themis+SCF reduce the communication

time by 1.58× and 1.72× over the baseline, respectively.

To shed light on the reason behind Themis benefits, Fig. 9 shows

the per-dimension frontend activity rates for a 500MB All-Reduce

on 3D-SW_SW_SW_homo. A network dimension is called to have

activity if there is at least one chunk in that dimension for pro-

cessing at any given point in time. As can be seen, in the baseline

system dim2 and dim3 show significant underutilization. The reason

is dim1 is the bottleneck stage in the baseline pipeline scheduling

and the unbalanced stage latencies result in underutilization. Both

Themis+FIFO and Themis+SCF significantly balance the loads and

improve the utilization of dim2 and dim3. An interesting point

about Themis+FIFO is the occasional underutilization of different

dimensions. This is due to the inefficient FIFO intra-dimension

chunk processing that leads to the starvation of some chunks as

discussed in Sec. 4.3. Themis+SCF further reduces the starvation

problem as can be seen in Fig. 9.

As Fig. 8 suggests, the amount of speed-up obtained by Themis

varies by the topology. The speed-up depends on the amount of

underutilization in the baseline scheduling. For example, in the

case of 3D-SW_SW_SW_homo, and according to the discussion in

Sec. 3, the baseline was able to achieve near-optimal performance

if:

BW(dim1) = 16(dim2) = 128BW(dim3)

According to the Fig. 9, dim1 is the bottleneck. Therefore, in the

case of 3D-SW_SW_SW_homo, if we substitute BW(dim1) with

800Gbps, then we have:

800Gbps
dim1

= 16 × 50Gbps
dim2

= 128 × 6.25Gbps
dim3

Hence, 750Gbps of dim2 and 793.75Gbps of dim3 are underuti-

lized by the baseline scheduling for 3D-SW_SW_SW_homo.

Fig. 11 shows the average network utilization for variable sizes

All-Reduce sizes. In general, as the collective size increases, its

performance becomes more BW bound and the network latency

component is minimized, leading to increased BW utilization. But

the baseline scheduling cannot saturate the full BW as a result of the

fundamental mismatch between different stage latencies of the hier-

archical collective algorithms. On average, baseline, Themis+FIFO,

and Themis+SCF can achieve 56.31%, 87.67%, and 95.14% of the

network BW utilization, respectively. This indicates that Themis

is an efficient method that can exploit and leverage almost all un-

derutilized opportunities which exist in the baseline, leaving less

room for further optimizations.

Next, we study the effect of chunk granularity on the perfor-

mance of Themis. Fig. 10 shows the BW utilization for different

number chunk granularities for baseline and Themis when running

on 3D-SW_SW_SW_hetero and 4D-Ring_FC_Ring_SW topologies.

Other topologies are not included due to space limitations. For the

baseline, dim1 is the bottleneck (on both topologies) and the latency
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Figure 8: Total communication time of baseline, Themis+FIFO, and Themis+SCF for different size All-Reduces. Note that Themis+FIFO uses
FIFO intra-dimension chunk scheduling, while Themis+SCF uses the smallest available chunks for intra-dimension chunk execution.
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Figure 11: Average BW utilization of baseline, Themis+FIFO, and Themis+Smallest-Chunk-First (SCF) for different size All-Reduces.

is mostly determined by the rate dim1 receives the chunks to pro-

cess. Since dim1 is always the first dimension to receive the chunks

in the baseline scheduling, changing the chunk granularity does not

significantly affect its performance. However, increasing the num-

ber of chunks (decreasing chunk size) enables Themis to better bal-

ance the loads across the dimensions. When increasing the chunks

from 4 to 512, BW utilization for Themis+SCF (Themis+FIFO) in-

creases from 48.58% (43.13%) to 91.18% (87.81%) on average across

the two topologies. In contrast, increasing the number of chunks

per collective (reducing chunk size) might eventually reduce the in-

dividual chunk network operations to go below the max packet size

on some network dimensions. This increases the header-to-packet

ratio and hurts the network’s goodput.
We picked the default number of chunks to be 64 that achieve

95.14% BW utilization for the microbenchmark workload when

averaging across all of our target topologies and collective sizes.

This comes at the expense of increasing the header-to-packet ratio

by less than 0.5% in the worst case (i.e., 100MBAR), when compared

to 1 chunk per collective for the microbenchmark workload.

As can be seen in Fig. 10, at some points, increasing chunks

modestly reduces the BW utilization for Themis. This is mainly be-

cause of the starvation case discussed earlier. However, Themis+SCF

shows stable behavior starting from 8 chunks on all of our tested

topologies.

6.2 Real Workload Results
In this section, we present real workload results to find the effect

of Themis on the total end-to-end training iteration times which

we break into total computation + exposed communication.10. Here,
we only use Themis+SCF configuration since it was shown to be

the better approach in Sec. 6.1.

In our case and for the data-parallel partitioning, exposed com-

munication occurs at the end of back-propagation, where NPUs

communicate their locally computed weight gradients through All-

Reduce, updating their model parameters before the next iteration

starts.

Handling the model-parallel communication case is different in

DLRM vs. Transformer-1T. For DLRM, its sparse features form a

concurrent path with bottom-MLP layers, and therefore, its model-

parallel communication (in terms of All-to-All collective operation)

is performed in parallel with forward-pass, and back-propagation

of bottom-MLPs. We only wait for the embedding communica-

tion operation (i.e. all-to-all) before entering the top-MLP layers

in forward-pass, and after finishing the back-propagation to up-

date the embedding. In the case of Transformer-1T, the output-

activations/input-gradients of a (model-parallel) layer must be com-

municated (through AR or AG, depending on the layer type in

10
Exposed communication refers to the communication overhead of the training time

where the training workload is waiting for the communication to be finished.
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Figure 12: Training times for 3 iterations for ResNet-152, GNMT, DLRM, and Transformer-1T running on different topologies. Training
iteration consists of a forward-pass followed by a back-propagation step. The total latency is decomposed to the compute times (across all
layers), plus the total exposed communication latency. Compute times stem from computation during the forward pass (blue bar) or during
the backpropagation (orange bar). Exposed communication may be due to the waiting for the data-parallel communications (red bar), or
model-parallel communication (green bar), as explained in Sec. 5.2. For each workload, the latency of the baseline is normalized to 1.

Transformer) during forward-pass/back-propagation before pro-

cessing the next layer. Fig. 12 shows the training iteration times

that are decomposed into total compute time and total exposed

communication time.

For training, back-propagation computation usually takes longer

since it needs to compute for both weight gradients and input

gradients, compared to the forward-pass that only involves forward

computation. However, this is not the case for Transformer-1T since

it consists of forward-in-back-propagation steps, as a result of ZeRO

optimizer, that is counted towards forward-pass in Fig. 12.

As Fig. 12 shows, ResNet-152 and GNMT only experience data-

parallel exposed communication since they are distributed in pure

data-parallel. An interesting point is about DLRM where it has a

hybrid (data+model parallel as explained in Sec. 5.2) parallelism, but

only the data-parallel communication is counted towards exposed

communication. This is because model-parallel communication

(All-To-All) is overlapped with the forward-pass, back-propagation

operations of bottom-MLP layers. In Transformer-1T the model-

parallel communication is the dominant factor. Also, note that the

data-parallel communication of Transformer-1T uses only the last

network dimension in all of the topologies. This indicates that there

is only one scheduling possible for data-parallel communication of

Transformer-1T, meaning that baseline and Themis have the same

performance for this portion of the exposed communication. When

averaging across all topologies and workloads, applying Themis

reduces the exposed communication time by 1.65×. The speedup is

close to the Ideal systemwhich reduces the exposed communication

time by 1.72×, on average.

Such reduction in exposed communication leads to a reduction

in overall training time as well. However, the overall training itera-

tion benefit follows Amdahl’s law [23] and depends on the current

ratio between the exposed communication and total computation.

When averaging across all topologies, Themis reduces the training

iteration time by 1.49× (2.25×max), 1.30× (1.78×max), 1.30× (1.77×
max), and 1.25× (1.53× max) for ResNet-152, GNMT, DLRM, and

Transformer-1T, respectively. On the other hand, the Ideal system

achieves training iteration speed-up of 1.54×, 1.32×, 1.33×, and

1.26× for ResNet-152, GNMT, DLRM, and Transformer-1T, respec-

tively. Overall, we find Themis is close to the ideal system, leaving
little opportunity for further optimization.

6.3 Insights for Future System Design
Throughout this paper, we showed how Themis can drive the BW of

all network dimensions. This raises the question that how architects

and system engineers should distribute the network BW across

different network dimensions in the first place and whether some

design points should be prohibited since even Themis cannot help.

Consider any two dimensions dimK and dimL of the network, where

K<L and 𝑃𝐼 to be the network size in dimI. In this section, we

describe three different scenarios for BW distribution, depending

on the BW provision for dimL:

Just Enough BW Scenario. Here, the baseline (and Themis)

scheduling algorithm can fully utilize the network. As explained in

Sec. 3, the BW distribution should be:

BW(dimK) = 𝑃𝐾 × 𝑃𝐾+1 × .... × 𝑃𝐿−1 × BW(dimL)

In this case, the chunk size ratio is proportional to the BW ratio of

the two dimensions. Hence, the baseline algorithm is sufficient to

utilize both dimensions.

OverProvisioned BW Scenario.

BW(dimK) < 𝑃𝐾 × 𝑃𝐾+1 × .... × 𝑃𝐿−1 × BW(dimL)

As explained in Sec. 3, this is the case where the baseline can not

utilize the full BW of dimL. While Themis redistributes the loads

that result in full utilization of both dimensions.

UnderProvisioned BW Scenario. In this case there may be no

scheduling algorithm that can fully drive both dimensions:

BW(dimK) > 𝑃𝐾 × 𝑃𝐾+1 × .... × 𝑃𝐿−1 × BW(dimL)

In such BW distribution and with baseline scheduling, dimK is un-

derutilized while it has 𝑃𝐾 ×𝑃𝐾+1× ....×𝑃𝐿−1 more loads, compared

to dimL (dimL has underprovisioned BW).

To fully utilize both dimensions, any redistribution of chunks

should increase the load of dimK compared to dimL. However, this

only can happen if dimK has overprovisioned BW compared to
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some other dimension and this might not always be the case. For

example, in a simple 2-dimensional network case where K=1, L=2,

there is no scheduling that can fully utilize both dimensions, since

the baseline scheduling already puts the highest load on dimK, and

any other scheduling increases the load gap between dimK and

dimL (rather than reducing it). Thus, such design points should be

prohibited.

7 RELATEDWORKS
HPC Platforms. Collective communication algorithms are vastly

studied in the context of High Performance Computing (HPC) work-

loads using the MPI communication interface [1]. Many different

implementations of MPI interface are proposed in [30, 51, 59], as

well as topology-aware algorithms [26, 28, 66], and efficient col-

lective execution on shared-memory processor clusters [58, 61].

Nonetheless, these CPU-based collective algorithms either assume

BW-symmetric topology or apply hierarchical algorithms with a

fixed schedule. Moreover, collectives in HPC are usually small

(few kB-MB) unlike DL (10s of MB-GB) where they lie in the critical

path [44].

DL Training Platforms (1-dimensional). Recently, collective
communications are revisited for direct NPU-to-NPU communica-

tions for distributed DNN workloads. SCCL [29] provides topology-

aware pareto-optimal collectives for a given topology. EFLOPS [35]

proposes a BiGraph topology with optimized HDRM collective al-

gorithm. However, these works are based on BW-symmetric and

1-dimensional networks only.

DL Training Platforms (Multi-dimensional). In addition, col-
lective communication libraries such as [4, 33, 40] provide a suite of

collective algorithms optimized for various topology and collective

sizes. Authors in [32, 47, 63] take into account the physical topology

hierarchies to perform localized reduction/aggregation per each

network hierarchy. Blink [63] is a framework to generate efficient

collective algorithms based on the underlying network resources

using the concept of packing spanning trees. PLink [47] is a collec-

tive scheme that aims to cope with the heterogeneous network and

variable performance of public cloud platforms. It creates a logical

2-dimensional network based on the distance proximity of VMs,

and then applies a hierarchical collective algorithm to optimize for

heterogeneous cloud network, and dynamically changes the collec-

tive algorithm within each (logical) network dimension to adapt

to the performance variability due to other interfering workloads.

However, all of these works perform hierarchical collectives with

the static schedule of chunk operations across different network

dimensions, which is not efficient for the next-gen platforms as

discussed in this paper.

In contrast, Themis is the first method that proposes a dynamic
chunk scheduling for maximum BW utilization. Themis is also

orthogonal to all previous hierarchical collective methods, meaning

that it can leverage any proposed collective algorithm for each

dimension, while only changing the schedules of each individual

chunk.

8 CONCLUSION
In this paper, We identified that hierarchical multi-stage collective

algorithms fail to saturate the network BW of next-gen platforms

due to different pipeline stage latencies induced by different chunk

sizes and network characteristics in each network dimension. We

proposed Themis as a solution to improve the BW utilization by

dynamically scheduling the chunks to balance the loads across

different network dimensions.

Themis improves the end-to-end training iteration performance

of real workloads, such as ResNet-152, GNMT,DLRM, and Transformer-

1T, by 1.49× (2.25× max), 1.30× (1.78× max), 1.30× (1.77× max),

and 1.25× (1.53× max), respectively.
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