
An Integrated 6DoF Video Camera and System Design

ALBERT PARRA POZO, MICHAEL TOKSVIG, TERRY FILIBA SCHRAGER, and JOYCE HSU, Facebook Inc.
UDAY MATHUR, RED Digital Cinema
ALEXANDER SORKINE-HORNUNG, RICK SZELISKI, and BRIAN CABRAL, Facebook Inc.

Fig. 1. The commercial 16 camera system, an equirectangular depth map, and final color rendering produced from our system.

Designing a fully integrated 360◦ video camera supporting 6DoF head mo-
tion parallax requires overcoming many technical hurdles, including camera
placement, optical design, sensor resolution, system calibration, real-time
video capture, depth reconstruction, and real-time novel view synthesis.
While there is a large body of work describing various system components,
such as multi-view depth estimation, our paper is the first to describe a
complete, reproducible system that considers the challenges arising when
designing, building, and deploying a full end-to-end 6DoF video camera
and playback environment. Our system includes a computational imaging
software pipeline supporting online markerless calibration, high-quality
reconstruction, and real-time streaming and rendering. Most of our expo-
sition is based on a professional 16-camera configuration, which will be
commercially available to film producers. However, our software pipeline is
generic and can handle a variety of camera geometries and configurations.
The entire calibration and reconstruction software pipeline along with exam-
ple datasets is open sourced to encourage follow-up research in high-quality
6DoF video reconstruction and rendering 1.

CCS Concepts: • Computing methodologies → Camera calibration;
3D imaging;Matching; Computational photography; Virtual reality;
Reconstruction; Image-based rendering;

Additional Key Words and Phrases: Video Stitching, 6DoF

ACM Reference Format:
Albert Parra Pozo, Michael Toksvig, Terry Filiba Schrager, Joyce Hsu, Uday
Mathur, Alexander Sorkine-Hornung, Rick Szeliski, and Brian Cabral. 2019.
An Integrated 6DoF Video Camera and System Design. ACM Trans. Graph.
38, 6, Article 216 (November 2019), 16 pages. https://doi.org/10.1145/3355089.
3356555
1Available at https://github.com/facebook/facebook360_dep

Authors’ addresses: Albert Parra Pozo, app@fb.com; Michael Toksvig, tox@fb.com;
Terry Filiba Schrager, tschrager@fb.com; Joyce Hsu, joycehsu@fb.com, Facebook
Inc. Uday Mathur, uday@red.com, RED Digital Cinema; Alexander Sorkine-Hornung,
alexander.sorkine-hornung@oculus.com; Rick Szeliski, szeliski@fb.com; Brian Cabral,
bkc@fb.com, Facebook Inc.

© 2019 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3355089.3356555.

1 INTRODUCTION
Head motion parallax or full 6 Degrees of Freedom (6DoF) imagery
is an essential element of the human visual system [Aytekin and
Rucci 2012] and critical for compelling Virtual Reality immersion
into the real three dimensional world [Overbeck et al. 2018; Thatte
et al. 2016]. 6DoF imagery moves beyond traditional pure stereo
and omnistereo [Peleg et al. 2001], providing a more physically
accurate and natural immersive experience. However, designing the
hardware and software for a video capture system to support even
a modest form of full 6DoF head motion parallax involves many
technical challenges.
True immersion requires fully spherical capture that does not

compromise one part of the spherical environment over another.
For instance, horizontally arranged rigs such as those described
in [Anderson et al. 2016; Facebook 2016; Schroers et al. 2018] only
provide horizontal binocular parallax; even a slight head roll or
tilt produces incorrect and disorienting visual results. Full 6DoF
head-motion parallax requires having enough cameras arranged
to evenly capture the full spherical 4π steradians, while providing
sufficient overlap between the individual cameras’ field-of-views
to extract the necessary scene depth information. Doing so with
a minimal, practically feasible camera configuration is a complex
design problem.

In this paper, we describe our complete 6DoF 360◦ video capture
and playback system, including our design methodology, camera
architecture, and associated computational imaging and rendering
pipelines. Our software pipeline is general enough to handle a wide
variety of camera arrays.

Our paper’s contributions include:

• the design of a full 360◦ 6DoF, high quality, video hardware
and software pipeline
• a novel camera design methodology, specification, and opti-
mization procedure
• a high precision markerless intrinsic and extrinsic calibration
procedure

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356555
https://doi.org/10.1145/3355089.3356555
https://github.com/facebook/facebook360_dep
https://doi.org/10.1145/3355089.3356555

216:2 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

• a multi-view high-overlap stereo depth reconstruction system
• a generalized view synthesis pipeline for arbitrary camera
arrays including depth estimation and rendering
• open sourcing of high quality per camera footage from many
scenes and the entire software pipeline

Section 2 contains a review of related literature, followed by
a high-level overview of system components in Section 3. The
next two sections cover the camera design and camera calibration
methodology. This is followed by a description in Section 6 of our
multi-view depth reconstruction algorithm. Our corresponding real-
time image-based rendering algorithm is presented in Section 7.
Section 8 presents our results, highlighting our advantages over
traditional omni-directional stereo and our ability to composite
CGI elements. The final Section 9 concludes with a discussion of
opportunities for future work.

2 RELATED WORK
The popularity of 360◦ films stretches back to the late 1950s with
the introduction of Disney’s Circle-Vision 360◦ film America the
Beautiful at the 1958 World’s Fair in Brussels [Disney 2008]. Over
the last two decades, more compact and affordable capture rigs
have been developed (see [Uyttendaele et al. 2004] for a review),
culminating in today’s hand-held consumer 360◦ video cameras.
A large number of 360◦ videos can now be found on the Web for
viewing in VR headsets [Circle 2018; Disney 2016].

When viewed in Virtual Reality, 360◦ videos are much more
compelling if displayed stereoscopically, i.e., with different left and
right eye views. A popular way to achieve this is to encode a separate
360◦ video or panoramic still image for each eye. This approach
is called Omni-Directional Stereo (ODS), and was first suggested
by [Ishiguro et al. 1990] and [Peleg et al. 2001]. An economical
approach to capture an ODS of a still scene is to rotate a video or
still camera on an offset rig or to capture an equivalent hand-held
video. Combinations of stereo matching and/or optical flow can
then be used to create the desired left and right views [Hernandez
2016; Richardt et al. 2013].
To film dynamic omnistereo videos, multiple video cameras can

be arranged in a circular ring and then post-processed to produce the
left and right eye videos. Examples of such systems include the TiME
Lab omni-directional omnistereo multi-camera system [Weissig et al.
2012], Google’s Jump virtual reality video system [Anderson et al.
2016], and Facebook’s Surround 360 system [Facebook 2016]. It is
also possible to use a pair of compact 360◦ video cameras to generate
omnistereo video [Matzen et al. 2017], or to use a rapidly spinning
two-camera rig to produce such content [Konrad et al. 2017].
While omni-directional stereo systems are popular, they do not

support true head motion parallax and also produce artifacts when
the viewer tilts or rolls their head [Anderson et al. 2016; Matzen et al.
2017; Overbeck et al. 2018; Thatte et al. 2016]. Concentric Mosaics
[Shum and He 1999] can support limited side-to-side parallax, but
require storing a large number of video frames and still produce
distortions with forward or upward motion.

To overcome these limitations, some systems use geometric proxies
or view interpolation techniques originally developed for image-
based rendering systems. While the earliest lightfield capture and

rendering systems such as the Lumigraph [Gortler et al. 1996] and
Unstructured Lumigraph [Buehler et al. 2001] used global 3D mesh
proxies, more recent systems such as [Hedman et al. 2016; Overbeck
et al. 2018; Penner and Zhang 2017; Zitnick et al. 2004] estimate
per-camera depth maps or pair-wise flow fields [Bertel et al. 2019]
and use these to warp the source images into the desired novel
viewpoints. Other approaches focus on adaptive meshing and mesh
tracking to create temporally coherent geometry [Collet et al. 2015].
We review the related literature on multi-view stereo reconstruction
in Section 6.
To achieve high rendering quality, many of these systems use a

large number of images and cameras swept on an circular arc or
spherical surface [Bertel et al. 2019; Overbeck et al. 2018], which
restricts their use to still scenes. For example, the system built
by [Overbeck et al. 2018] takes between 30 seconds and 33 minutes
to acquire a 360◦ scene. The depth-augmented omni-stereo system
developed by [Thatte et al. 2016] uses two Ricoh Theta 360◦ video
cameras stacked above each other, and so can capture video, but
has view-dependent parallax quality, as does the system developed
by [Matzen et al. 2017].
Our system is the first to produce a high-resolution 360◦ video

experience with geometrically correct left and right eye images at
interactive rates. Like some of the previous systems, it estimates per-
input depth maps; it also de-noises these depth maps temporally
to reduce flicker (Section 6). It then uses a discontinuity-aware
rendering algorithm to eliminate ghosting artifacts due to stretched
mesh triangles (Section 7).
Creating a hemisphere of video cameras for 6DoF limited head-

motion parallax is not a new idea [Milliron et al. 2017]. Work by
[Afshari et al. 2013] describe a Panoptic camera composed of 100
VGA CMOS sensors arranged in a hemispherical grid. Similar in
spirit to subsequent lightfield cameras it used small baseline of
many VGA video cameras to capture a hemisphere of data. It differs
from our approach in that they optimized for angular light field
resolution over spatial resolution. As described below, we make
a fundamentally different trade-off for greater spatial resolution
and lower component count, which increases the overall system
reliability and image quality.

3 OVERVIEW
Taking a blank-sheet approach and learnings from several earlier
prototype systems, we stepped back and asked what it would take
to design a camera taking into account numerous factors, including
optimal camera placement, overlap, field of view, large head-box
parallax, resolution, ruggedness, thermal design, streaming, calibra-
tion, depth reconstruction, and real-time rendering. We designed it
to be up and running within 30 minutes2 from unboxing to record-
ing - something we’ve tested and achieved. However, meeting all
of these competing design parameters comes at a cost. Our rig is
1 meter in diameter and weighs ∼ 37kg and is not portable, but is
relatively easy for two grips to handle and move around on set -
again something we’ve actually tested.

2Most professional cameras take around 10 minutes to setup.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:3

In this section, we provide a high level overview of key design
considerations. In Section 4 we then dive deeper into the technical
contributions of this work.

3.1 Camera Placement
An important insight that guided our early design work is that
there is no computational reason to axially align the cameras. All
previous multi-camera designs have aligned the cameras in a regular
arrangement. It is conceptually simpler if you use rectilinear lenses
arranged in a regular pattern, e.g., a grid [Levoy and Hanrahan 1996],
since epipolar curves are lines and camera-to-camera projections
are affine homographies. This approach optimizes for the ease of
computation, system reasoning, and algorithm design.

By relaxing this constraint, we instead optimize for the best place-
ment of rays or pixels with the least amount of hardware to ac-
complish the ultimate goal of the system, namely to compute novel
views from captured video frames. At first glance, this seems like
it would place a large software burden. But as we demonstrate in
Section 6, it is no harder with the appropriate software abstractions
to work with arbitrary non-linear camera mappings while incurring
only a modest additional computational overhead.

A generalized non-linear camera mapping considerably increases
options. Specifically, combining the concept of arbitrary camera
placement with fisheye wide angle, f -theta lenses increases overlap
and minimizes camera count. Minimizing camera count is not just
a cost consideration, but also increases overall system reliability.

3.2 Mechanical Design Considerations
A complete camera design must consider workflow and practical
usage scenarios. Since the design was targeted at cinematographers,
the camera had to fit into existing on-set environments. We took nu-
merous design steps to ensure our camera met the rigorous demands
of on-set workflows, as shown in Figure 2. Our hardware needs to
be physically sound and rugged. We conducted finite element simu-
lations to ensure that no modal or resonant frequencies existed that
would interfere with the video recording. We studied physical stress
knowing that the weight of 16 professional cameras and electronics
could warp or bend the cameras and their rigging. For instance, if
mounted sideways for hours, the metal chassis could fatigue, bend
or sag. The internal spherical core could only be manufactured with
state-of-the-art synchronous machining technology to maintain a
tolerance of 10 arc-minutes from sensor to sensor.
Physically packing numerous cameras close together and com-

pressing high resolution video generates significant heat. The main
thermal challenge is to control each sensor’s individual thermal
system to maintain optimal temperature within the spherical ori-
entation, where some sensors are in the sun and others are in the
shade. Each 8K sensor module used in the 16 camera system needs
to dissipate 25 watts. With that in mind, we conducted numerical air
flow analyses using commercially available Navier-Stokes airflow
software to ensure that the camera could run for hours and not
overheat in environments up to 40◦C.

(a) (b)

(c)

Fig. 2. Double wall structure (a) and machining process (b) illustrates the
ruggedness and mechanical precision needed for a professional VR camera.
Precision milled skeleton chassis before black anodizing with a person
showing the rig’s scale (c). The entire rig diameter is 1 meter.

3.3 Optics
Optics are key component of any camera design, especially one
where they are a critical design parameter as described in Section 4.
Our choice of a 180◦ f-theta fisheye lens comes from the optimization
procedure. Another desirable property to was to maintain sharpness
across the full 180◦ field of view. Most photographic lenses allow for
as much 50% center-to-edge MTF3. MTF is often traded off against
other lens design criteria such as chromatic aberration. However,
a camera with such a wide field of view requires extracting as
much sharpness as possible. It is a desirable property for the lens
and sensor to have some aliasing in order to recover some super
resolution upon final image reconstruction. Furthermore, removing
the majority of the chromatic aberration is easily accomplished
as a per channel warp to align the red and blue channels to the
green channel. Since we need to perform a per camera rectification
for subsequent depth processing, correcting for radial chromatic
aberration comes nearly for free. Additional post-processing would
be required to handle other types of chromatic aberration.
Another system design consideration is weight and ruggedness

of the optical stack. Keeping the lens under half a kilogram was
important considering there are 16 lenses. Also minimizing the
mechanical elements in the lens was quite important. This led to a

3Modulation Transfer Function, is the common measure of optical sharpness. Both
tangential and sagittal MTF fall off [Hecht et al. 2002] are often used describe radial
and transverse radial sharpness respectively.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

216:4 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

custom Schneider designed F4 fixed focus lens weighing less than
300 grams with a hyperfocal distance of 2 meters.

3.4 Sensor Considerations
The heart of any camera system is the sensor. Based on previous
prototypes, it was clear that maximizing the Signal to Noise Ra-
tio (SNR) and thereby increasing dynamic range was critical to both
cinematic applications and for resolving depth in high dynamic
range scenes. Ideally, a cinematic sensor has a dynamic range of
well over 84dB (i.e., 14 bits of dynamic range).

Another important feature of a professional video camera is the
ability to shoot at a variety of frame rates and exposure ranges.
Specifically in immersive VR applications, too low frame rates may
induce visual discomfort. Hence, we designed our system to achieve
capture rates of at least 60fps, with an option for 30fps for lower
light situations. The creative control of motion blur vs exposure
at a given frame rate is controlled by shutter angle4. Cinematic
professionals want complete control over both shutter angle and
frame rate, something that is all the more important in our camera
since it has a fixed aperture lens.

Given the wide field of view of our lens, we needed a large high
resolution sensor reaching beyond 30 Pixels Per Degree (PPD). The
RED Helium sensor meets all of these requirements and is the main
reason RED co-designed and built the 16 camera rig. Each sensor
has 8,192 horizontal pixels and 4,320 vertical pixels. Since the lens
focal length is around 7.5mm, the actual field of view spans 6320
pixels at 180◦ horizontally and 4,320 pixels at 120◦ vertically. This
produces around 35 PPD, more than double what most VR head-
sets are capable of displaying. This provides a fair degree of future
proofing and motivated our decision for high spatial resolution. The
sensor does not have the classic anti-aliasing filter by design so that
overlapping images super sample one another. All 16 sensors are
clock synchronized and equally exposed.

Rolling shutter vs. global shutter is another design parameter that
is important in a multi-camera system. Ideally, all the cameras see
exactly the scene at the same time, something that global shutter
sensors by definition provide. Historically, global shutter technology
comes at a fairly steep trade off against dynamic range. In the end,
we opted for greater dynamic range over the benefits of a global
shutter.

One concern with rolling shutter is that a fast moving object will
appear at different times on different sensors - an inherent problem
of arranging rolling shutter cameras on sphere. In order to have
good reconstruction, at least two spatially overlapping cameras
must also be closely overlapped in time. Interestingly our increased
spatial overlap results in a significant improvement for the worse
case temporal skew. The formula for this worse case maximum
temporal skew is given by the distance between the closest two
cameras, in time, for each point on the sphere:

argmax
θ,ϕ

{argmin
c,c ′

∥tc − tc ′ ∥∀c, c ′ ∈ [C; C/c]}∀θ ,ϕ ∈ [0, 2π ; 0,π],

where C are all cameras visible in the direction of θ , ϕ and tc is
the time from the top of the frame of camera c . Using the above

4Shutter angle = 360 ∗ exposure time
frame interval

Fig. 3. An equirectangular image showing rolling shutter sweeping patterns
formed by the nearest two cameras, in time, across the entire sphere at a
distance of 2 meters. White is zero time skew, or perfect temporal overlap,
and black represents the maximum of ∼2.8ms temporal skew.

formula we get for the 16 camera arrangement clocked at 60 frames
per second a worse case temporal skew of ∼2.8ms and an average
skew of ∼0.5ms. If we take a subject running past the camera at 2
meters this translates to ∼9.3 pixels, worse case, and ∼1.6 pixels on
average.5 Figure 3 is an equirectangular image of this formula over
the sphere for the 16 camera use case. Note that there are very few
regions that reach the maximum temporal distance of ∼2.8ms.

While one could imagine simultaneously optimizing the camera
arrangement over time and space instead of just space as we describe
in Section 4, we decided not perform this optimization given the low
probability of worse case failures and very high average temporal
overlap; something confirmed in our testing and illustrated in the
Supplemental Material video. All-in-all this seemed like a more than
acceptable trade-off for choosing a higher dynamic range rolling
versus a global shutter sensor.

3.5 Live Monitoring and Data Streaming
Nearly all digital and film cameras support live monitoring feeds
so that the on-set creative team (e.g., the Director of Photography)
can watch the live action as it appears “on film.” This becomes even
more crucial for a full 360◦ camera, since none of the creative staff
can stand behind the camera. The only viable solution is to provide
a live video feed of the cameras to off-set monitors, ideally ones that
can be viewed in full 360◦. We do that by providing 4 full frame 4k
SDI video outputs from any 4 of the 16 cameras. Additionally, a 4k
composite SDI output image of all 16 cameras is provided so that
on-set staff can monitor the full camera functionality.
Simultaneous with live previewing of the capture the actual

frames must be recorded onto digital media. Compressed raw Bayer
data is streamed to a high speed SSD RAID array at approximately
90Gb/sec. This requires custom high bandwidth hardware so that
no frames are dropped.

5Assuming a spatial resolution of 35 pixels per degree and an average human running
speed of 12,000 meters per hour, or ∼0.0033 meters per ms, our worse case of ∼2.8ms
temporal skew translates to ∼0.0083 meters. So at 2 meters away we get 9.3 pixels
≈ 35 ∗ 180

π ∗ arctan
0.00833

2

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:5

3.6 System Calibration and Depth Reconstruction
The captured data stream is reconstructed into color and depth im-
ages, as described in Section 6. The depth estimation subsystem
relies on a camera description file that encodes the camera intrinsic
and extrinsic parameters. Each camera configuration has a nomi-
nal as-built description file. The marker-less calibration procedure
described in Section 5 updates the as-built description and adjusts
the parameters of the actual rig. This is critical for high quality
post-production work flows since the cameras’ actual intrinsic and
extrinsic positions will shift with use and handling. The automated
calibration procedure also acts like a system check to detect if any
camera is wildly out of specification or otherwise dysfunctional.

3.7 Rendering
The purpose of computing depth is to support high-quality novel
view synthesis in VR. We use a mesh-based depth compositing
technique described in Section 7 that relies on per-camera depth
maps and meshes. Each camera’s mesh is created from the camera’s
depth map and textured with that camera’s image. The meshes are
then rendered fromwhichever novel viewpoint one desires. This can
and does result in a variety of artifacts, discussed below, for which
we provide means to ameliorate. We opted for a more classical,
geometric depth rendering approach because it is compatible with
existing 3D CGI and compositing workflows, making it relatively
easy to integrate additional virtual content and visual effects such
as relighting and properly occluded 3D objects.

4 CAMERA DESIGN AND OPTIMIZATION
Optimizing the camera arrangement while minimizing hardware
complexity raises novel problems of exactly what is optimal and
what design and optimization strategy to follow.

The purpose of our rig is to record enough information to allow
reconstruction of novel viewpoints within a volume, which we call
the eye box. We accomplish this by providing a quasi-uniform sparse
sampling of viewpoints (camera positions) around that eye box,
which informs the first stage of our optimization, namely computing
optimal camera positions.
The second stage of our optimization orients each camera to

guarantee that every point in the scene is seen by as many cameras
as possible. In practice, we use a set of points evenly distributed on
a shell of finite radius around the camera rig as a proxy for all the
scene points, as described in Section 4.2.
Finally the remaining free variables are optimized to accommo-

date thermal constraints.

4.1 Camera Positions
A desirable design criterion, based on cost minimization and cov-
erage maximization, of a rig is that it has a uniform inter-camera
distance. For example, if one were to arrange the cameras in a
horizontal ring, one would space them equally to provide a good
sampling of viewpoints in a horizontal plane. This would provide
the ability to reconstruct high-quality novel viewpoints within a
2-dimensional disc encompassing the camera ring. As the novel
viewpoint moves above or below the plane of this disc, however,
the quality of the reconstruction will deteriorate because unseen

(a) (b)

Fig. 4. Camera placement determined by the Thomson simulator for the 16
camera rig (a) and portion of the sphere seen by a single camera (b)

volumes become visible above or below every horizontal edge. In
other words, the eye box is flat.

To support novel viewpoints within a volume and not just a plane,
the cameras must sample viewpoints that are evenly distributed
near the surface of that volume. This leads to our design, which
distributes the cameras uniformly across the surface of a sphere.
It is obvious how to uniformly distribute, e.g., 4 cameras on a

sphere: Simply place a camera at each vertex of a tetrahedron. Less
obvious is what happens when you want to add more cameras. One
might think the solution is to place them on the faces or vertices of
well known 3D solids, but solids don’t exist for all camera counts
such that they meet our equidistant placement criterion. In fact,
only 4 of the Johnson solids meet the criterion: 4, 6, 12, and 24.

The general problem is one of placing n cameras on a sphere such
that they have approximately equal baseline to all nearest neighbors.
This is analogous to a well-known physics problem known as the
Thomson problem [Weisstein 1998]. It was formulated in 1904 as
a means to determine how electrons would distribute themselves
on a sphere as they repel each other according to Coulomb’s law. A
general closed form solution has only been worked out for a handful
of cases.

We therefore solve the nonlinear optimization problem

argmin
∑
(p,q)∈S

D(p,q) (1)

numerically [Ridgway and Cheviakov 2018], with D(p,q) represent-
ing the Coulomb force between each pair of camera positions on
the sphere S , to find the camera placement that meets our uniform
baseline requirement. For this we used Ceres Solver [Agarwal et al.
2012].

This optimization works for arbitrary n, but as we discuss below,
the 16 camera arrangement meets all of criteria for overlapping
coverage, while at the same time the power of two also provided a
nice match to the underlying data path logic needed to aggregate
the massive amount of data being generated.

The resulting 16 camera system has a tetrahedral symmetry, with
4 neighborhoods surrounded by 6 cameras, and 12 neighborhoods
surrounded by 5 cameras, as shown in Figure 4a.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

216:6 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

4.2 Camera View Optimization
Once we have chosen the camera positions to meet our baseline
uniformity requirement, we must determine the optimal camera
orientation by twisting each camera around its optical axis. Twisting
obviously makes no difference if the entire image circle fits on
the sensor. As described below, we specify a 180◦ field of view to
optimize for view overlap, but required a large, cropped image circle
to preserve sensor resolution. This lens produces an image circle
that extends above and below the sensor. A single camera thus has
a view of a hemisphere that is missing a segment from the top and
the bottom, as shown in Figure 4b.
When the camera sees only part of the image circle, twisting

it around the optical axis changes which part of the hemisphere
it sees, and thus how it overlaps with other cameras. The total
overlap cannot be changed. However, rotating the cameras greatly
influences how evenly the overlap is distributed.
A point that is very close to the rig may not be seen by any

cameras. Conversely, points farther from the rig are visible to an
increasing number of cameras. This leaves us free to select a shell
radius at which to optimize the overlap. The overlap deteriorates
inside this shell, so the selected shell radius should reflect the nearest
points that must be reconstructed with the highest fidelity.

In our approach, we seek to minimize the worst case overlap on
that shell, i.e., we seek a set of camera rotations (twists) θc that
maximizes the overlap in the worst case point on the shell:

arg max
θc

(
min
d ∈S

o(d)

)
, (2)

where o(d) is the ordinal-valued overlap function for a pointd drawn
from the set of all points on the shell S .

This search space is obviously much too large to simply explore
exhaustively. Neither the min nor the non-differentiable overlap
function lend themselves to directly using a nonlinear solver.

We begin by first softening the overlap function so that it becomes
differentiable. Instead of determining whether a point is inside,
e.g., the vertical bounds of the sensor by testing the y ∈ [−1, 1]
normalized device coordinate using a step function, we use a soft
inside test that uses a sigmoid function instead:

h(y) =
1

1 + e−k (|y |−1)
. (3)

Building the overlap function using similar soft inside tests for
horizontal and radial values x and r , i.e.,

o(d) =
∑
c

h(x(d,θc)) · h(y(d,θc)) · h(r (d,θc)) (4)

results in an overlap function that is visually similar to the original,
yet differentiable (see Figure 5).

The slope at the transition is controlled by the constant k , which
we set to k = 100. We complete the regularization process by replac-
ing the the infinity norm ℓ∞ using a finite exponent norm implied
by the min function:

min
d ∈S

o(d) = [max
d ∈S

o(d)−1]−1 = ∥o(d)−1∥ −1∞ ≈ ∥o(d)−1∥ −1p . (5)

In practice, p = 20 works well, providing a sharp enough decision
boundary while remaining numerically stable.

Fig. 5. One of our soft overlap functions shown in equirectangular projection

With the objective in a differentiable form, the problem is solv-
able using a non-linear solver (we used Ceres Solver) to optimize
over the shell. This leaves open the sampling strategy. One could
use stochastic gradient descent, which is slow. Uniform sampling
introduces structural biases that may align the cameras to the grid.
Even using a Fibonacci spiral, which seems to uniformly sample
the shell, allowed the fairly straight edges of a camera’s view to
line up with the lattice-like structure of the spiral. Instead, we use
a fast algorithm to produce green noise samples, i.e., samples that
are approximately uniformly spaced but without any structure. The
algorithm simply generates many more samples than it needs, then
iteratively rejects the surplus, starting with the points that are most
crowded. It is easy for the solver to get stuck in a local minimum,
so we solve multiple times using random initial orientations and
keep the best solution. Each solution is evaluated by sampling at
M points, where M >> N . This time the points are taken from a
Fibonacci spiral as the lattice structure can no longer torque the
solution. We use N = 3000 andM = 300, 000. We define the quality
metric to be optimized as

quality = worst + better fraction, (6)
where ‘worst’ is the overlap in theworst direction and ‘better fraction’
is the fraction of directions where the overlap is better than that.
The latter term allows us to give credit to, e.g., a solution that has
overlap 5 across 99% of the shell but only 4 in a small spot versus a
solution that has overlap 4 everywhere. The quality of the former is
4.99 and the latter is 4.00.

The solutions do not improve significantly beyond a few hundred
runs, which complete within an hour on a laptop computer.

4.3 Remaining Free Variables
The preceding sections produce a rig without scale. The overlap
will be the same for a rig with a radius of 2 or 200 mm. When
manufacturing a physical rig, however, the scale will be constrained
by the physical dimensions of the camera modules. We determined
the scale manually using a parametric CAD model.

Furthermore, each camera can be rotated 180◦ without changing
the quality of the reconstruction. We exploited this degree of free-
dom to steer the airflow from each camera module’s exhaust clear
of the intake for the other camera modules. This optimization was
also performed manually using a CAD model.
The focal length and field of view of the lens, as well as the

number of cameras, can be thought of as additional free parameters
that must be optimized. The focal length determines the size of the
image circle on the sensor, which in turn affects both the spatial
resolution measured in Pixels Per Degree (PPD) and the amount of

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:7

Table 1. Overlap quality

30 pix/deg 35 pix/deg 40 pix/deg
12 cameras 4.98477 4.40538 3.88276
14 cameras 5.89005 4.99175 4.66438
16 cameras 6.74184 5.92205 4.99726
18 cameras 7.70447 6.82917 5.94449
20 cameras 7.99949 7.65927 6.82848

Fig. 6. Overlap for our 16 camera system (equirectangular). Black is 5x,
white is 8x

potential overlap. As the focal length decreases, the image circle also
decreases, reducing the number of pixels subtended by the optical
FOV and hence reducing the PPD. On the other hand, it improves
the overlap, since less of the image circle gets cropped above and
below the sensor.
The camera count also influences the overlap. The trade-off be-

tween image circle size (i.e., PPD), camera count and overlap quality
is shown in Table 1, which depicts some of the rig designs that were
considered. Using this table, one can determine the number of cam-
eras required to achieve a desired combination of angular resolution
and overlap. Since we were seeking a good balance between camera
overlap, spatial resolution, and camera count, we chose a middle
ground of 16 cameras and 35 PPD, with close to 6x camera overlap.
Figure 6 shows the overlap for each point in a rectilinear image.
Note how most of the shell is seen by 6 or 7 cameras. More precisely,
the fractions of the shell that are seen by 5, 6, 7, and 8 cameras are
3%, 50%, 43%, and 4%, respectively.

5 CAMERA CALIBRATION
The importance of calibration in depth estimation and reconstruc-
tion is often overlooked. Accurate calibration is essential for fast
and accurate matching, and is also critical when combining recon-
structed data with computer generated imagery (CGI). While great
care was made to construct an extremely rugged, integrated, and
precise camera rig, the actual observed images deviate from the
original CAD model due to manufacturing variability. Even a small
angular error of 0.1◦ results in a 3.5 pixel error at 35 PPD. Similarly,
the lens principal point being off by 0.1 mm (100 microns) results in
a 27 pixel deviation for a 3.65 micron pixel pitch.

Given that even small changes in the intrinsic and extrinsic cam-
era parameters are significant, other mechanical variations during

(a) (b)

Fig. 7. Sample calibration image from the camera (left) and the same image
with the extracted 2D features highlighted (right)

use become important, such as temperature changes, hardware
maintenance or upgrades in the field, and rough on-set rig handling.
This demands an on-line, in-the-field calibration procedure that

is automatic and removes the need for targets or specialized proce-
dures. Fortunately, this requirement is less onerous than it sounds.
The high degree of overlap allows for marker-less calibration using
Structure from Motion (SfM) techniques similar to [Barazzetti et al.
2011; Slama 1980]. This is different from other existing systems that
need a calibration room specifically design for this purpose, such as
the Panono spherical camera [Khoramshahi and Honkavaara 2018].
Instead of fiducial markers, we find 3D features by matching 2D
features across images, as described in Section 5.1. These 3D fea-
tures, along with the ideal rig parameters, are used as input to our
bundle adjustment implementation, simultaneously finding optimal
calibrated values for the rig parameters and the 3D feature locations.
We use a standard robust bundle adjustment algorithm [Triggs et al.
1999] implemented with the Ceres Solver [Agarwal et al. 2012]. Our
final calibrated rig description updates camera position, orientation,
focal length, and principal point, while leaving the nominal radial
distortion parameters obtained from our lens simulation software
as fixed.

5.1 Feature Extraction and Matching
The first step in 3D feature extraction is finding 2D features in the
images. For each image, we create a full octave (half resolution)
image pyramid. At each scale, we use OpenCV library functions to
produce a list of features resolved to sub-pixel accuracy [Bradski
2000] and ignore any features that cannot be refined to sub-pixel
accuracy.We then check that any features detected at multiple scales
are not included more than once in the final list.
Next, we find feature correspondences between pairs of images.

During the matching phase, we use the nominal (pre-calibration)
rig parameters to direct our search for matches. We use the rela-
tive intrinsic and extrinsic geometries to pre-warp image patches
in neighboring images so that direct patch comparison becomes
possible. We also create a search window around each epipolar line
by merging small square regions sampled at a number of candidate
depth values along the epipolar line.
Features are compared using zero mean normalized cross corre-

lation (ZNCC) to generate a score. A pair of features, a reference
feature fr and an overlap feature fo , with ZNCC score s , are matched
if the following criteria are satisfied:

(1) The ZNCC match score is above a threshold of st = 0.75.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

216:8 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

(2) Neither feature has a higher ZNCC score with some other
feature.

(3) Neither feature has a ZNCC score with some other feature
that is within ∆ = 0.05 of this pair’s score. This rule helps
remove poor features (e.g. blank walls) or features that come
from repeating patterns.

The final step in 3D feature construction is feature track compu-
tation, i.e., finding correspondences between a single 3D point with
2D features from multiple cameras. This is implemented by con-
structing a pairwise match graph, where each 2D feature is treated
as a node in the graph and each pairwise match is an edge. Once
the graph is assembled, each connected subgraph is interpreted as
a single 3D feature. Each putative 3D feature is then checked to
ensure that each 2D feature comes from a unique camera. The final
assembled 3D tracks, along their corresponding 2D features, are
then used to run bundle adjustment.

6 3D RECONSTRUCTION / DEPTH ESTIMATION
Our depth estimation pipeline uses a coarse-to-fine, hierarchical
patch matching approach [Barnes et al. 2009; Roma et al. 2002; Wu
et al. 2008], with a number of extensions, which we describe in this
Section.Our depth estimation generates disparity maps for each in-
dividual camera. 6 It begins by applying a winner-take-all approach
at the coarsest level of an image pyramid to get initial estimates
from an exhaustive search over the entire depth range. At each
subsequent level it exploits camera mappings to pre-compute color
projections (Section 6.3), and it applies spatial propagation (Section
6.4), followed by random proposals (Section 6.5), geometric consis-
tency (Section 6.6), and temporal color bilateral and median filters
(Section 6.7). The disparity map estimates are then propagated to
the next (finer) level. It can also use foreground masks to improve
estimation (Section 6.8). The combination of all these steps in this
particular order result in accurate depth estimates, as explained in
Section 6.9.

While our reconstruction pipeline is based on traditional coarse-
to-fine, hierarchical patch matching, one could also apply one of the
more recent machine learning-based approaches such as [Chabra
et al. 2019; Donne and Geiger 2019; Mildenhall et al. 2019; Srinivasan
et al. 2019; Tonioni et al. 2019; Xu et al. 2019; Yang et al. 2019; Yao
et al. 2019b; Zhang et al. 2019]. Since we are open sourcing our
multi-view stereo datasets, we hope that others will investigate
whether further improvements could be obtained using these newer
approaches.

6.1 Dynamic Pyramid Scaling
The pyramid approach allows us to perform more expensive op-
erations at coarser levels (e.g., winner-takes-all) and use the finer
levels to refine disparity estimates [Barnes et al. 2009]. When con-
structing the pyramid, instead of using a constant scale factor we
compute our level scales by fitting a quadratic between the finest
and the coarsest level in log space. This results in faster level tra-
versal (fewer levels), while maintaining depth estimation accuracy.
This is because once we are at a sufficiently fine level, there is less

6 Weuse the terms depth and disparity interchangeably, where disparity is the reciprocal
of depth.

Fig. 8. Left to right: pyramid levels with a constant 0.9 scale, dynamic
pyramid levels with scales in the range [0.9, 0.5], and both pyramids on top
of each other for better comparison

information being added between levels compared to coarser levels.
Figure 8 shows what the pyramid looks like when using a dynamic
scaling approach. Our experiments show a 5x speedup on the entire
depth estimation pipeline, with negligible disparity map differences
when using dynamic pyramid scaling.

6.2 Cost Function
Our cost is a zero-mean sum of squared differences (ZSSD) between
a reference color patch and all its overlapping camera patches. The
average color is subtracted to account for lighting differences be-
tween cameras, which are non negligible when dealing with 360◦
inside-out rigs. Note that since our algorithm takes care of mapping
cameras to each other and applying any necessary scaling and ro-
tation, and because we use a small 3x3 patch window at all levels,
ZSSD alone already does a good job comparing color patches and we
do not need more complex metrics. We also compute a confidence
weight to favor color patches with more detail. The confidence is just
the inverse of the color variance of the reference patch σ 2

Pr
, which

is bounded below by an estimate of the image noise. Therefore, our
total cost is:

c =
1

σ 2
Pr

1
N − 2

∑
i ∈BN−2

ZSSD(Pr , Pi), (7)

where N is the number of overlapping cameras and BN−2 denotes
the set of N − 2 cameras after dropping the two worst scores.

6.3 Pre-computed Projections
When computing costs a square color patch in a reference image is
compared against a set of overlapping camera color patches. When
the cameras have different orientations, the patches need to be ro-
tated so that they contain the same information, as shown in Figure
9. This is an expensive operation, e.g., with nine interpolations per
overlapping camera in a 3x3 patch, and it happens at least once for
every pixel on every camera at every level during depth estimation.
This can be improved by pre-rectifying the overlapping camera
images so that they align with the reference camera image. Note
that the warp mapping between cameras only needs to be computed
once for the entire sequence, since it is content independent. Figure
10 shows a set of aligned pre-computed projections. Even though
the color projections need to be done potentially N 2 times at every
level for every image in time, where N is the number of cameras, it
is still less expensive than the original approach.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:9

Fig. 9. Rotated color patches on overlapping cameras at the right disparity
estimate

Fig. 10. Original color (left) and aligned projections of two overlapping
cameras at infinity

Fig. 11. Considered spatial propagation patterns. From left to right: near
neighbors (chosen), asterisk, sparse asterisk, and dense block

6.4 Spatial Propagation
The spatial propagation in [Bleyer et al. 2011] describes how a good
estimate can propagate its disparity across the image. However,
this forces us to have a single threaded implementation since any
pixel recursively depends on its neighbors’ estimates. In order to
parallelize the process the recursion can be replaced with a single
set of look-ups according to a spatial pattern. Figure 11 shows some
of the patterns considered. The larger the pattern the farther a good
disparity estimate can be propagated, and the denser the pattern
the more disparity candidates are considered. At the same time, the
more samples the slower is the search. The runtime per pixel during
cost computation increases linearly with the number of neighbors.
Therefore, using a 5x5 near neighbor pattern instead of a dense
block is 2.78 times faster. Our experiments showed that the "near
neighbors" pattern gave us the best accuracy to runtime ratio, with
negligible disparity map differences with respect to using a dense
block pattern. Note that while these patterns are not capable of
propagating estimates as far as the recursive methods similar results
are achieved by applying this step at each level of the pyramid.

6.5 Random Proposals
Inspired by [Barnes et al. 2009; Schönberger et al. 2016; Zheng et al.
2014] we use random proposals to find disparity improvements,
but we apply them to solve a different problem. High-frequency
components of the color images are inevitably lost at coarser levels,
and the initial winner-take-all approach is not able to estimate
their depth. As we we move down the pyramid details start to
appear and need to be re-evaluated. However, spatial propagation
cannot resolve the new details because it is based on already existing
disparities. A winner-take-all can be computationally expensive
at finer levels, so we get around it by proposing several random
disparities in a binary search fashion. For every random iteration if
a proposed disparity dp in the range [dmin,dmax] results in a better
cost than the current pixel’s disparity, di , we reduce the search
range to [min(di ,dp),max(di ,dp)]. Our experimental results show
that thin structures are usually recovered using just two random
proposals.

6.6 Geometric Consistency
When estimating depth using image-based techniques from over-
lapping camera images, it is common to encounter occlusions, es-
pecially around object edges [Bleyer et al. 2010; Kolmogorov and
Zabih 2002; Woodford et al. 2009]. These occlusions are manifested
by bad disparity estimates near depth discontinuities. These bad
estimates, or mismatches, can be detected by looking for geometric
inconsistencies between overlapping cameras, i.e. checking if other
cameras see the same disparity at the same depth. Since the dis-
parity of these mismatches mostly comes from neighbor proposals
near edges, we can assume that the right disparity is somewhere
farther away. Therefore, we replace a mismatched disparity with
the median disparity of all the overlapping cameras that see some-
thing farther away. Figure 12 shows all the mismatches found in
one of our disparity maps as well as the disparities we replaced
those mismatches with. Most of the mismatches happen around
the standing person and the ceiling lights, where there is a clear
foreground separation.

6.7 Temporal Color Bilateral and Median Filters
We use a guided color bilateral filter [Caraffa et al. 2015; He et al.
2013] at each level to smooth the disparity maps while preserving
the edges, as well as a median filter to get rid of disparity noise
caused by bad estimates. In order to ameliorate temporal artifacts
inherent in depth estimation, i.e. depth flickering, we extend our
filter window over time, using both past and future frames [Bennett
and McMillan 2005]. Figure 13 shows how our temporal filter can
help resolve very fine details on moving objects.

6.8 Foreground Masks
It is often the case that a 360◦ capture is done without moving the
camera rig, since it already covers the entire space around it. This can
be leveraged by only estimating depth on objects that are moving,
i.e. foreground pixels, and keeping background pixels untouched,
which is related to ideas in background maintenance and subtraction
[Criminisi et al. 2006; Toyama et al. 1999], as well as more recent

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

216:10 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

(a) (b) (c) (d)

Fig. 12. Left to right: color image, disparity without geometric consistency, disparity with geometric consistency, and mismatched pixels before correction

(a) (b) (c)

Fig. 13. Level 0 disparity without and with spatio-temporal filter. In the
original sequence, the hand is waving; the fingers are resolved using samples
over time

learning-based approaches to video object segmentation [Croitoru
et al. 2019; Dutt Jain et al. 2017; Maninis et al. 2018; Yao et al. 2019a].
There are several benefits to this approach:
(1) Only a small portion of the pixels are potentially considered,

which is directly proportional to the depth estimation runtime.
In our tests we see a 50%-90% speedup with respect to not
using foreground masks.

(2) Foreground pixels in a camera can be forced to only match
foreground pixels in overlapping cameras. This greatly re-
stricts the solution space and generally produces strictly bet-
ter estimation. Note that this is true if foreground pixels are
consistent between cameras, which is not usually the case
when dealing with color noise.

(3) Foreground pixel occlusions are resolved, since pixels outside
foreground objects are sent to the background. Note that mul-
tiple overlapping foreground objects do not have this benefit,
unless the different foregrounds are captured separately.

(4) Depth is more stable over time, since static pixels are as-
signed a disparity when performing depth estimation on the
background frame and kept for the entire sequence.

Note that we use foregroundmasks at every level to better propagate
disparities. Figure 14 shows the final disparity map before and after
applying the mask. Note how only 11.6% of the image is considered
during depth estimation, and occlusions around foreground objects
are resolved. Also, depth estimation is more than twice as fast. While
our depth estimation pipeline includes a conventional background
subtraction algorithm [Criminisi et al. 2006; Toyama et al. 1999], it
allows the injection of any externally generated set of masks for
flexibility.

(a) Runtime: 16.8s (b) Foreground: 11.6%

(c) Runtime: 7.5s (d)

Fig. 14. Left to right, top to bottom: level 0 disparity without foreground
masks, foreground binary mask, level 0 disparity using foreground masks,
and disparity difference map

6.9 End-to-end Pipeline
As a summary, Figure 15 shows the additive contribution of all the
steps performed during depth estimation. Note how the random
proposals allow us to resolve small objects lost at coarser levels (e.g.,
tree leaves), as well as gaps between objects (e.g., space between
the postman and his cart). Also note how we resolve most of the
occlusions using background masks. The benefits of the temporal
filter are better appreciated in the accompanying video.

7 RENDERING
The output of depth estimation is a separate depth map per color
image. Given the depth map and the corresponding camera model,
it is possible to project the color image outward to create a col-
orized point cloud corresponding to the 3D surfaces seen by the
camera. This point cloud from a single camera will often resemble a
lumpy, colorful canopy, as shown in Figure 16. To produce an image
that represents the scene as seen from a novel viewpoint, we must
combine all the point clouds.

The main challenge is reconciling contradictory and ambiguous
depth data. One traditional approach is to resolve ambiguities offline
by "fusing" the 16 point clouds into a single representation, and
then to render the resulting geometry. Our renderer instead ingests

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:11

(a) Color input (b) Winner-take-all

(c) Spatial propagation (d) Random proposals

(e) Bilateral and median filter (f) Foreground masks

Fig. 15. Sequence of steps performed during depth estimation. (15b)Winner-
take-all initializes disparity estimates to reasonable values at the coarsest
level. (15c) Spatial propagation refines disparities based on existing estimates.
(15d) Random proposals resolve small objects lost at coarser levels (e.g., tree
leaves), as well as gaps between objects (e.g., space between the postman and
his cart). (15e) Guided bilateral filtering smooths depths while maintaining
sharp edges, and median filtering removes noise in the disparity map. (15f)
Foregroundmasks resolve most of the remaining occlusions. A larger version
of all these images can be found in the Supplemental Materials.

Fig. 16. A lumpy, colorful canopy resulting from projecting a camera’s
colored depth map into 3D

the separate per-camera depth and color images and performs the
reconciliation in the GPU at render time.

7.1 Basic approach
We render each contributing point cloud as seen from the novel
viewpoint separately. This is accomplished by rendering the depth
map as a textured mesh, where the vertexes are derived by applying
the appropriate calibrated camera model to the depth map. Because
the point clouds are lumpy, overlap within a single point cloud,
i.e., where the depth map folds on top of itself, is common and is
resolved by using a standard depth test. In addition to rendering
RGB by applying the color as a texture map, we also compute a
weight (described in Section 7.2) that is stored in the alpha channel.

This produces 16 separate RGBA images, each representing the
point cloud from a single camera’s color and depth map as seen
from the novel viewpoint. The final image is simply a weighted
average of these images, and is performed on the GPU according
to Algorithm 1. An accumulation buffer (accum) is used to keep a
running total of weighted contributions (in rдb) and weights (in a)
as each point cloud is processed. Note that the weighted blending

Algorithm 1 Combine all point clouds
accum.rдba ← 0
for all point clouds do
render texture-mapped mesh w/ z-buffering −→ cloud .rдba

w ← kcloud .a

accum.a ← accum.a +w
accum.rдb ← accum.rдb +w · cloud .rдb

end for
return accumulate .rдb/accumulate .a

stage does not use z-buffering. Instead, we assume that the occlusion
relationships are correctly sorted out while rendering each warped
input view. This is almost always the case, since our cameras have
such wide fields of view that it is rare for an occluder visible in the
new view to be out of view in one of the source images.

7.2 Weighting function
Multiple meshes will contribute to each pixel in the final image. We
cannot simply average the meshes, as that would produce ghosting.
Since the depth maps are mostly in agreement, a crisper image is
obtained by letting certain contributions dominate the pixel.
To achieve this, we downweight by wcone lower-quality pixels

near the edge of each camera relative to higher-quality pixels near
the center. Specifically, the profile of this weight is an elliptic cone:

wcone(p) = max(1 − |p − c |, ϵ) (8)
Another reason to down-weight a contribution is streaking. If the

novel viewpoint happens to be exactly the field of view of one of
the cameras, each pixel from that camera will correspond to exactly
one pixel in the final image. Streaks will appear, however, if there is
a discontinuity in the depth map and the novel viewpoint is moved
to try to look behind that discontinuity, as shown in Figure 17. This
is because the triangles that straddle the discontinuity are actually
stretched between the near and the far depths. Only when seen
from the original camera viewpoint do they provide reasonable
information; when seen from the side, color and depth maps from
other cameras should be preferred.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

216:12 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

Fig. 17. Streaky triangles induced by depth discontinuities.

Fig. 18. Pixel and pre-image

To down-weight streaky triangles, we use the partial derivative
of the texture coordinate that is used to look up the color [Kopf et al.
2014]. Recall that the pre-image of a circle inscribed in a pixel is
an ellipse inscribed in a quadrilateral in the color texture, and that
the sides of the quadrilateral are the partial derivatives, as shown
in Figure 18. This ellipse represents the part of the color texture
that contributes to the final pixel. Pixels from streaky triangles have
smaller ellipses because they spread their allocated color texture
across many pixels in the final image.
Weighting the pixels by the area of the quadrilateral (i.e., the

Jacobian) might seem like a good idea. The minor axis also seems
promising, as that represents the direction in which the streaky
triangle is stretched. We are currently using the square of the minor
axis (the shaded area in Figure 18) forwstreak , as this has proven to
produce good results.

Finally, the combined down-weighting,wi , is modified to achieve
a sharper transition to reduce ghosting. We found that applying a
softmax function with a large base produces a modified weight,w ′i ,
with a transition that works well.

wi = wconewstreak

w ′i =
bwi∑
j b

w j
, where b = e30

(9)

7.3 Background matting
Even when all point clouds have been rendered, some pixels are not
properly accounted for. This happens, e.g., when the viewer leans far
to one side to look behind a person in the scene.We fill in these pixels
by using a matte which is simply the same background image that
we used during depth estimation. This process is straightforward
and surprisingly effective at removing artifacts that are otherwise
jarring.

8 RESULTS
Our rendering pipeline generates a variety of different formats
supporting multiple use case scenarios. Figure 19 shows the type of
outputs we can generate, including cubemap and equirectangular
projections, canopy snapshots, as well as combinations ready for VR
headsets, such as left-right eye renders for omnistereo and RGBD
maps for 3DoF. Figure 20 shows color and disparity snapshots of a
6DoF render at different head positions.

8.1 Depth Reconstruction
The depth reconstruction pipeline needs multi-camera overlap and
sharp images in order to estimate disparities. The camera rig ana-
lyzer used to compute camera overlaps at multiple distances (e.g.,
Figure 6) can also be used to find the theoretical minimum distance
at which at least one point in space is seen by just one camera.
This number is 0.5 meters, which is closer than half the hyperfocal
distance of 2 meters, where objects start to be acceptably sharp
for reconstruction. A video provided in the Supplemental Materi-
als shows color, disparity, and foreground mask maps of a person
moving towards the camera. The quality of the disparity starts dete-
riorating as the subject gets closer than 1.6 meters, which matches
our expectations.

8.2 Real-time playback
In order to achieve real-time 6DoF playback the color images and
meshes may need to be resized. Using 180 degree lenses images are
resized to 3k (3360x2160 in our case) to get an approximate effective
18 PPD allowed on modern VR headsets. Each camera image is then
converted to 8-bit RGBA BC7 to achieve a 6:1 compression ratio,
requiring a total of 5MB per image. The individual camera meshes
are also simplified to 150k polygons, which translates to an extra
3MB per camera. This amounts to 3.8GB/s with a 16 camera rig at
30 frames per second. The player is hosted on a desktop computer
with an NVIDIA GeForce GTX 1080 Ti GPU, and four RAID 0 NVMe
drives to achieve a rate of 4 GB/s. A video showing the range of
6DoF motion and the appearance of objects at different distances
can be found in the Supplemental Materials. Note that although
technically the head translation is bounded by the diameter of the
camera (1 meter in the video), the use of a background texture for
static regions resolves occlusions and makes stepping out of the
theoretical limit much more comfortable.

8.3 Rephotography Error
The perceptual image quality of the depth estimation results can
be quantitatively measured by using a camera’s original color as as
reference, and reconstructing a rendering of that same camera using

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:13

Fig. 19. Left: color images and estimated disparity maps. Right: top to bottom: cubemap color and disparity maps, equirectangular color and disparity maps,
color and disparity canopy snapshots

(a) Centered view (b) Negative x-axis translation (c) Positive x-axis translation

Fig. 20. Snapshots of 6DoF head movement. These are better observed in the accompanying video

the rest of the overlapping cameras, i.e., removing the reference cam-
era. The per-channel mean structural similarity (MSSIM) between
them gives us the rephotography error [Wang et al. 2004]. The re-
sulting SSIM error maps can be visually examined to understand
where the errors come from [Hedman et al. 2017; Waechter et al.
2017]. The MSSIM is computed in cubemap space to have uniform
error coverage. The camera rig MSSIM is the mean MSSIM of all
the cameras. Figure 21 shows the rephotography error results from

one of the cameras. As can be seen, the errors are mostly focused
around occlusions and small foliage. Our experiments show a me-
dian MSSIM of 91.75% on five datasets captured with a 16-camera
rig with 180° FOV lenses, 8K sensors, and an average 30 mm base-
line between cameras. These experiments were done without using
foreground masks, since the reference camera color was removed,
and it thus made sense to also discount all its associated data.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

216:14 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

Fig. 21. From left to right: original color and estimated disparity, recon-
structed color and disparity, rephotography error map. MSSIM = 93.37%.
Blue: low error, red: high error

(a) Original color (b) Depthmap

(c) Virtual background (d) Background replacement

(e) CGI elements (f) Relighting

Fig. 22. Examples of compositing and relighting

8.4 Compositing and occlusion rendering
Given the accuracy and resolution of our depthmaps and the avail-
ability of color images from multiple angles, our system allows for
high quality compositing, relighting, and occlusion rendering of the
real-world footage with virtual content, as shown in Figure 22.

8.5 Runtime
Our tests show that a single frame from our 16 camera 8K rig is
reconstructed in 1m 30s on a 6-Core Intel Xeon E5 at 3.5 GHz.
However, our depth estimation pipeline is fully parallelizable at a
frame level (including the temporal filtering), which means that
we can use as many machines as needed to render. Our system
supports local farm and cloud rendering, which allows us to render
2 minutes of 60 fps 8K footage overnight (10-12h) with 100 CPUs in
AWS using 2.9GHz Intel Xeon instances. This is especially useful
in a filmmaking environment, where it is imperative to be able to
daily process content for the director and other crew members to
view and assess the progress of the production.

(a) ODS (b) 6DoF

Fig. 23. Anaglyphs showing the difference between ODS and 6DoF as we
look up. The effect can be seen using 3D glasses.

8.6 Comparison with ODS
As mentioned earlier, one limitation of ODS projections is they
only support horizontal parallax and necessarily do not have stereo
coverage near the poles. True 6DoF output overcomes this limitation
with uniform parallax for all viewing directions and head tilt. Figure
23 illustrates this using a red/cyan anaglyph image that clearly
shows how the stereo effect is lost towards the north pole in ODS
but remains accurate in 6DoF.

9 CONCLUSION AND FUTURE WORK
We have designed, constructed, and commercially deployed a full
360◦ professional VR video capture system with an accompanying
open source reconstruction and rendering pipeline. We published
both the source code and a variety of data sets so that researchers and
developers can build on this work and the output of the commercial
cameras.

It is worth reiterating that even though we focused on the 16 cam-
era RED system all our results are reproducible on other spherical
and planar rigs. In fact we used various rigs during the development
of our system. For instance, the images in Figure 22 was done with
a 24 camera rig and the ping pong, roadhouse and sheep videos in
the Supplemental Materials were shot with a planar 4 RED Helium
camera proto-rig.
While this work was the culmination of many years of itera-

tive development, in many ways it is just the beginning. There are
numerous directions for further work.

As we designed the camera to take external genlock signals and
timecode, we envision using a constellation of these cameras, say

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

An Integrated 6DoF Video Camera and System Design • 216:15

5 cameras in a large room or set (e.g., one in the center and 4 near
the edges), to fully capture an entire volume, and allow for truly
unconstrained exploration of the reconstructed space in VR. Since
the camera locations would be known, it would be possible to re-
move them during the reconstruction process. Interesting research
challenges could include the fusion of the resulting multi-camera,
depth augmented 360 videos, optimal placement of the cameras,
and view interpolation algorithms that leverage recent advances in
learning-based view synthesis.
Data movement dominates the majority of the post processing

steps, so opportunities exist for exploiting coherence in the videos
and associated depth for data compression and reduction of com-
pute. Furthermore, the reconstruction algorithms, which currently
represent the most expensive computational step, could readily be
GPU accelerated and further improved.
We chose a geometric and depth map based approach to novel

view synthesis because of the workflow and CGI advantages af-
forded by such an approach. However, this does not preclude using
our camera and datasets for alternative image-based reconstruction,
representations, and rendering algorithms.

The ability to reliably capture and reconstruct dynamic real-world
environments opens doors for automating dataset generation for
machine learning techniques, e.g., depth reconstruction, view syn-
thesis, and potentially more sophisticated forms of dynamic scene
understanding.
Prior to our work, the hurdle for capturing real-world environ-

ments for truly immersive VR experiences has been high. We believe
that this paper significantly contributes to making such systems
and required pipelines more widely accessible.

ACKNOWLEDGMENTS
The authors would like to thank the SIGGRAPH reviewers for the
very helpful comments and useful requests for clarification. The Sup-
plemental Video was produced by David Cherry and Knox Christo-
pher - 100’s hours were provided by their team on production shoots
and post-production work. Jules Urbach and the whole OTOY team
for support and cool effects images used in the paper. Johannes Kopf
and Peter Hedman who provided insight and algorithmic improve-
ments in and around depth estimation. The whole RED engineering
and business team without which this camera could not have come
into existence. Our content production team especially Eric Cheng
who helped refine our workflow strategy. SuperSphere who per-
formed exhaustive on-set production testing to help qualify the
camera and give excellent on-set feedback. Colleen Henry who
helped with early proto-types and was a tireless advocate and sup-
porter of our effort. Finally, Brent Schnarr who spent countless
hours in pre-, post- and on-set production work - none of the videos
would have been possible without him.

REFERENCES
Hossein Afshari, Laurent Jacques, Luigi Bagnato, Alexandre Schmid, Pierre Van-

dergheynst, and Yusuf Leblebici. 2013. The PANOPTIC Camera: A Plenoptic Sensor
with Real-Time Omnidirectional Capability. Signal Processing Systems 70, 3 (2013),
305–328.

Sameer Agarwal, Keir Mierle, et al. 2012. Ceres solver. (2012).
Robert Anderson, David Gallup, Jonathan T. Barron, Janne Kontkanen, Noah Snavely,

Carlos Hernández, Sameer Agarwal, and Steven M. Seitz. 2016. Jump: Virtual Reality
Video. ACM Trans. Graph. 35, 6, Article 198 (Nov. 2016), 13 pages.

Murat Aytekin and Michele Rucci. 2012. Motion parallax from microscopic head
movements during visual fixation. Vision research 70 (2012), 7–17.

Luigi Barazzetti, Luigi Mussio, Fabio Remondino, and Marco Scaioni. 2011. Targetless
camera calibration. International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences 38, 5/W16 (2011), 8.

Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009. Patch-
Match: A randomized correspondence algorithm for structural image editing. In
ACM Transactions on Graphics (ToG), Vol. 28. ACM, 24.

Eric P. Bennett and Leonard McMillan. 2005. Video Enhancement Using Per-pixel
Virtual Exposures. ACM Trans. Graph. 24, 3 (July 2005), 845–852.

Tobias Bertel, Neill DF Campbell, and Christian Richardt. 2019. MegaParallax: Ca-
sual 360◦ Panoramas with Motion Parallax. IEEE transactions on visualization and
computer graphics 25, 5 (2019), 1828–1835.

Michael Bleyer, Christoph Rhemann, and Carsten Rother. 2011. PatchMatch Stereo-
Stereo Matching with Slanted Support Windows. In Bmvc, Vol. 11. 1–11.

Michael Bleyer, Carsten Rother, and Pushmeet Kohli. 2010. Surface stereo with soft
segmentation. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, 1570–1577.

Gary Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
Chris Buehler, Michael Bosse, LeonardMcMillan, Steven J. Gortler, andMichael F. Cohen.

2001. Unstructured Lumigraph Rendering. In ACM SIGGRAPH 2001 Conference
Proceedings, Eugene Fiume (Ed.). ACM Press / ACM SIGGRAPH, 425–432.

Laurent Caraffa, Jean-Philippe Tarel, and Pierre Charbonnier. 2015. The Guided Bilateral
Filter: When the Joint/Cross Bilateral Filter Becomes Robust. IEEE Transactions on
Image Processing 24, 4 (April 2015), 1199–1208.

Rohan Chabra, Julian Straub, Christopher Sweeney, Richard Newcombe, and Henry
Fuchs. 2019. StereoDRNet: Dilated Residual StereoNet. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

VR Circle. 2018. VR Movies in 360 Degree Virtual Reality. https://www.vrcircle.com/
virtual-reality-360-degree-movies/. (2018). Accessed: 2019-05-18.

Alvaro Collet, Ming Chuang, Pat Sweeney, Don Gillett, Dennis Evseev, David Calabrese,
Hugues Hoppe, Adam Kirk, and Steve Sullivan. 2015. High-quality Streamable
Free-viewpoint Video. ACM Trans. Graph. 34, 4, Article 69 (July 2015), 13 pages.

Antonio Criminisi, Geoffrey Cross, Andrew Blake, and Vladimir Kolmogorov. 2006.
Bilayer segmentation of live video. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 1. IEEE, 53–60.

Ioana Croitoru, Simion-Vlad Bogolin, and Marius Leordeanu. 2019. Unsupervised
Learning of Foreground Object Segmentation. International Journal of Computer
Vision 127, 9 (01 Sep 2019), 1279–1302.

Disney. 2008. Circle-Vision 360◦ . https://disney.fandom.com/wiki/Circle-Vision_360.
(2008). Accessed: 2019-05-18.

Disney. 2016. Disney Movies VR. http://www.disneymoviesvr.com/. (2016). Accessed:
2019-05-18.

Simon Donne and Andreas Geiger. 2019. Learning Non-Volumetric Depth Fusion Using
Successive Reprojections. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. 2017. FusionSeg: Learning to Combine
Motion and Appearance for Fully Automatic Segmentation of Generic Objects in
Videos. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Facebook. 2016. Facebook Surround 360. https://facebook360.fb.com/. (2016). Accessed:
2016-12-26.

Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The
lumigraph. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. ACM, 43–54.

Kaiming He, Jian Sun, and Xiaoou Tang. 2013. Guided Image Filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35, 6 (June 2013), 1397–1409.

Eugene Hecht et al. 2002. Optics. Reading, Mass.: Addison-Wesley,.
Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D

Photography. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 36, 6 (2017),
234:1–234:15.

Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable
inside-out image-based rendering. ACM Transactions on Graphics (TOG) 35, 6 (2016),
231.

Carlos Hernandez. 2016. Capture and share VR photos with Cardboard Camera, now on
iOS. https://www.blog.google/products/cardboard/cardboard-camera-ios/. (2016).

Hiroshi Ishiguro, Masashi Yamamoto, and Saburo Tsuji. 1990. Omni-directional stereo
for making global map. In Third International Conference on Computer Vision. IEEE,
540–547.

Ehsan Khoramshahi and Eija Honkavaara. 2018. Modelling and automated calibration of
a general multi-projective camera. The Photogrammetric Record (Mar 2018), 86–112.

Vladimir Kolmogorov and Ramin Zabih. 2002. Multi-camera Scene Reconstruction via
Graph Cuts. In Proceedings of the 7th European Conference on Computer Vision-Part
III (ECCV ’02). Springer-Verlag, Berlin, Heidelberg, 82–96.

Robert Konrad, Donald GDansereau, AniqMasood, and GordonWetzstein. 2017. Spinvr:
towards live-streaming 3d virtual reality video. ACM Transactions on Graphics (TOG)
36, 6 (2017), 209.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

https://www.vrcircle.com/virtual-reality-360-degree-movies/
https://www.vrcircle.com/virtual-reality-360-degree-movies/
https://disney.fandom.com/wiki/Circle-Vision_360
http://www.disneymoviesvr.com/
https://facebook360.fb.com/
https://www.blog.google/products/cardboard/cardboard-camera-ios/

216:16 • Parra, Toksvig, Schrager, Hsu, Mathur, Sorkine, Szeliski, Cabral

Johannes Kopf, Michael Cohen, and Richard Szeliski. 2014. First-person Hyperlapse
Videos. ACM Transactions on Graphics (Proc. SIGGRAPH 2014) 33, 4 (August 2014).

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques. ACM, 31–42.

K-K Maninis, Sergi Caelles, Yuhua Chen, Jordi Pont-Tuset, Laura Leal-Taixé, Daniel
Cremers, and Luc Van Gool. 2018. Video object segmentation without temporal
information. IEEE transactions on pattern analysis and machine intelligence 41, 6
(2018), 1515–1530.

Kevin Matzen, Michael F. Cohen, Bryce Evans, Johannes Kopf, and Richard Szeliski.
2017. Low-cost 360 Stereo Photography and Video Capture. ACM Trans. Graph. 36,
4, Article 148 (July 2017), 12 pages.

Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local Light Field Fusion:
Practical View Synthesis with Prescriptive Sampling Guidelines. ACM Trans. Graph.
38, 4, Article 29 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3322980

Tim Milliron, Chrissy Szczupak, and Orin Green. 2017. Hallelujah: The World’s First
Lytro VR Experience. In ACM SIGGRAPH 2017 VR Village (SIGGRAPH ’17). ACM,
Article 7, 2 pages.

Ryan S. Overbeck, Daniel Erickson, Daniel Evangelakos, Matt Pharr, and Paul Debevec.
2018. A System for Acquiring, Processing, and Rendering Panoramic Light Field
Stills for Virtual Reality. ACM Trans. Graph. 37, 6, Article 197 (Dec. 2018), 15 pages.

S. Peleg, M. Ben-Ezra, and Y. Pritch. 2001. Omnistereo: panoramic stereo imaging. IEEE
Transactions on Pattern Analysis and Machine Intelligence 23, 3 (2001), 279–290.

Eric Penner and Li Zhang. 2017. Soft 3D reconstruction for view synthesis. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 235.

Christian Richardt, Yael Pritch, Henning Zimmer, and Alexander Sorkine-Hornung.
2013. Megastereo: Constructing High-Resolution Stereo Panoramas. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2013) (2013), 1256–1263.

Wesley JM Ridgway and Alexei F Cheviakov. 2018. An iterative procedure for finding
locally and globally optimal arrangements of particles on the unit sphere. Computer
Physics Communications 233 (2018), 84–109.

Nuno Roma, José Santos-Victor, and José Tomé. 2002. A Comparative Analysis Of
Cross-Correlation Matching Algorithms Using a Pyramidal Resolution Approach.
(05 2002).

Johannes L. Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. 2016.
Pixelwise View Selection for Unstructured Multi-View Stereo. In Computer Vision –
ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (Eds.). Springer
International Publishing, Cham, 501–518.

Christopher Schroers, Jean Charles Bazin, and Alexander Sorkine-Hornung. 2018. An
Omnistereoscopic Video Pipeline for Capture and Display of Real-World VR. ACM
Trans. Graph. 37, 3 (2018), 37:1–37:13. https://dl.acm.org/citation.cfm?id=3225150

Heung-Yeung Shum and Li-Wei He. 1999. Rendering with Concentric Mosaics. In
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 299–306.

Chester C Slama. 1980. Manual of Photogrammetry. Technical Report. America Society
of Photogrammetry,.

Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng,
and Noah Snavely. 2019. Pushing the Boundaries of View Extrapolation With Multi-
plane Images. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Jayant Thatte, Jean-Baptiste Boin, Haricharan Lakshman, and Bernd Girod. 2016. Depth
augmented stereo panorama for cinematic virtual reality with head-motion parallax.
In IEEE International Conference on Multimedia and Expo, ICME 2016, Seattle, WA,
USA, July 11-15, 2016. 1–6.

Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano.
2019. Real-Time Self-Adaptive Deep Stereo. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Kentaro Toyama, John Krumm, Barry Brumitt, and BrianMeyers. 1999. Wallflower: Prin-
ciples and Practice of Background Maintenance. In Seventh International Conference
on Computer Vision (ICCV’99). 255–261.

Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon. 1999.
Bundle Adjustment — A Modern Synthesis. In International Workshop on Vision
Algorithms. Springer, 298–372.

Matthew Uyttendaele, Antonio Criminisi, Sing Bing Kang, Simon Winder, Richard
Hartley, and Richard Szeliski. 2004. Image-Based Interactive Exploration of Real-
World Environments. IEEE Computer Graphics and Applications 24, 3 (May/June
2004), 52–63.

Michael Waechter, Mate Beljan, Simon Fuhrmann, Nils Moehrle, Johannes Kopf, and
Michael Goesele. 2017. Virtual Rephotography: Novel View Prediction Error for 3D
Reconstruction. ACM Trans. Graph. 36, 1, Article 45a (Jan. 2017).

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (April 2004), 600–612.

Christian Weissig, Oliver Schreer, Peter Eisert, and Peter Kauff. 2012. The ultimate
immersive experience: panoramic 3D video acquisition. In International Conference

on Multimedia Modeling. Springer, 671–681.
Eric W. Weisstein. 1998. Thomson Problem. (1998). http://mathworld.wolfram.com/

ThomsonProblem.html Visited on 19/05/16.
Oliver Woodford, Philip Torr, Ian Reid, and Andrew Fitzgibbon. 2009. Global Stereo

Reconstruction under Second-Order Smoothness Priors. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31, 12 (Dec 2009), 2115–2128.

ChangchangWu, B. Clipp, Xiaowei Li, J. Frahm, andM. Pollefeys. 2008. 3Dmodel match-
ing with Viewpoint-Invariant Patches (VIP). In 2008 IEEE Conference on Computer
Vision and Pattern Recognition. 1–8.

Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao Su, and Ravi Ramamoorthi.
2019. Deep View Synthesis from Sparse Photometric Images. ACM Trans. Graph.
38, 4, Article 76 (July 2019), 13 pages. https://doi.org/10.1145/3306346.3323007

Gengshan Yang, Joshua Manela, Michael Happold, and Deva Ramanan. 2019. Hierar-
chical Deep Stereo Matching on High-Resolution Images. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Rui Yao, Guosheng Lin, Shixiong Xia, Jiaqi Zhao, and Yong Zhou. 2019a. Video Object
Segmentation and Tracking: A Survey. arXiv preprint arXiv:1904.09172 (2019).

Yao Yao, Zixin Luo, Shiwei Li, Tianwei Shen, Tian Fang, and Long Quan. 2019b. Recur-
rent MVSNet for High-Resolution Multi-View Stereo Depth Inference. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip H.S. Torr. 2019. GA-Net:
Guided Aggregation Net for End-To-End Stereo Matching. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-Michael Frahm. 2014. PatchMatch
Based Joint View Selection and Depthmap Estimation. In Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR ’14). IEEE Computer
Society, Washington, DC, USA, 1510–1517.

C. Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, SimonWinder, and Richard
Szeliski. 2004. High-quality video view interpolation using a layered representation.
ACM Transactions on Graphics (Proc. SIGGRAPH 2004) 23, 3 (August 2004), 600–608.

ACM Transactions on Graphics, Vol. 38, No. 6, Article 216. Publication date: November 2019.

https://doi.org/10.1145/3306346.3322980
https://dl.acm.org/citation.cfm?id=3225150
http://mathworld.wolfram.com/ThomsonProblem.html
http://mathworld.wolfram.com/ThomsonProblem.html
https://doi.org/10.1145/3306346.3323007

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	3.1 Camera Placement
	3.2 Mechanical Design Considerations
	3.3 Optics
	3.4 Sensor Considerations
	3.5 Live Monitoring and Data Streaming
	3.6 System Calibration and Depth Reconstruction
	3.7 Rendering

	4 Camera Design and Optimization
	4.1 Camera Positions
	4.2 Camera View Optimization
	4.3 Remaining Free Variables

	5 Camera calibration
	5.1 Feature Extraction and Matching

	6 3D reconstruction / depth estimation
	6.1 Dynamic Pyramid Scaling
	6.2 Cost Function
	6.3 Pre-computed Projections
	6.4 Spatial Propagation
	6.5 Random Proposals
	6.6 Geometric Consistency
	6.7 Temporal Color Bilateral and Median Filters
	6.8 Foreground Masks
	6.9 End-to-end Pipeline

	7 Rendering
	7.1 Basic approach
	7.2 Weighting function
	7.3 Background matting

	8 Results
	8.1 Depth Reconstruction
	8.2 Real-time playback
	8.3 Rephotography Error
	8.4 Compositing and occlusion rendering
	8.5 Runtime
	8.6 Comparison with ODS

	9 Conclusion and Future Work
	Acknowledgments
	References

