
CLIP-Fields: Weakly Supervised Semantic Fields
for Robotic Memory

Nur Muhammad (Mahi) Shafiullah†1 Chris Paxton2 Lerrel Pinto1 Soumith Chintala2 Arthur Szlam2

Abstract— We propose CLIP-Fields, an implicit scene model
that can be trained with no direct human supervision. This
model learns a mapping from spatial locations to semantic
embedding vectors. The mapping can then be used for a variety
of tasks, such as segmentation, instance identification, semantic
search over space, and view localization. Most importantly,
the mapping can be trained with supervision coming only
from web-image and web-text trained models such as CLIP,
Detic, and Sentence-BERT. When compared to baselines like
Mask-RCNN, our method outperforms on few-shot instance
identification or semantic segmentation on the HM3D dataset
with only a fraction of the examples. Finally, we show that
using CLIP-Fields as a scene memory, robots can perform
semantic navigation in real-world environments. Our code
and demonstrations are available here: https://notmahi.
github.io/clip-fields/

I. INTRODUCTION

Recently, a class of models for representing 3D scenes
implicitly [1] has shown great promise as a tool for computer
vision [2], [3]. These neural radiance fields (NeRFs), and
implicit neural representations more generally [4], can serve
as differentiable databases of spatio-temporal state that can
be used by robots for scene understanding, SLAM, and
planning [5]–[8].

Another line of recent work has shown that web-scale
weakly-supervised vision-language models (e.g. CLIP [9])
capture powerful semantic abstractions. These have proven
useful for a range of robotics applications, including object
understanding [10] and multi-task learning from demonstra-
tion [11]. These applications have been limited, however, by
the fact that these trained representations assume a single 2D
image as input; it has been an open question how best to use
these to enable 3D reasoning with all the advantages these
vision-language models have to offer.

In this work, we introduce a method for building weakly
supervised semantic neural fields, called CLIP-Fields. The
key idea is to build a mapping from locations in space
g(x, y, z) : R3 → Rd that serves as a generic differentiable
spatial database. The database is augmented with “modal-
ity” specific heads that interface g to off-the-shelf weakly-
supervised language and vision models, which are used to
train g and the heads. We assume that we have access to
depth images of the scene of interest, and approximately, the
corresponding 6D camera poses. From these, we train CLIP-
Fields with a contrastive loss that penalizes mismatches

1. New York University
2. FAIR Labs
† Corresponding author, email: mahi@cs.nyu.edu

Web-pretrained Model Supervision

Implicit CLIP Field

Warm up 
my lunch

Query Robot memory retrievalSemantic

Representation

Fig. 1: Our approach, CLIP-Fields, integrates multiple views of a
scene and can capture 3D semantics from relatively few examples.
This results in a scalable 3D semantic representation that can
be used to infer information about the world from relatively few
examples and functions as a 3D spatial memory for a mobile robot.

between the vector output of the modality-specific head at
the back-projected point in space corresponding to a pixel in
an image, and the web-image-trained vectors corresponding
to the location in the image; but encourages differences with
vector representations of other images and regions of space.

Thus, from the point of view of a robot using CLIP-
Fields as a spatial database for scene-understanding, training
g itself can be entirely self-supervised – the full pipeline,
including training the underlying image models, need not
use any explicit supervision. On the other hand, as we will
show in our experiments, the spatial database g can naturally
incorporate scene-specific labels, if they are available.

We demonstrate our method quantitatively on instance
segmentation and identification. Furthermore, we give qual-

https://notmahi.github.io/clip-fields/
https://notmahi.github.io/clip-fields/


itative examples of image-view localization, where we need
to find the spatial coordinates corresponding to an image and
localizing text descriptions in space. Finally, we demonstrate
the use of CLIP-Fields as a differentiable geometric database
for a real robot by having the robot move to look at various
objects in 3D given simple natural language commands. In
each of these settings, we show how our approach can encode
scene-specific semantic information with very few, or even
zero, human-labeled examples.

II. RELATED WORK

Much recent progress on vision-language navigation prob-
lems such as ALFRED [12] or RXR [13] has used spatial
representations or structured memory as a key component to
solving the problem [14]–[17]. HLSM [15] and FiLM [14]
are built as the agent moves through the environment, and
rely on a fixed set of classes and a discretization of the world
that is inherently limiting. In addition, these works assume
a novel environment at each episode, which is not always
the case – a real assistant robot might explore the same
environment many times. Other representations [16] do not
allow for 3D spatial queries, or rely on accurate object detec-
tion and segmentation [17]. However, there is a recent trend
towards using NeRF-inspired representations as the spatial
knowledge base for robotic manipulation problems [6], [8].

Recent works have shown that it is possible to use super-
vised web image data for self-supervised learning of spatial
representations. Our work is closely related to [18], where
the authors show that a web-trained detection model, along
with spatial consistency heuristics, can be used to annotate a
3D voxel map. That voxel map can then be used to propagate
labels from one image to another. Other works, for example
[19], use models specifically trained on indoor semantic
segmentation to build semantic scene data-structures.

As in [2], [20], [21], we use a mapping (parameterized by
a neural network) that associates to an (x, y, z) point in space
a vector with semantic information. In those works, the labels
are given as explicit (but perhaps sparse) human annotation,
whereas, in this work, the annotation for the semantic vector
are derived from weakly-supervised web image data.

Several works [10], [11] have shown how features from
weakly-supervised web-image trained models like CLIP [9]
can be used for robotic scene understanding. Most closely
related to this work is [22], which uses CLIP embeddings to
label points in a single-view 3D space via back-projection.
In that work, text descriptions are associated with locations
in space in a two step process. In the first step, using an
ViT-CLIP attention-based relevancy extractor, a given text
description is localized in a region on an image; and that
region is back-projected to locations in space (via depth
information). In the second step, a separately trained model
decoupled from the semantics converts the back-projected
points into an occupancy map. In contrast, in our work,
CLIP embeddings are used to directly train an implicit map
that outputs a semantic vector corresponding to each point
in space. One notable consequence is that our approach
integrates semantic information from multiple views into the

spatial memory; for example in Figure 5 we see that more
views of the scene lead to better zero-shot detections.

Cohen et al. [23] looks at personalizing CLIP for specific
users and rare queries, but does not build 3D spatial rep-
resentations conducive to robotics applications, and instead
functions on the level of individual images.

III. APPROACH

In this section, we describe the components of our seman-
tic scene model, and how they connect with each other.

A. Dataset Creation

We assume access to a series of RGB-D images of a
scene alongside odometry information, i.e. the approximate
6D camera poses while capturing the images. To train our
model, we first preprocess such scene dataset by converting
each of our depth images to pointclouds in world coordinates
using the camera intrinsic and extrinsic matrices. Next,
we label each of the points in the pointcloud with their
possible representations. When no human annotations are
available, we use web-image trained semantic segmentation
models on our RGB images. We choose Detic [24] as our
segmentation model since it can work with an open label
set directly using CLIP embeddings. However, this model
can freely be swapped out for any other pretrained detection
or segmentation model. When available, we can also use
semantic or instance segmentations with labels from humans.

In both cases, we derive a set of detected objects with
language labels in the image, along with their label masks
and potentially confidence scores. We back-project the pixels
included in the the label mask to the world coordinates using
our point cloud. We label each back-projected point in the
world with the associated language label and label confidence
score. Additionally, we label each back-projected point with
the CLIP embedding of the view it was back-projected from
as well as the distance between camera and the point in that
particular point. Note that each point can appear multiple
times in the dataset from different training images.

Thereby, we get a dataset with two sets of labels from
our collected RGB-D frames and odometry information. One
set of label is language-based, Dlabel = {(P, labelP , confP )}
where labelP and confP are just detector-given label and the
confidence score to such label for each point. The second
set of labels is visual, Dimage = {(P, clipP , distP )}, where
clipP is the CLIP embedding of the image point P was back-
projected from, and distP is the distance between P and the
camera in that image. We then train CLIP-Fields to combine
the representations, encoding the points’ semantic and visual
properties in g.

B. Model Architecture

Our implicit scene model can be divided into two compo-
nents: a trunk g : R3 → Rd, which maps each location
(x, y, z) to a representation vector, and individual heads,
one for each one of our objectives, like language or visual
representation retrieval. See Figure 2 for an overview.



(x, y, z)

Spatial 
locations

Multiresolution

hash encoding

Location 
vector

Objective 
mapping head

Semantic label representation

CLIP visual representation

One-hot instance ID

Semantic 
representations

Fig. 2: Model architecture for CLIP-Fields. We use a Multi-
resolution Hash Encoder [25] to learn a low level spatial representa-
tion mapping R3 → Rd, which is then mapped to higher dimensions
and trained with contrastive objectives.

We parameterize g as a Multi-resolution Hash Encoding
as introduced in [25], with d = 144. We use the Multi-
resolution Hash Encoding over other implicit field represen-
tations because they train relatively faster while maintaining
flexibility between local and global structures, unlike purely
voxel-based encodings. The objective-specific heads are sim-
ple two-layer MLPs with ReLU nonlinearities that map the
144 dimensional outputs of g into higher dimensions which
depend on the associated objective. These include heads that
outputs a vector that matches a natural language description
of what is at the point in space, and headv that matches
the visual appearance of the object occupying that point in
space. Optionally, we can include an instance identification
head whenever we have the appropriate labels to train it.

C. Objectives

Our implicit scene model can be simultaneously trained
with multiple objectives. Each objective is trained as an
implicit function that maps from real world locations in R3

to the objective space. We use the following objectives in
training our model:
Semantic Label Embedding: This function encodes the
semantic information of a 3D point as a n-dimensional
representation vector. We train this using the assigned natural
language labels to each point. We first convert each label to a
semantic vector using a pre-trained language model trained to
compare semantic similarity, such as CLIP [9] or Sentence-
BERT [26]. In this paper’s experiments we used Sentence-
BERT for these language features, giving us n = 768.
Visual Context Embedding: This function encodes the
language-aligned visual context of each point into a single
vector, akin to CLIP [9]. We define the visual context of each
point as a composite of the CLIP embedding of each RGB
frame this point was included in, weighted by the distance
from camera to the point in that frame. If it is possible to do
so from the given annotation, we limit the image embedding
to only encode what is in the associated object’s bounding
box. In this paper’s experiments, we use the CLIP ViT-B/32
model, giving the visual features 512 dimensions.
Auxilary objectives like Instance Identification: This op-
tional head projects the point representation to a one-hot
vector identifying its instance. We use this projection head
only in the cases where we have human labeled instance
identification data, and the projection dimension is number
of identified instances, plus one for unidentified instances.

These objectives are trained with a contrastive loss, similar
to CLIP [9]. While training the contrastive loss objective, we
also take into consideration the associated label weights. For
the contrastive loss calculation, the loss is weighted by the
semantic label confidence or negative exponential of distance
from camera to point. Additionally, as is standard practice,
we scale the dot product of the predicted embedding and the
ground truth embedding by a learned temperature value.

Mathematically, let us assume that P is the point where
we are calculating the loss, P− are points with a different
semantic label, f = heads ◦ g is the associated semantic
encoding function, F is a pre-trained semantic language
encoder, c is the confidence associated with the label at P ,
and t is a temperature term, then the semantic label loss is:

LL(P, f(P )) = −c log
exp

(
f(P )TF(labelP )/t

)∑
P− exp (f(P )TF(labelP−)/t)

Similarly, given CLIP visual embedding Cs associated with
the points, the mapping h = headv ◦ g, and the distance
between camera and the positive point dP , the visual context
loss LC, is:

LC(P, h(P )) = −e−dP log
exp

(
h(P )T CP /t

)∑
P− exp (h(P )T CP−/t)

,

Finally, instance identification one-hot vectors are trained
with a simple cross-entropy loss LI .

Then, the final loss for CLIP-Fields becomes

L = αLL + βLC + γLI

where α, β, γ are normalizing constants to bring the loss
values to a comparable scale.

D. Training

Our models are trained with the datasets described in
Sec. III-A. We train the projectors simultaneously with the
contrastive losses described in Sec. III-C. Under this loss,
each embedding is pushed closer to positive labels and
further away from negative labels. For the label embedding
head, the positive example is the semantic embedding of
the label associated with that point, while negative examples
are semantic embeddings of any other labels. For the visual
context embedding head, the positive examples are the em-
beddings of all images or image segments that contain the
point under consideration, while the negative examples are
embeddings of images that do not contain that point. Similar
to CLIP [9], we also note that a larger batch size helps reduce
the variance in the contrastive loss function. We use a batch
size of 12, 544 everywhere since that is the maximum batch
size we could fit in our VRAM.

IV. EXPERIMENTAL EVALUATION

We evaluate CLIP-Fields in terms of instance and semantic
segmentation in images first – to show that given good
data, it can learn meaningful scene representations. Then, we
show that, only using weak web-model supervision, CLIP-
Fields can be used as a robot’s semantic-spatial memory. Our
visual segmentation experiments are performed on a subset



of Habitat-Matterport 3D Semantic (HM3D semantics) [27]
dataset, while our robot experiments were performed on a
Hello Robot Stretch using Hector SLAM [28]. We chose
HM3D semantics as our sim testing ground since the se-
mantic labels in this dataset comes from an ad-hoc open set
per scene rather than a fixed set of labels.

A. Instance and semantic segmentation in scene images

The first task that we evaluate our model on is learning
instance and semantic segmentation of 3D environments. We
assume that we have access to a scene, a collection of RGB-D
images in it from different viewpoints, and a limited number
of them are annotated either by humans, or by a model. We
consider two cases in this scenario: one where there are some
human annotation data available, and in another where we
are completely reliant on large, web-image trained models.

Baselines: In all these segmentation tasks, we use 2D
RGB based segmentation models as our baselines. In all of
the few-shot segmentation experiments, we take a pre-trained
Mask-RCNN model with a ResNet50 FPN backbone, and a
pre-trained DeepLabV3 model with a ResNet50 backbone.
We fine-tune these models on each of our limited datasets,
and then evaluate them on the held-out set. For the RN50
FPN model, we report the mAP at [0.5-0.95] IoU range.

Evaluating CLIP-Fields: Since CLIP-Fields defines a
function that maps from 3D coordinates, rather than from
pixels, to representation vectors, to evaluate this model’s
learned representations we also have to use the depth and
odometry information associated with the image. To get
semantic or instance segmentation, we take the depth image,
using the camera matrix and odometry project it back to
world coordinates, and then query the associated points in
world coordinate from CLIP-Fields to retrieve the associated
representations with the points. These representations can
once again be projected back into the camera frame to
reconstruct the segmentation map predicted by CLIP-Fields.
Back-projecting to 3D world coordinates also lets CLIP-
Fields correctly identify visually occluded and obstructed
instances in images, which is not easy for RGB-only models.

1) Low-shot instance identification: In this setting, we as-
sume that we have access to a few images densely annotated
with an instance segmentation with associated instance IDs.
Such annotations are difficult for a human to provide, and
thus it is crucial in this setting to perform well with very
few (1-5) examples.

On this setting, we train CLIP-Fields with the provided
instance segmented RGB-D images and the associated odom-
etry data, and compare with the baseline pretrained 2D RGB
models fine-tuned on the same data.

As we can see in Figure 3, the average precision of the
predictions retrieved from CLIP-Fields largely outperforms
the RGB-models. This statement holds true whether we
normalize by the number of seen instances in the training
set or by the total number of instances in the scene.

2) Low-shot semantic segmentation: Next, we focus on a
similar setting on semantically segmenting the views from
the scene from a few annotations.

0.0

0.2

0.4

0.6

Un
no

rm
al

ize
d 

m
AP

Implicit Model
ResNet50 FPN
DeepNetV3

1 3 6 12 24 48 96
Number of labeled images

0.0

0.1

0.2

0.3

No
rm

al
ize

d 
m

AP

Fig. 3: Mean average precision in instance segmentation on the
Habitat-Matterport 3D (HM3D) Semantic dataset, (top) calculated
over only seen instances, and (bottom) calculated over all instances.

1 3 5 12 24 48 96 144
Number of labeled images

0.0

0.2

0.4

0.6
Av

er
ag

e 
Pr

ec
isi

on Implicit Model
ResNet50 FPN
DeepLabV3

Fig. 4: Mean average precision in semantic segmentation on the
Habitat-Matterport 3D (HM3D) Semantic dataset. Here, the average
precision numbers are averaged over all semantic classes.

In Figure 4, we see once again that CLIP-Fields out-
performs the RGB-based models significantly, to the point
where even with three labelled views, CLIP-Fields has a
higher AP than any of the baseline RGB models.

3) Zero-shot semantic segmentation: To examine the ben-
efits derived purely from imposing multi-view consistency
and a 3D structure over 2D model predictions, we experi-
ment with CLIP-Fields trained solely with labels from large
web-image trained models in a zero-shot settings. In this
experiment, we train CLIP-Fields only with labels given to
us by such large web models, namely Detic [24]. We get the
labels by using Detic on the unlabeled training images, and
then train CLIP-Fields on it. Besides text labels from Detic,
we also use the CLIP visual representations to augment the
implicit model, as described in Section III-C.

As a baseline, we compare the trained CLIP-Fields with
performance of the same Detic model used to label the
scene images. Both CLIP-Fields and the baseline had access
to the list of semantic labels in each scene with no extra
annotations. We see in Figure 5 that enforcing 3D structure
and multi-view consistency in our segmentation predictions
improves the test-time predictions considerably.



6 12 24 48 96 144
Number of zero-shot model labeled images

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Av
er

ag
e 

Pr
ec

isi
on Zero-shot Detic + implicit model

Zero-shot Detic

Fig. 5: Mean average precision in zero-shot semantic segmentation
on the Habitat-Matterport 3D (HM3D) Semantic dataset.

Image localizationImage query through 

CLIP embedding

Trained CLIP-Field

Fig. 6: View localization using a trained CLIP-Fields. We encode
the query image on the bottom left to its CLIP representation, and
visualize the locations whose CLIP-Fields representations have the
highest (more red) dot product with the embedded image. Lower
dot products are blue; and below a threshold are uncolored.

In all our visual segmentation experiments, we see that en-
forcing 3D consistency and structure using CLIP-Fields helps
identifying scene properties from images. Back-projecting
the rays can also help CLIP-Fields correctly identify objects
which are occluded and partially visible. This property can
be extremely helpful in a busy indoor setting where not
every object can be visible from every angle. Ability to work
with occluded views and partial information can be a strong
advantage for any embodied intelligent agent.

4) View Localization: Since CLIP-Fields is trained with
CLIP embeddings at each coordinate, we can use such
embeddings to localize an arbitrary view from the scene. To
do so, we simply find the CLIP embedding of the query
image. Then, we query the visual representation of the
points in the scene, and take the dot product between the
query representation and the point representations. Due to
the contrastive loss that CLIP was trained with, points that
have similar representations to the query CLIP embedding

Ki
tc
he

n
Li
br
ar
y

Fig. 7: Scenes for our real-world semantic navigation experiments.
The top scene is a lab kitchen and the bottom is a library/lounge.

will have the highest dot product. We can use this principle
to localize any view in the scene, as seen in Figure 6.

B. Semantic Navigation on Robot with CLIP-Fields as
Semantic-Spatial Memory

Training a CLIP-Fields with available data, whether they
are labeled by humans or pretrained models, gives us a map-
ping from real world coordinates to a vector representation
that is trained to contain their semantic and visual properties
(Section III-C). In this section, we evaluate the quality of
the learned representations by using the learned model for
downstream robot semantic navigation tasks.

1) Task setup:: We define our robot task in a 3D envi-
ronment as a “Go and look at X” task, where X is a natural
language query defined by the user. To test CLIP-Fields’s
semantic understanding capabilities, we formulate the queries
in two different categories:

• Literal queries: At this level, we choose X to be the
literal and unambiguous name of an object present in
the scene, such as “the refrigerator” or “the typewriter”.

• Visual queries: At this level, we add references to
objects by their visual properties, such as “the red fruit
bowl” or “the blue book with a house on the cover”.

• Semantic queries: At this level, we add references to
objects by their semantic properties, such as “warm my
lunch” (microwave), or “something to read” (a book).

2) Data collection and training: We ran our robot exper-
iment in two different scenes, one in the lab kitchen, and
another in the lab library (figure 7). For each of the scenes,
we collected the RGB-D and odometry data with an iPhone
13 Pro with LiDAR sensors. The iPhone recording gave us
a sequence of RGB-D images as well as the approximate
camera poses in real world coordinate. On each of these
scenes, we labelled a subset of the collected RGB images
with Detic [24] model using ScanNet200 [29] labels. Then,
we projected the depth images to find the associated world
coordinate for each pixel, and created the training dataset
with the 3D world coordinates and their associated semantic
and visual features. On this dataset, we trained a CLIP-Fields
to synthesize all the views and their associated labels.



“Blue book w/ house on cover”“Table”“Bookshelf”

“Make me a coffee”“Throw away my trash”“Warm up my lunch”“Plant w/ black pot”“Stack of plates”“Sink”
Ki
tc
he
n

“Sit down and relax”“New Yorker” “Write a novel” “Put down my novel”

Li
br
ar
y

“Red coffee machine”
Semantic queriesVisual queriesLiteral queries

Fig. 8: Examples of the robot’s semantic navigation in two different testing environments, looking at objects given different queries. The
images show the robot’s POV given the associated query, with color coded borders showing approximate correctness. The rows show
different two different scenes, top being in a lab kitchen and the bottom in our lab’s library/lounge space, shown in detail in figure 7.

Natural language 

semantic and visual queries

CLIP-Field

The shelf

The brown couch

Place for burning wood

Fig. 9: Running semantic queries against a trained CLIP-Fields.
We encode our queries with language encoders, and compare the
encoded representation with the stored representation in CLIP-
Fields to then extract the best matches.

3) Robot execution: Next, on our robot, we load the
CLIP-Field to help with the localization and navigation of
the robot. When the robot gets a new text query, we first
convert it to a representation vector. We use Sentence-BERT
to retrieve the semantic part of the query representation and
CLIP text model to retrieve the vision-aligned part of the
query representation. Then, we compare the representations
with the representations of the XYZ coordinates in the scene
to find the location in space maximizing their similarity. We
optimize the dot product between the query representation
and 3D points’ semantic and visual representations to find
the region where the dot product is maximum. We use the
robot’s navigation stack to navigate to that region, and point
the robot camera to an XYZ coordinate where the dot product
was highest. We consider the navigation task successful if the
robot can navigate to and point the camera at an object that
satisfies the query. We run about fifteen individual queries
in each environment.

4) Experiment results: In our experiments (figure 9),
we see that CLIP-Fields let the robot navigate to different
points in the environment from semantic natural language
queries. We generally observe that if an object was correctly
identified by the web-image models during data preparation,
when queried literally CLIP-Fields can easily understand
and navigate to it, even with intentional misspellings in
the query. However, if an object was misidentified during
data preparation, CLIP-Fields fails to correctly identify it
as well. For example, in row two, column two of figure 9,
the part of the floor that is identified as a “table” was
identified as a “table” by our web-image model earlier.
For semantic queries, CLIP-Fields sometimes confuses two
related concepts; for example, it retrieves the dishwasher
for both “place to wash my hand” and “place to wash my
dishes”. Finally, the visual queries sometimes put a higher
weight on the semantic match rather than visual match, such
as retrieving a white fruit bowl for ”red fruit bowl” instead
of the red bowl in the scene. However, the right object is
retrieved if we query for ”red plastic bowl”.

V. CONCLUSIONS AND FUTURE WORK

We showed that CLIP-Fields can learn 3D semantic scene
representations from little or no labeled data, relying on
weakly-supervised web-image trained models, and that we
can use these model in order to perform a simple “look-
at” task. CLIP-Fields allow us to answer queries of varying
levels of complexity. We expect this kind of 3D representa-
tion to be generally useful for robotics. For example, it may
be enriched with affordances for planning; the geometric
database can be readily combined with end-to-end differ-
entiable planners. In future work, we also hope to explore
models that share parameters across scenes, and can handle
dynamic scenes and objects.



REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “Nerf: Representing scenes as neural radiance fields
for view synthesis,” Communications of the ACM, vol. 65, no. 1, pp.
99–106, 2021.

[2] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit map-
ping and positioning in real-time,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 6229–6238.

[3] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3d-structure-aware neural scene representa-
tions,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[4] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and
M. Mukadam, “isdf: Real-time neural signed distance fields for robot
perception,” arXiv preprint arXiv:2204.02296, 2022.

[5] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3d neural
scene representations for visuomotor control,” in Conference on Robot
Learning. PMLR, 2022, pp. 112–123.

[6] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez,
P. Agrawal, and V. Sitzmann, “Neural descriptor fields: Se (3)-
equivariant object representations for manipulation,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2022,
pp. 6394–6400.

[7] Y.-C. Chen, A. Murali, B. Sundaralingam, W. Yang, A. Garg, and
D. Fox, “Neural motion fields: Encoding grasp trajectories as implicit
value functions,” arXiv preprint arXiv:2206.14854, 2022.

[8] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning
multi-object dynamics with compositional neural radiance fields,”
arXiv preprint arXiv:2202.11855, 2022.

[9] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
Conference on Machine Learning. PMLR, 2021, pp. 8748–8763.

[10] J. Thomason, M. Shridhar, Y. Bisk, C. Paxton, and L. Zettlemoyer,
“Language grounding with 3d objects,” in Conference on Robot
Learning. PMLR, 2022, pp. 1691–1701.

[11] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning.
PMLR, 2022, pp. 894–906.

[12] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 10 740–10 749.

[13] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge, “Room-
across-room: Multilingual vision-and-language navigation with dense
spatiotemporal grounding,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, Nov. 2020,
pp. 4392–4412. [Online]. Available: https://aclanthology.org/2020.
emnlp-main.356

[14] S. Y. Min, D. S. Chaplot, P. Ravikumar, Y. Bisk, and R. Salakhutdinov,
“Film: Following instructions in language with modular methods,”
arXiv preprint arXiv:2110.07342, 2021.

[15] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi, “A persistent spa-
tial semantic representation for high-level natural language instruction
execution,” in Conference on Robot Learning. PMLR, 2022, pp.
706–717.

[16] H. Wang, W. Wang, W. Liang, C. Xiong, and J. Shen, “Structured
scene memory for vision-language navigation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 8455–8464.

[17] S. Y. Gadre, K. Ehsani, S. Song, and R. Mottaghi, “Continuous scene
representations for embodied ai,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
14 849–14 859.

[18] D. S. Chaplot, M. Dalal, S. Gupta, J. Malik, and R. R. Salakhutdinov,
“Seal: Self-supervised embodied active learning using exploration and
3d consistency,” Advances in Neural Information Processing Systems,
vol. 34, pp. 13 086–13 098, 2021.

[19] S. Datta, S. Dharur, V. Cartillier, R. Desai, M. Khanna, D. Batra, and
D. Parikh, “Episodic memory question answering,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2022, pp. 19 119–19 128.

[20] S. Zhi, E. Sucar, A. Mouton, I. Haughton, T. Laidlow, and A. J.
Davison, “ilabel: Interactive neural scene labelling,” arXiv preprint
arXiv:2111.14637, 2021.

[21] S. Vora, N. Radwan, K. Greff, H. Meyer, K. Genova, M. S. Sajjadi,
E. Pot, A. Tagliasacchi, and D. Duckworth, “Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes,” arXiv
preprint arXiv:2111.13260, 2021.

[22] H. Ha and S. Song, “Semantic abstraction: Open-world 3d scene
understanding from 2d vision-language models,” arXiv preprint
arXiv:2207.11514, 2022.

[23] N. Cohen, R. Gal, E. A. Meirom, G. Chechik, and Y. Atzmon,
“” this is my unicorn, fluffy”: Personalizing frozen vision-language
representations,” arXiv preprint arXiv:2204.01694, 2022.

[24] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra, “Detecting
twenty-thousand classes using image-level supervision,” arXiv preprint
arXiv:2201.02605, 2022.

[25] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Trans. Graph., vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022. [Online].
Available: https://doi.org/10.1145/3528223.3530127

[26] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available:
https://arxiv.org/abs/1908.10084

[27] “Habitat-matterport 3d semantics dataset,” https://aihabitat.org/
datasets/hm3d-semantics/, 2022.

[28] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, November 2011.

[29] D. Rozenberszki, O. Litany, and A. Dai, “Language-grounded
indoor 3d semantic segmentation in the wild,” arXiv preprint
arXiv:2204.07761, 2022.

https://aclanthology.org/2020.emnlp-main.356
https://aclanthology.org/2020.emnlp-main.356
https://doi.org/10.1145/3528223.3530127
https://arxiv.org/abs/1908.10084
https://aihabitat.org/datasets/hm3d-semantics/
https://aihabitat.org/datasets/hm3d-semantics/

	Introduction
	Related work
	Approach
	Dataset Creation
	Model Architecture
	Objectives
	Training

	Experimental Evaluation
	Instance and semantic segmentation in scene images
	Low-shot instance identification
	Low-shot semantic segmentation
	Zero-shot semantic segmentation
	View Localization

	Semantic Navigation on Robot with CLIP-Fields as Semantic-Spatial Memory
	Task setup:
	Data collection and training
	Robot execution
	Experiment results


	Conclusions and Future Work
	References

