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ABSTRACT

End-to-end automatic speech recognition (ASR) models with a single
neural network have recently demonstrated state-of-the-art results
compared to conventional hybrid speech recognizers. Specifically,
recurrent neural network transducer (RNN-T) has shown competitive
ASR performance on various benchmarks. In this work, we examine
ways in which RNN-T can achieve better ASR accuracy via perform-
ing auxiliary tasks. We propose (i) using the same auxiliary task as
primary RNN-T ASR task, and (ii) performing context-dependent
graphemic state prediction as in conventional hybrid modeling. In
transcribing social media videos with varying training data size, we
first evaluate the streaming ASR performance on three languages:
Romanian, Turkish and German. We find that both proposed meth-
ods provide consistent improvements. Next, we observe that both
auxiliary tasks demonstrate efficacy in learning deep transformer
encoders for RNN-T criterion, thus achieving competitive results -
2.0%/4.2% WER on LibriSpeech test-clean/other - as compared to
prior top performing models.

Index Terms— recurrent neural network transducer, speech
recognition, auxiliary learning

1. INTRODUCTION

Building conventional hidden Markov model (HMM) based hy-
brid automatic speech recognition (ASR) systems include multiple
engineered steps like bootstrapping, decision tree clustering of
context-dependent phonetic/graphemic states [1], acoustic and lan-
guage model training, etc. End-to-end ASR models [2, 3, 4, 5]
use neural networks to transduce audio into word sequences, and
can be learned in a single step from scratch. Specifically, recurrent
neural network transducer (RNN-T) originally presented in [2] –
also referred to as sequence transducer – has been shown preferable
on numerous applications. For example, the model size of RNN-T
is much more compact than conventional hybrid models, being
favorable as an on-device recognizer [6, 7, 8]. It also has been
demonstrated as a high-performing streaming model in extensive
benchmarks [9, 10, 11, 12]. Such recent success has motivated
the efforts to improve RNN-T from various aspects, e.g. model
pretraining [13, 14], generalization ability on long-form audios [15],
training algorithms [7, 16], speech enhancement [17], etc.

In this work, we make an attempt on improving RNN-T via
auxiliary learning, which aims to improve the generalization ability
of a primary task by training on additional auxiliary tasks [18, 19].
While multitask learning [20] may aim to improve the performance
of multiple tasks simultaneously, auxiliary learning selectively serves
to assist the primary task and only the primary task performance
is in focus. Auxiliary learning has been studied extensively in re-
inforcement learning [18, 21], where pseudo-reward functions are
designed to enable the main policy to be learned more efficiently. In

the context of attention-based sequence-to-sequence (seq2seq) ASR
models, [22, 23] show that learning encoders with auxiliary tasks
of predicting phonemes or context-dependent phonetic HMM states
(i.e. senones [24]) can improve the primary ASR word error rate
(WER). [25] shows that using auxiliary syntactic and semantic tasks
can improve the main low-resource machine translation task.

In this paper, we consider the application of auxiliary tasks to
RNN-T based ASR. First, we design an auxiliary task to be the same
ASR task, where the transducer encoder forks from an intermediate
encoder layer, and both the primary branch and auxiliary branch per-
form ASR tasks. Note that in this way, both primary and auxiliary
branches can provide posterior distributions over output labels – char-
acters or wordpieces. Inspired by the prior works [26, 27, 28], we
exploit a symmetric Kullback–Leibler (KL) divergence loss between
the output posterior distributions of primary and auxiliary branches,
along with the standard RNN-T loss. Such mutual KL divergence loss
is expected to implicitly penalize the inconsistent gradients from the
primary and auxiliary losses with respect to their shared parameters,
and relieve the optimization inconsistency across tasks [28]. Overall,
the knowledge distilled from auxiliary tasks help a model learn better
representations shared between primary and auxiliary branches, by
enabling the model to find a more robust (flatter) minima and to better
generalize to test data [26].

Secondly, we propose an alternative auxiliary task of predicting
context-dependent graphemic states, also referred to as chenones
[29], as in standard HMM-based hybrid modeling. Similar to the
auxiliary senone classification for improving attention-based seq2seq
model [22, 23], we exploit chenone prediction for improving RNN-T
without relying on language-specific phonemic lexicon. HMM-based
graphemic hybrid ASR systems have been shown to achieve compa-
rable performance to phonetic lexicon based approaches [30, 31, 29],
and still demonstrate state-of-the-art results on common benchmarks
when compared to end-to-end models [32]. In this paper, we examine
if the context-dependent graphemic knowledge – from a decision
tree clustering of tri-grapheme HMM states – can be complementary
to the character or wordpiece (i.e. subword unit) modeling used in
end-to-end ASR [13], and if the auxiliary chenone prediction task
provides an avenue of distilling such context-dependent graphemic
knowledge into RNN-T training by providing additional discrimina-
tive information.

To evaluate our proposed methods, we first use streamable ASR
models on a challenging task of transcribing social media videos,
in both low-resource (training data size ~160 hours) and medium-
resource (~3K hours) conditions. Next, on LibriSpeech, we consider
the application of auxiliary tasks to the sequence transducers built
with deep transformer encoders.
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2. MODELING APPROACHES

In this section we begin with a review of RNN-T based ASR, as
originally presented in [2]. Then we present our proposed auxiliary
RNN-T task. Lastly, we describe the auxiliary context-dependent
graphemic state prediction task.

2.1. RNN-T

ASR can be formulated as a sequence-to-sequence problem. Each
speech utterance is parameterized as an input acoustic feature vector
sequence x = {x1 . . . xT } = x1:T , where xt ∈ Rd and T is the
number of frames. Denote a grapheme set or a wordpiece inventory
as Y , and the corresponding output sequence of length U as y =
{y1 . . . yU} = y1:U , where yu ∈ Y .

We define Ȳ as Y∪{∅}, where ∅ is the blank label. Denote Ȳ∗ as
the set of all sequences over output space Ȳ , and the element a ∈ Ȳ∗
as an alignment sequence. Then we have the posterior probability as:

P (y|x) =
∑

a∈B−1(y)

P (a|x) (1)

where B : Ȳ∗ → Y∗ is a function that removes blank symbols from
an alignment a. RNN-T model parameterizes the alignment probabil-
ity P (a|x) and computes it with an encoder network (i.e. transcription
network in [2]), a prediction network and a joint network. The en-
coder performs a mapping operation, denoted as f enc, which converts
x into another sequence of representations henc

1:T = {henc
1 . . . henc

T }:

henc
1:T = f enc(x) (2)

A prediction network f pred, based on RNN or its variants, takes both
its state vector and the previous non-blank output label yu−1 predicted
by the model, to produce the new representation hpred

u :

hpred
1:u = f pred(y0:(u−1)) (3)

where u is output label index and y0 = ∅. The joint network f join

is a feed-forward network that combines encoder output henc
t and

prediction network output hpred
u to compute logits zt,u:

zt,u = f join(henc
t , hpred

u ) (4)

P (yu|x1:t, y1:(u−1)) = Softmax(zt,u) (5)

such that the logits go through a softmax function and produce a
posterior1 distribution of the next output label over Ȳ . Finally, the
RNN-T loss function is then the negative log posterior as in Eq. 1:

LRNN-T(θ) = − logP (y|x) (6)

where θ denotes the model parameters. Note that the encoder is
analogous to an acoustic model, and the combination of prediction
network and joint network can be seen as a decoder.

2.2. Auxiliary sequence transducer modeling

The RNN-T decoder can be viewed as a RNN language model. The
RNN takes both its state vector and yu−1 to predict yu, so implicitly
predicting yu is conditioned on the whole label history y1 . . . yu−1 as
in Eq. 5. Since the label history can be very informative in predicting

1Note that, the posterior distribution in Eq. 5 can also be written as
P (yu|x1:T , y1:(u−1)), if the encoder uses global/infinite context, like a
BLSTM or non-streaming transformer network [32, 33].

Fig. 1. Illustration of the proposed auxiliary RNN-T and KL diver-
gence criteria. For the auxiliary criteria, decoder is shown in a
dashed box when it is used by the auxiliary branch to compute the
logits (Eq. 7) in the forward pass, while the decoder is not updated
in the backward pass.

the next output label, we conjecture that the posterior entropy over Ȳ
computed by Eq. 5 may be excessively reduced, resulting in encoder
undertraining. In other words, if the decoder has played a major role
in predicting each yu by such teacher forcing procedure, which can
still result in a reasonable training loss, the encoder may underfit the
input x, and the resulting generalization can be worse than a model
with an adequately trained encoder.

Additionally, gradient flow [34] through a deep neural network
architecture is difficult in general, due to the gradient vanish-
ing/exploding problem at lower layers. Although we could add
shortcut connections [35, 36] across encoder layers that would help
gradient flow through the encoder, it does not address the encoder
undertraining problem – if the posterior of Eq. 5 has been peaked at
the true label due to the strong cue from previous label history.

2.2.1. Auxiliary RNN-T criterion

An alternative proposal to increase the gradient signal is based on
connecting auxiliary classifiers to intermediate layers directly [37].
In this work, to address encoder underfitting and provide the encoder
with more backward gradients, we take the approach of connecting
an auxiliary branch to an intermediate encoder layer and applying the
same RNN-T loss function.

As in Figure 1, given an L-layer encoder network, denote henc,l

as the hidden activations of an intermediate layer l, where 1 6 l < L.
henc,l goes through a one-hidden-layer multi-layer perceptron (MLP),
parameterized by φl, and use the same decoder to compute the logits
of auxiliary branch:

zaux,l
t,u = f join(MLP(henc,l

t ), hpred
u ) (7)

Paux,l(yu|x1:t, y1:(u−1)) = Softmax(zaux,l
t,u ) (8)

such that we can apply another RNN-T objective function to this
auxiliary branch, and the overall objective function becomes:

L(θ, φ) = LRNN-T(θ) + λauxLRNN-T(θenc
shared, φ)

= − logP (y|x)− λaux logPaux,l(y|x)
(9)

where θ denotes the parameters of primary branch including the whole
encoder and decoder, and θenc

shared denotes the encoder layers 1 - l shared
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by primary and auxiliary branches, and λaux is a weighting parameter.
Note that the auxiliary branch requires a decoder to compute hpred

u

and then zaux,l
t,u . Instead of adding another decoder specifically for

auxiliary branch, we propose to share the primary decoder during
the forward pass; however, we do not update the decoder parameters
if the gradients are back propagated from the auxiliary RNN-T loss.
Because the auxiliary loss is to address the encoder underfitting issue,
decoder is not explicitly learned to fit the auxiliary objective function.

Note that for the auxiliary model, we connect a nonlinear MLP
(Eq. 7) – rather than a single linear layer – to the intermediate en-
coder layer l. Since the lower encoder layers are focused on feature
extraction rather than the meaningful final label prediction, directly
encouraging discrimination in the low-level representations is subop-
timal. This is similar to the primary branch, where additional encoder
layers of l + 1 to L are added on top of layer l; thus, adding the
MLP allows for a similar coarse-to-fine architecture, and the shared
encoder layers play a more consistent role for both branches.

Finally, when an encoder has a large network depth, we can apply
such criterion to multiple encoder layers. Denote Φ as a set of encoder
layer indices that are connected with each auxiliary criterion, and
Φ ⊆ {1 . . . L− 1}. Denote I as a binary indicator function as

I(l) =

{
1, l ∈ Φ
0, l /∈ Φ

(10)

where 1 6 l < L. Then Eq. 9 becomes

L(θ, φΦ) = LRNN-T(θ) + λauxLRNN-T(θenc
shared, φ

Φ)

= − logP (y|x)− λaux

L−1∑
l=1

I(l) logPaux,l(y|x)
(11)

2.2.2. Auxiliary symmetric KL divergence criterion

Further, prior works [26, 27, 28] show that aligning the pairwise
posterior distributions of multiple (sub)networks in a mutual learning
strategy achieves better performance than learning independently.
Thus, other than the supervised learning objective function, i.e. RNN-
T criterion, we also explore an additional symmetric KL divergence
criterion between the output posterior distributions of both branches:

LKL(θ, φΦ) =
1

T

T∑
t=1

L−1∑
l=1

1

U

U∑
u=1

I(l)
[

DKL(P (yu|x1:t, y1:(u−1))‖Paux,l(yu|x1:t, y1:(u−1))

+DKL(Paux,l(yu|x1:t, y1:(u−1))‖P (yu|x1:t, y1:(u−1))
] (12)

where the posteriors are given by Eq. 5 and 8. Such KL divergence
criterion can also guide the auxiliary branch with the supervision
signals from primary branch, as a knowledge distillation procedure.
As analyzed in [28], the gradients of multiple loss functions can be
counteractive, and such KL loss penalizes the inconsistent gradients
with respect to their shared parameters. Thus, the training objective
can be:

L(θ, φΦ) = LRNN-T(θ) + λauxLKL(θ, φΦ) (13)

However, the direct application of RNN-T criterion to the auxiliary
model can still be useful, since the auxiliary branch thus always
contributes meaningful gradients before the primary model outputs
are informative. Therefore, the overall training objective becomes:

L(θ, φΦ) = LRNN-T(θ) + λaux(LRNN-T(θenc
shared, φ

Φ) + LKL(θ, φΦ))

(14)

Fig. 2. Illustration of the proposed auxiliary context-dependent
graphemic state prediction task.

Finally, after training, we discard the auxiliary branch and there is no
additional computation overhead for ASR decoding.

2.3. Auxiliary context-dependent graphemic state prediction

In an HMM-based phonetic hybrid ASR system, the triphone HMM
states are tied via traditional decision tree clustering [1]. Such a set
of tied triphone HMM states – also referred to as context-dependent
phonetic states or senones [24] – are used as the output units for
the neural network based acoustic model. To further remove the
need of a pronunciation lexicon, context-dependent graphemic hybrid
models have been developed, and the tri-grapheme HMM states are
tied instead. Accordingly, the neural network output units become
tied tri-grapheme states, i.e. chenones [29], and the training criterion
is cross entropy (CE) loss in conventional hybrid CE models.

While RNN-T uses context-independent graphemes or word-
pieces as output units, adding the chenone prediction supervision
to encoder layers can transfer complementary tri-grapheme knowl-
edge, encouraging diverse and discriminative encoder representations.
Then we can apply such CE criterion to multiple encoder layers. Sim-
ilarly, given an L-layer encoder, denote Φ as a set of encoder layer
indices that are connected to chenone prediction, and Φ ⊆ {1 . . . L}.
Denote I as a binary indicator function, and 1 6 l 6 L. As in Figure
2, if I(l) = 1, henc,l goes through a one-hidden-layer multi-layer
perceptron (MLP)2, parameterized by φl, and then a softmax function
to provide a posterior distribution over chenone label set S:

P (st|henc,l
t ) = Softmax(MLP(henc,l

t )) (15)

where st ∈ S, and the auxiliary CE loss is

LCE(θenc
shared, φ

Φ) = − 1

T

T∑
t=1

L∑
l=1

I(l) logP (st|henc,l
t ) (16)

The overall training objective is:

L(θ, φΦ) = LRNN-T(θ) + λceLCE(θenc
shared, φ

Φ) (17)

where λce is a tunable weighting parameter.

2Note that we use a linear layer rather than a MLP for the topmost/Lth
layer, since the top encoder layer has been designed for final label prediction.
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Table 1. The amounts of audio data in hours.
Language Train Valid Test

clean noisy
Romanian 161 5.2 5.1 10.2
Turkish 3.1K 13.6 21.2 23.4
German 3.2K 13.8 24.5 24.0

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Data

We first evaluate our proposed approaches on our in-house Romanian,
Turkish and German video datasets, which are sampled from public
social media videos and de-identified before transcription. These
videos contain a diverse range of acoustic conditions, speakers, ac-
cents and topics. The test sets for each language are composed of
clean and noisy categories, with noisy category being more acousti-
cally challenging than clean. The dataset sizes are shown in Table
1. Moreover, we also perform evaluations on the public LibriSpeech
dataset [38].

Input acoustic features are 80-dimensional log-mel filterbank
coefficients with 25 ms window size, and we apply mean and variance
normalization. We apply the frequency and time masking as in the
policy LD from SpecAugment [39], with p = 0.2 on video datasets
and p = 1.0 on LibriSpeech. We perform speed perturbation [40]
of the training data, and produce three versions of each audio with
speed factors 0.9, 1.0 and 1.1. The training data size is thus tripled.
For the low-resource Romanian, we further apply another 2-fold data
augmentation based on additive noise as in [41], and the training data
size is thus 6 times the size of original train set.

3.1.2. System implementation details

For each video language, RNN-T output labels consist of a blank
label and 255 wordpieces generated by the unigram language model
algorithm from SentencePiece toolkit [42]. To provide chenone labels
(Section 2.3), forced alignments are generated via a graphemic hybrid
model [29] for each language, and the number of unique chenone
labels range from 7104 to 9272.

For video datasets, we build each RNN-T encoder based on
latency-controlled bidirectional long short-term memory (LC-
BLSTM) network [43]. Each encoder is a 5-layer LC-BLSTM
network with 800 hidden units in each layer and direction, and
dropout 0.3. Two subsampling layers with stride 2 are applied after
first and second LC-BLSTM layer. The prediction network is a
2-layer LSTM of 160 hidden units for Romanian, and 512 units
for Turkish and German, with dropout 0.3. Each joint network
has 1024 hidden units, and a softmax layer of 256 units for blank
and wordpieces. For all neural network implementation, we use
an in-house extension of PyTorch-based fairseq [44] toolkit. All
experiments use multi-GPU and mixed precision training supported
in fairseq, Adam optimizer [45], and tri-stage [39] learning rate
schedule with peak learning rate 4e−4.

For LibriSpeech, we experiment with two VGG transformer en-
coders of 24 and 36 layers as in [32], except that we use three VGG
blocks with stride 2 in the first two blocks and 1 in the third block.
Each transformer layer has an embedding dimension 512 and atten-
tion heads 8; feed-forward network (FFN) size is 2048 for 24-layer
transformer, and 3072 for the 36-layer. Wordpiece size is 1000 for

Table 2. WER results on Romanian dataset. λaux is used in Eq. 9,
13 and 14. “aux” and “kl” loss denote the auxiliary RNN-T (Sec-
tion 2.2.1) and KL divergence criterion (Section 2.2.2) respectively.

“crosslingual pretrain” denotes the encoder pretrained from a high-
resource Spanish RNN-T. WERR (%) is the unweighted average of
the respective relative WER reductions on clean and noisy test sets.

Model λaux valid clean noisy WERR
baseline – 24.0 20.5 22.0 –

0.1 23.2
+ aux loss 0.3 22.8 19.6 21.0 4.5%

0.6 23.1
0.3 22.9

+ kl loss 0.6 22.6 19.3 20.6 6.1%
0.9 22.7

+ aux + kl loss 0.3 22.5 19.1 20.8 6.1%
+ crosslingual pretrain – 19.4 15.9 17.6 21.2%
+ aux + kl loss 0.3 18.9 15.7 17.2 22.6%

Table 3. WER results on Romanian. λce is used in Eq. 17. “ce
pretrain” denotes encoder pretraining from graphemic hybrid CE
model. “ce loss” denotes auxiliary chenone prediction objective
function (Section 2.3). “mid” denotes connecting CE loss to the 3rd
(middle) encoder layer, and “top” denotes connecting CE loss to the
5th (topmost) encoder layer.

Model λce valid clean noisy WERR
baseline – 24.0 20.5 22.0 –
+ ce pretrain – 22.8 19.3 20.9 5.4%

0.3 23.2
+ ce loss, top 0.6 22.9 19.8 21.2 3.5%

0.9 23.1
0.3 22.3

+ ce loss, mid 0.6 22.0 18.5 20.3 8.7%
0.9 22.0

+ ce pretrain, ce loss, mid 0.6 21.4 17.9 19.6 11.8%
+ ce pretrain, ce loss, mid, top 0.6 21.2 17.8 19.5 12.3%

the 24-layer, and 2048 for the 36-layer, resulting in total model pa-
rameters of 83.3M and 160.3M respectively.

3.2. Auxiliary RNN-T modeling results on video datasets

We first perform experimental evaluations on the low-resource lan-
guage Romanian, and obtain the optimal λaux in Eq. 9, 13 and 14.
ASR word error rate (WER) results are shown in Table 2. For both
clean and noisy test sets, we first compute the relative WER reduc-
tion (WERR) over respective baseline as a percentage, and then take
the unweighted average of two percentages, which we refer to as an
average WERR.

As shown in Table 2, for auxiliary RNN-T loss (Eq. 9), we vary
λaux over {0.1, 0.3, 0.6}, and observe 0.3 gives the lowest WER on
valid set. So we proceed with λaux = 0.3 to decode the clean and
noisy test sets, and see an average WERR 4.5%. Similarly for the
symmetric KL divergence loss (Eq. 13), we vary λaux over {0.3, 0.6,
0.9}; we find λaux = 0.6 works best and provides an average WERR
6.1%. When combining the two objectives with λaux = 0.3 (Eq. 14),
we find it also gives an average WERR 6.1%, which is better than
using auxiliary RNN-T loss on its own.

For the low-resource scenario, one approach to address the lack
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Table 4. WER results on Turkish and German, with λaux = 0.3 and
λce = 0.6.

Turkish German
Model clean noisy WERR clean noisy WERR
baseline 17.1 18.9 – 11.6 13.0 –
+ aux loss 16.8 18.8 1.1% 11.3 12.6 2.8%
+ kl loss 16.7 18.8 1.4% 11.5 12.8 1.2%
+ aux + kl loss 16.4 18.5 3.1% 11.3 12.6 2.8%
+ crosslingual pretrain 16.6 18.6 2.3% 11.4 12.8 1.6%
+ aux + kl loss 16.1 18.1 5.0% 11.3 12.4 3.6%

+ ce pretrain 16.8 18.9 0.9% 11.5 12.8 1.2%
+ ce loss, mid 16.5 18.4 3.1% 11.3 12.5 3.2%
+ ce loss, mid, top 16.3 18.2 4.2% 11.2 12.3 4.4%

of resources are to make use of data from high-resource languages.
We thus perform crosslingual pretraining experiments with a Spanish
RNN-T model trained on 7K hours. We use the Spanish encoder
as the pretrained encoder for Romanian, and proceed with RNN-T
training as before, which provides substantial improvements as in
Table 2. While on top of crosslingual pretraining, adding auxiliary
RNN-T and KL divergence loss provides moderate gain.

We use the optimal λaux found in each condition and evaluate
the performance on Turkish and German. As shown in Table 4, the
proposed combination of auxiliary RNN-T and KL divergence loss
provides consistent improvements, which is also better than using
each individually. We use the same Spanish encoder for crosslingual
pretraining, and the improvements are much less due to the increased
training data size. Along with the proposed auxiliary RNN-T model-
ing, they combine to produce noticeable gains.

3.3. Auxiliary chenone prediction results on video datasets

Since we build graphemic hybrid systems to provide chenone labels,
we can additionally use the hybrid model as pretrained encoder for
RNN-T. As shown in [13, 14], pretraining RNN-T encoder with
connectionist temporal classification (CTC) or hybrid CE criterion
can improve performance, and we also find CE pretraining produces
an average 5.4% WERR on the low-resource Romanian as in Table 3.

For the medium-resource Turkish and German (i.e. training
data size of ~3K hours), we initially find pretraining with hybrid
CE model can provide 2 - 4% improvements with a relatively small
training mini-batch size. However, after optimizing the memory
cost by mixed precision training and function merging [7], RNN-T
training can enable larger mini-batch size, and we only observe minor
improvements 0.9 - 1.2% in Table 4.

Then we experiment with λce (Eq. 17) on Romanian. Given each
5-layer LC-BLSTM encoder, we also examine connecting chenone
prediction to 3rd (middle) layer or 5th (topmost) layer. As in Table 3,
λce = 0.6 works best in each case. While attaching chenone predic-
tion to middle layer performs better than top layer, they combine to
provide further improvements on top of CE pretraining.

We continue to evaluate the Turkish and German performance
with λce = 0.6. As in Table 4, training on both middle and top layers
for auxiliary chenone prediction outperforms training on each alone,
and produces noticeable improvements of 4.2 - 4.4% when combined
with CE pretraining.

Table 5. WER results on LibriSpeech, with 24-layer transformer
encoder and 83M total model parameters.

Model test-clean WERR test-other WERR
baseline 2.77 – 6.60 –
+ aux + kl loss 2.48 10.6% 5.62 14.8%
+ ce loss 2.42 12.6% 5.75 12.9%
+ aux + kl + ce loss 2.31 16.5% 5.26 20.3%

Table 6. Comparison of our models (with 36-layer transformer
encoder and 160M total model parameters) with recently published
best results on LibriSpeech.

Model w/o LM w/ LM
test-clean test-other test-clean test-other

LAS
LSTM [46] 2.6 6.0 2.2 5.2
Hybrid
Transformer [32] 2.6 5.6 2.3 4.9
CTC
Transformer [47] 2.3 4.8 2.1 4.2
Sequence Transducer
Transformer [33] 2.4 5.6 2.0 4.6
Conformer [48] 2.1 4.3 1.9 3.9
Transformer (Ours) 2.2 4.7 2.0 4.2

3.4. Results on LibriSpeech with transformer encoders

While we use streamable 5-layer LC-BLSTM encoders on video
datasets above, we experiment with 24/36-layer transformer encoders
instead on LibriSpeech. Given the much larger encoder depth, when
evaluating the auxiliary RNN-T and KL divergence, we find it more
effective to apply the loss at multiple layers. Thus for the 24-layer
transformer, we apply it to the 6th, 12th and 18th encoder layers.
As in Table 5, it provides about 11% and 15% WERR on each test
set. When evaluating the auxiliary CE loss, we apply it at the middle
(12th) and top (24th) layer again, which also produces substantial
relative gains about 13%.

Additionally, we also attempt to apply both auxiliary tasks simul-
taneously, i.e., auxiliary RNN-T and KL divergence loss at 6th and
18th layers, and CE loss at 12th and 24th layers. In all cases, we use
λaux = 0.3 and λce = 0.6 found above (Section 3.2 and 3.3). As in
Table 5, both auxiliary tasks combine to produce significant and com-
plementary improvements. These performance gains are much larger
than those on the video datasets with 5-layer LC-BLSTM encoder.
We conjecture that transformer networks of increased depth suffer
more from the encoder undertraining and gradient vanishing problem
at lower layers (as discussed in Section 2.2), and auxiliary tasks play
more effective roles in addressing it.

We proceed to increase transformer encoder depth from 24 to 36
layers, FFN size from 2048 to 3072, and wordpiece size from 1000
to 2048. We observe that without the auxiliary tasks, neither 24-layer
transformer of FFN size 3072 nor 36-layer transformer of FFN 2048
is able to converge. Instead both can converge while using either
of the two auxiliary tasks. Finally, the 36-layer transformer of FFN
3072 - which uses auxiliary RNN-T and KL divergence loss at 9th
and 27th layers, and CE loss at 18th and 36th layers - produces our
best results in Table 6. Auxiliary tasks thus provide an opening for
learning deep encoder network, and the increased depth is central to
accuracy gains.

176



We further perform first-pass shallow fusion [49] with an exter-
nal language model (LM). We use a 4-layer LSTM LM with 4096
hidden units, and LM training data consists of LibriSpeech transcripts
and text-only corpus (800M word tokens), tokenized with the 2048
wordpiece model. As in Table 6, we thus achieve competitive results
compared to the prior top-performing models.

4. RELATED WORK

Attaching auxiliary objective functions to intermediate layers has
been explored in various prior works. For improving image recog-
nition, multiple auxiliary classifiers with squared hinge losses were
used in [50], and CE objective functions used in [37, 51], while
later [51] only reported limited performance gain. [28] made further
progress by showing that, the gradients of multiple loss functions
with respect to their shared parameters can counteract each other,
and minimizing the symmetric KL divergence between the multiple
classifier outputs can penalize such inconsistent gradients and provide
more performance gains.

Similarly, for improving hybrid ASR models trained with CE
criterion, [27] connected an intermediate layer directly with a linear
projection layer to compute the logits over senones, and used an
asymmetric KL divergence loss between the primary model output
(i.e. senone posterior) and the auxiliary classifier output. While in
our work, we found connecting a nonlinear MLP - rather than a sin-
gle linear layer - to the intermediate layer is more effective, which
disentangled low-level feature extraction from final wordpiece pre-
diction. Also for improving ASR, [52] applied CTC or CE objective
functions to multiple encoder layers, although without the cross-layer
KL divergence loss. While CTC or hybrid senone/chenone models
can directly produce posteriors over output labels, RNN-T requires
a decoder to compute the output (wordpiece) posterior. Thus, in
applying the auxiliary RNN-T or KL divergence loss, we specifically
share the RNN-T decoder during the forward pass while keeping it
intact from the backward pass (as discussed in Section 2.2.1).

Note that compared to CTC or hybrid models, attention-based
seq2seq model is more similar to RNN-T, since both have a neural
encoder and decoder. And for attention-based seq2seq model, using
auxiliary senone labels has shown improved WERs in [22, 23], while
recent work [53] showed contrary observations.

5. CONCLUSIONS

In this work, we propose the use of auxiliary tasks in improving
RNN-T based ASR. We first benchmark the streamable LC-BLSTM
encoder based performance on video datasets. Applying either aux-
iliary RNN-T or symmetric KL divergence objective function to
intermediate encoder layers has been shown to improve ASR perfor-
mance, and combining both is more effective than each on its own.
Performing auxiliary chenone prediction also provides noticeable
complementary gains on top of hybrid CE pretraining.

Next, we demonstrate the efficacy of both auxiliary tasks in im-
proving the transformer encoder based sequence transducer results
on LibriSpeech. Both auxiliary tasks provide substantial and com-
plementary gains, and we find that, critical to the convergence of
learning deep transformer encoders is the application of auxiliary
objective functions to multiple encoder layers. Lastly, to participate
in the LibriSpeech benchmark challenge, we develop a 36-layer trans-
former encoder via both auxiliary tasks, which achieves a WER of
2.0% on test-clean, 4.2% on test-other.
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