
Dataset for Eye Tracking on a Virtual Reality Platform
Stephan J. Garbin

University College London
UK

Yiru Shen
Facebook Reality Labs

USA

Immo Schuetz
Facebook Reality Labs

USA

Robert Cavin
Facebook Reality Labs

USA

Gregory Hughes
Google via Adecco

USA

Oleg V. Komogortsev
Facebook Reality Labs

USA

Sachin S. Talathi
Facebook Reality Labs

USA

ABSTRACT
We present a large scale data set of eye-images captured using
a virtual-reality (VR) head mounted display mounted with two
synchronized eye-facing cameras at a frame rate of 200 Hz under
controlled illumination. This dataset is compiled from video cap-
ture of the eye-region collected from 152 individual participants
and is divided into four subsets: (i) 12,759 images with pixel-level
annotations for key eye-regions: iris, pupil and sclera (ii) 252,690
unlabeled eye-images, (iii) 91,200 frames from randomly selected
video sequences of 1.5 seconds in duration, and (iv) 143 pairs of
left and right point cloud data compiled from corneal topography
of eye regions collected from a subset, 143 out of 152, participants
in the study. A baseline experiment has been evaluated on the
dataset for the task of semantic segmentation of pupil, iris, sclera
and background, with the mean intersection-over-union (mIoU) of
98.3 %. We anticipate that this dataset will create opportunities to
researchers in the eye tracking community and the broader machine
learning and computer vision community to advance the state of
eye-tracking for VR applications, which in its turn will have greater
implications in Human-Computer Interaction.
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• Computing methodologies → Image segmentation; Recon-
struction; Neural networks.
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1 INTRODUCTION
Understanding the motion and appearance of the human eye is of
great importance to many scientific fields [Holmqvist et al. 2011].
For example, gaze direction can offer information about the focus of
a person’s attention [Borji and Itti 2013], which in turn can facilitate
the research on eye tracking to aid in the study and design of how
humans interact with their environment [Smith et al. 2013].

In the context of virtual reality (VR), accurate and precise eye
tracking can enable game-changing technological advances, for
example, foveated rendering, a technique that exploits the sen-
sitivity profile of the human eye to render only those parts of a
virtual scene at full resolution that the user is focused on, can sig-
nificantly alleviate the computational burden of VR [Patney et al.
2016]. Head-mounted displays (HMDs) that include gaze-contingent
variable focus [Kramida 2016] and gaze-driven rendering of per-
ceptually accurate focal blur [Xiao et al. 2018] promise to alleviate
vergence-accommodation-conflict and increase visual realism. Fi-
nally, gaze-driven interaction schemes could enable novel methods
of navigating and interacting with virtual environments [Tanriverdi
and Jacob 2000].

The success of data driven machine learning models learned
directly from images ([He et al. 2015; Krizhevsky et al. 2012]) is
accompanied by the demand for datasets of sufficient size and vari-
ety to capture the distribution of natural images sufficiently for the
task at hand [Shafaei et al. 2018]. While being able to source vast
collections of images from freely available online data has led to the
successful creation of datasets such as ImageNet [Krizhevsky et al.
2012] and COCO [Lin et al. 2014], many other research areas require
special equipment and expert knowledge for data capture. For ex-
ample, the creation of the KITTI dataset required synchronization
of cameras alongside a laser scanner and localization equipment
[Geiger et al. 2013, 2012]. We seek to address this challenge for eye
tracking with HMDs.

We opt to capture eye-images using a custom-built VRHMDwith
two synchronized cameras operating at 200Hz under controlled
illumination. Corporate policy precludes us from offering further
information on the hardware configuration of the VR HMD used
in this study. As outlined below, we also use specialist medical
equipment to capture further information about the shape and
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Figure 1: Examples of the acquired HMD images.

optical properties of each participant’s eyes contained in the dataset.
It is the unique combination of advanced data capture, usually only
performed in a clinical setting, with high resolution eye images and
corresponding annotation masks for key eye-regions that sets this
dataset apart from comparable datasets. We hope that this dataset
bridges the gap between the computer vision and eye tracking
communities and provides novel opportunities for research in the
domain of eye tracking for HMDs.

Our contributions are summarized as follows:
• A large scale dataset captured using an HMD with two syn-
chronized cameras under controlled illumination and high
frame rates;

• A large scale dataset of annotationmasks for key eye-regions:
the iris, the sclera and the pupil;

• point cloud data from corneal topography captures of eye
regions.

We want to however note that the dataset presented in this work
was collected with a single type of VR head mounted device. It is
quite possible that the results of any modeling based on this dataset
may not be generalizable to use with other eye trackers that are
available in the public domain.

2 RELATEDWORK
2.1 Eye Tracking Datasets
Due to the difficulty of capturing binocular eye data especially in
the VR context, there exists only a limited number of large-scale
high resolution human image datasets in this domain. A comparison

Figure 2: Examples of corneal topography, represented as
point clouds. Row from top to bottom: left eye, right eye.
Column from left to right: rotations along Y-axis. Color vari-
ation is along Z-axis. Better viewed in color.

of our dataset to existing datasets of similar image modality can be
found in Table 1.

The most similar dataset in terms of domain and image specifi-
cations is the recently published NVGaze dataset [Kim et al. 2019],
consisting of 2.5 million infrared images recorded from 30 partici-
pants using an HMD (640x480 at 30 Hz). NVGaze includes annota-
tion masks for key eye-regions for an additional dataset of 2 million
synthetic eye images but does not provide segmentation annota-
tions for the human eye image set at this point. The LPW dataset
[Tonsen et al. 2015] includes a number of images recorded from
22 participants wearing a head mounted camera. Images are from
indoor and outdoor recordings with varying lighting conditions
and thus very different from the controlled lighting conditions in a
VR HMD.

Some eye focused image sets are aimed at gaze prediction and
released with gaze direction information, but do not include anno-
tation masks, such as the Point of Gaze (PoG) dataset [McMurrough
et al. 2012]. Other large-scale eye image datasets were captured in
the context of appearance-based gaze estimation and record the
entire face using RGB cameras as opposed to the eye region [Funes
et al. 2014; Huang et al. 2015; Zhang et al. 2015]. For example, Gaze
Capture [Krafka et al. 2016] consists of over 2.5 million images at
various resolutions, recorded through crowd-sourcing on mobile
devices, and its images are not specifically focused on the eye but
contain a large portion of the surrounding face. In all these datasets,
the focus is not solely on captures of eye-images, making them
less suitable for the specific computer vision and machine learning
challenges in the VR context. Finally, a different category of dataset,
such as the UBIRIS [Hugo et al. 2010] and UBIRIS v2 [Proenca et al.
2010], were conceived with iris recognition in mind and therefore
contain only limited annotation mask information.
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Dataset #Images #Participants Resolution Framerate Controlled
Light

Sync.
Left/Right

Optometric
Data

STARE [Hoover et al.
2000]

- - - - No No Yes

PoG [McMurrough
et al. 2012]

- 20 - 30 Hz Yes No No

MASD [Das et al. 2017] 2,624 82 - - No No No
Ubiris v2 [Hugo et al.
2010]

11,102 261 400×300 - No - No

LPW [Tonsen et al.
2015]

130,856 22 480×640 95 Hz No No No

NVGaze [Kim et al.
2019]

2,500,000 30 480×640 30 Hz Yes No No

Gaze Capture [Krafka
et al. 2016]

2,500,000 1,450 Various - - No No

ExCuSe [Fuhl et al.
2015]

39,001 7 384×288 - No No No

ElSe [Fuhl et al. 2016b] 55712 17 384×288 - No No No
PupilNet [Fuhl et al.
2016a]

41,217 5 384×288 - No No No

Closed-Eyes [Santini
et al. 2018]

49,790 41 384×288 - No No No

[Fuhl et al. 2019] 501,230 20 384×288 25 Hz No No No
Swirski [Świrski et al.
2012]

600 2 620×460 - No No No

Ours 356,649 152 400×640 200 Hz Yes Yes Yes
Table 1: Publicly available datasets in the field of eye tracking.

2.2 Eye Segmentation
Segmentation of periocular regions, such as the pupil, iris, sclera is
critical to subsequent estimation of a gaze location and thus will
have a direct impact on subsequent classification and characteristic
estimation of such eye movements as saccade, fixation and gaze esti-
mation [Venkateswarlu 2003]. A large amount of studies have been
investigated on segmenting a single trait (e.g., only the iris, sclera
or eye region) [Das et al. 2017; Lucio et al. 2018; Radu et al. 2015;
Sankowski et al. 2010; Thoma 2016]. A detailed survey of iris and
sclera segmentation is presented in [Adegoke et al. 2013; Das et al.
2013].We note that, although there are several advantages to having
segmentation information on all key eye-regions simultaneously, a
very limited amount of studies have been done on multi-class eye
segmentation [Luo et al. 2019; Rot et al. 2018]. However, study in
[Rot et al. 2018] trained a convolutional encoder-decoder neural
network on a small data set of 120 images from 30 participants. A
study by [Luo et al. 2019] trained a convolutional neural network
coupled with conditional random field for post-processing on a data
set of 3,161 low resolution images to segment only two classes: iris
and sclera. In this paper, we try to address the gap for multi-class
eye segmentation including pupil, iris, sclera and background, in a
large data set of images in high resolution of 400×640.

2.3 Eye Rendering
Generating eye appearances under various environmental condi-
tions including facial expressions, color of the skin and the illumina-
tion settings, play an important role in gaze estimation and tracking
[Kim et al. 2019]. Two approaches have been studied in eye render-
ing: graphics-based approaches to generate eye images using a 3D
eye model usually with a rendering framework to provide geomet-
ric variations such as gaze direction or head orientation [Wood et al.
2016, 2015]. Another is machine learning based approach. Study in
[Shrivastava et al. 2017] used a generative adversarial network to
train models with synthetic eye images while testing on realistic
images. Study in [Wang et al. 2018] used a conditional bidirectional
generative adversarial network to synthesize eye images consistent
with the given eye gaze. However, these studies are focused on
rendering synthetic eye images. We are interested in rendering
realistic eye images that conform to the captured distribution of an
individual and anticipate this dataset will encourage researchers
to use the large corpus of eye-images and the annotation masks
to develop solutions that can render realistic eye images. Realistic
synthetic eye images are critical for the development and validation
of novel and accurate eye tracking algorithms because they provide
the data necessary to train and validate corresponding machine
learning approaches for gaze estimation.
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3 DATA COLLECTION
To ensure eye-safety during our data-collection process, which is
important because collecting the data with a wearable VR headset
exposes users’ eyes to infrared light, the exposure levels were con-
trolled to be well below the maximum permissible exposure as laid
out in IEC 62471:2006, as well as the American National Standard
for the Safe use of Lasers (ANSI Z136.1-2000, (IEC) 60825).

The dataset was collected from voluntary participants of ages
between 19 and 65 using the aforementioned VR headset with light
blocking facial interfaces. The illumination profile was controlled
to be similar for all participants. Participants provided written in-
formed consent to release their eye images before taking part in the
study. There was no selection bias in our selection of participants
for the data collection study, except that we required subjects to
have corrected visual acuity above legal blindness, have a working
knowledge of the English language, and not be pregnant. Partici-
pants were paid for their participation per session, and were given
the choice to withdraw from the study at any point.

In addition to the image data captured from the HMD, the dataset
released as part of this work also comes with an anonymized set of
metadata per participant:

• Age (19-65), sex (male/female), usage of glasses (yes/no);
• Corneal topography.

Other than a pre-capture questionnaire for every participant, the
rest of the data is captured in an approximately hour long session
which is further split into sub-sessions as follows: All optometric
examination are conducted in the first 10 minutes, followed by a
5 minute break. The break is taken to prevent any effect of opto-
metric examinations on data captured with the HMD. Finally, two
20 minute capture sessions using the HMD are used to capture the
eye-data during which the users were asked to perform several
tasks i.e., a combination of explicit gaze target fixation task, smooth
pursuit task, and free-viewing task in VR, separated by further
breaks. The images present in the initial release of the dataset are
taken from these 20 minute capture sessions.

4 ANNOTATION
We generated annotation masks for key eye-regions from a total
of 12,759 eye-images as follows: a) eyelid, (using human-annotated
key points) b) Iris (using an ellipse), c) Iris (using human-annotated
points on the boundary), d) Pupil (using an ellipse) and e) Pupil
(using human-annotated key points). The key-point dataset was
used to generate annotationmasks, which are released as part of this
dataset. Below, we provide more details into the annotation protocol
that was followed by the annotators in generating the key-points
and the ellipse. The annotators were hired through a contracting
company that specializes in the aforementioned annotation tasks.
In total, 9 annotators worked on the annotation task for a period
of one month. We also want to acknowledge the fact that that any
polygonal annotations have sharp edges and corners, which may
not reflect the actual semantic boundaries that were generated to
produce the semantic mask released with the dataset.

4.1 Iris & Pupil Annotation with Ellipses
In order to produce the ellipse annotations for the Iris and the Pupil
regions, the annotators performed the following three steps:

Figure 3: Ellipse Annotations. Points 1, 2 and 3 describe the
Pupil, whereas points 4, 5 and 6 describe the Iris. Note that
the points 1 and 4 are the center points. Best viewed digitally
in color at high-resolution zoomed in.

• Position the center point;
• Position the second control point to adjust the shape and
rotation; and

• Position the third control point to constraint the remaining
degree of freedom for ellipse fitting.

All points are colored and numbered appropriately in the anno-
tation tool to avoid confusion. Figure 3 offers an illustration of this
process.

Since the ellipses do not provide any information about occlusion
due to viewpoint and eyelid closure, we also obtain a more detailed
annotation for which the annotators are asked to place a larger
number for control points, which allows us to extract complex
polygonal regions with high accuracy. We instruct the annotators
to skip the ellipse-based annotation if the iris and pupil are not
visible, but allow ellipses if they can be inferred with reasonable
certainty. Some of the difficult cases are shown in Figure 4. Some
of the images do not contain any useful information because the
eyelids are completely closed or there is severe occlusion of the iris
and pupil. In these situations annotators are asked to skip labeling
images. In particular, we do not annotate eye-images if:

• The eye is closed;
• Eyelashes occlude the eye to the point where it is unreason-
able to make an estimation;

• The eye is out of view, which can happen e.g. if the HMD
is misaligned in a particular frame. Typically, this happens
when the user is either putting on the headset or adjusting
it to their head.

4.2 Iris & Pupil Annotation with Polygons
For the pupil and iris, we use 10 points each to create a polygon
annotation. In both cases, the process starts by placing two points
at the top and bottom of the feature of interest (labelled with num-
bers) and spacing a further 4 points equally between them on the
boundary (labelled with letters). The top and bottom points do not
have to be placed, and, if both cannot be identified, we fall back to
labelling just with the points for the left and right side. With this
process, the annotators are instructed to proceed with the left side
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Figure 4: Ellipse annotations for difficult cases. For images
where iris and pupil are not visible, no annotations are pro-
vided (left). However, if positions can be inferred, we obtain
ellipses for each class (middle, right) Please note that the im-
ages are padded for annotation so that ellipses can extend
beyond the image boundaries (right). Best viewed digitally
in color and zoomed in.

Figure 5: Iris and pupil annotations with dots (up to 10
points per feature). Top / bottom points are labelled with
numbers, and further boundary points are denoted with let-
ters. We note that even if one or the other of the top and
bottom points is not visible, we still obtain annotations.

first, and then the right (see Figure 5). Again, the annotators are
asked to skip difficult-to-label images, as explained in Section 4.1.

4.3 Eyelid Annotation
18 points are used for annotating the upper and lower eyelid. Similar
to the iris and pupil case, the annotators are instructed to place
these points equally spaced along the eyelid boundaries. Since the
eyelid is much bigger than the other two cases (Iris and Pupil), in
order to help with equal spacing we give the instruction to split
the line recursively while adding points. Examples of this process
are given in Figure 6. Figure 7 shows completed annotations for a
variety of cases.

5 GENERAL STATISTICS
The dataset has a total of 12,759 images with annotation masks,
252,690 further images, 91,200 frames from contiguous 1.5 second
video snippets, and 286 point cloud datasets for corneal topography.

Figure 6: Eyelid annotation process. Note how the annota-
tors proceed by splitting the annotation boundary recur-
sively (left to right).

Figure 7: Eyelid annotation examples. Note how in case of
the eye fully closed, we require the eyelid annotation points
to overlap.

The latter image and image sequence sets are not accompanied by
semantic segmentation annotations. Table 2 shows the statistics
w.r.t. demographics (sex, age group, wearing glasses or not), and
the amount of images and point clouds provided.

5.1 Corneal Topography
We provide corneal topography point cloud data that captures the
surface curvature of the cornea for both left and right eyes. Corneal
topography of each participant wasmeasured via Scheimpflug imag-
ing using an OCULUS® Pentacam® HR corneal imaging system,
where corneal elevation maps were exported and converted to a
point cloud. Figure 2 shows an example. We note that there is at
most one point cloud estimate per participant.

6 STATISTICAL ANALYSIS
As outlined above, we choose to split the dataset by identity of the
study participants as we found this to be both intuitive, and an
easy setting to assess and avoid bias. When selecting the validation
and test sets, we resample (or alternatively reweight for evaluation)
the data to account for factors such as age and sex. Resampling or
weighting of this kind is motivated by the fact that under-sampled
modes of the true data distribution are the hardest to accurately
capture by data-driven approaches. To avoid bias arising from this,
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2* Sex Age Glasses #Images 2*#CT.
Female Male 18-23 24-30 31-40 41-50 51-65 No Yes SeSeg. IS. Seq.

Train 51 44 3 15 39 26 12 92 3 8,916 193,882 57,000 178
Val. 13 15 1 5 5 8 9 27 1 2,403 57,337 16,800 52
Test 18 11 4 3 7 6 9 27 2 1,440 1,471 17,400 56
Total 82 70 8 23 51 40 30 146 6 12,759 252,690 91,200 286

Table 2: Statistics of data used for train, validation and test. SeSeg.: Imageswith semantic segmentation annotations. IS.: Images
without annotations. Seq.: Image sequence set. CT: corneal topography. We report #identities regarding demographics (sex,
age), wearing glasses or not. We also report #images and #corneal topography (represented as point clouds).

we ensure that the reweighting and selection of the test set penalizes
approaches that do not take this into consideration.

An example of this is the age distribution. Figure 9 shows his-
tograms characterizing the age distribution of the training vs test
and validation images (with a bin-width of 5 years). Note how our
choice of dataset splits already removes a significant amount of
bias.

Apart from the information we can directly gain from the col-
lected metadata, we further investigate the dataset for forms of
sampling bias. To do this, we take an imagenet [Deng et al. 2009]
pretrained 150-layer ResNet [He et al. 2015], as provided by the
PyTorch library [Paszke et al. 2017], and encode a subset of 60,000
images sampled uniformly among the study participants to 4096-
dimensional feature space (the output of the second-to-last fully
connected layer). We subsequently use the k-means implementation
of FAISS [Johnson et al. 2017] to cluster the encodings. Analysis of
the resulting partitioning of the images reveals that most clusters
predominantly contain images of either the left or right eye of one
identity. This supports the intuition that identities are distinctive,
and that it is easy to tell apart the left and right side of the face. We
are however more concerned with clusters that exhibit a similar
proportion of left and right eyes, or contain more than one identity.
These clusters, if not corrected for in the process of sampling the
identities used for each subset of the data splits, are evidence of a
potentially significant difference of the distribution for the training,
test and validation sets. The existence of such out of distribution
cases could cast doubt over the validity of the test and validation
process [Liang et al. 2017], and we therefore correct for it as far as
possible.

Apart from identifying invalid images which can be trivially dis-
carded (e.g. due to occlusion of the cameras or misalignment of the
HMD), we identify the following difficult and under-sampled cases
from the clustering process that are not correlated with the previ-
ously identified factors of variation such as sex, age, and left/right
differences:

(1) Identities with glasses,
(2) Images of almost closed eyes, and
(3) Images of completely closed eyes.

In order to make sure that identities with glasses are represented
across all data splits, we provide additional per-user annotations
of the glasses case and make sure that at least one such case is
contained in the test and validation sets.

Ensuring that nearly and fully closed eyes are represented in the
dataset is a more challenging problem. This is due to the volume

Figure 8: Representative images classified by our heuristic
as (open, almost closed, closed and misaligned)

of data and the fact that these cases cannot be easily delineated.
For example, deciding what counts as ‘nearly’closed is not well
defined. We address this by building a simple heuristic from a small
(< 10000) number of cases for open, nearly closed, and closed eyes
selected from the clusters described above. Example images given
by this heuristic are shown in Figure 8.

Given a small number of manual annotations, we train a 50-
layers ResNet to classify a subset of 2.5 million images from the raw
data as open, almost closed, closed or misaligned. By raw data we
refer to images obtained during the capture which we do not use for
the dataset release (this data is not annotated or curated). We extend
the small initial dataset by additional annotations for images with
high uncertainty, and then proceed to retrain the classifier. After
repeating this process 4 times, we achieve more than 96% accuracy
on the heuristic. We find that this heuristic finds approximately
twice as many ‘nearly’than fully closed eyes (on a subset of 12.6
million images, we estimate the percentages for these cases to be
2.21% and 4.31%, respectively). This is expected as the eye is near-
fully closed just before and after blinking, thus providing evidence
for the usefulness of our heuristic.

We make sure that all three identified eye states are present in
the data when selecting images for the dataset but do not absolutely
guarantee that any particular ratios are preserved.

6.1 Identity-Centric Dataset Splits
We partition the dataset in several ways that allow for the principled
evaluation of a variety of machine learning problems, as shown
in Table 2. Reasoning from an identity-centric perspective, let 𝑈
be the set of all participants. We require semantic segmentation
training, test and validation sets

𝑠𝑠𝑡𝑟𝑎𝑖𝑛 ⊂ 𝑈 , 𝑠𝑠𝑣𝑎𝑙 ⊂ 𝑈 , 𝑠𝑠𝑡𝑒𝑠𝑡 ⊂ 𝑈 , (1)
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Figure 9: Age distribution of our proposed dataset splits.
Note how we correct for bias in the collected data as far as
possible.

where 𝑠𝑠𝑡𝑟𝑎𝑖𝑛 ∩ 𝑠𝑠𝑣𝑎𝑙 ∩ 𝑠𝑠𝑡𝑒𝑠𝑡 = ∅.
The set of users from which we uniformly select images for the

additional image and sequence datasets without annotation, 𝐸 ⊂ 𝑈 ,
can contain images from users contained in 𝑠𝑠𝑡𝑟𝑎𝑖𝑛 , 𝑠𝑠𝑡𝑒𝑠𝑡 and 𝑠𝑠𝑣𝑎𝑙 .
The point of additionally providing 𝐸 is to encourage the use of
unlabelled data to improve the performance of supervised learning
approaches.

For the case of semantic segmentation, we roughly follow the
ratio of popular datasets such as MSCOCO [Lin et al. 2014]. We
thus have, from a user-centric perspective, a 𝑠𝑠𝑡𝑟𝑎𝑖𝑛/𝑠𝑠𝑣𝑎𝑙/𝑠𝑠𝑡𝑒𝑠𝑡
split of 95

152/
28
152/

29
152 .

One characteristic of our image domain we leave intentionally
unaltered for the dataset release is the image brightness distribution.
To estimate it, we compute the mean luminance for each image,
and then estimate the mean, median and standard deviation across
the dataset splits. As shown in Figure 10, this can vary strongly
on a per-identity basis. The reason for this are individual-specific
reflectance properties of human skin and eye, the fit of the HMD
(which can vary depending on the shape of an individual’s face),
and whether or not makeup is applied. We provide this information
to encourage future analysis to focus on generalizing to brightness
variations of this kind.

6.2 Dataset Generation
Generating the data splits requires us to solve a constrained discrete
optimization problem, subject to the constraints of having a bal-
ance of the sex, age group, wearing glasses, and eye-state attributes
outlined in this section. We simplify this process by greedily select-
ing 𝑠𝑠𝑡𝑒𝑠𝑡 , 𝑠𝑠𝑣𝑎𝑙 and 𝑠𝑠𝑡𝑟𝑎𝑖𝑛 , in that order. We obtain the individual
balanced selections using 10 million random configuration samples
each, and picking the most balanced configuration among those
samples. In other words, we simply select images from the raw
data a large number of times, compute how well balanced the im-
age sets are, and then use the best selection. We found that this

Figure 10: Per split distribution of the the mean image lumi-
nance. The median is denoted by vertical lines. Note that we
do not apply any transformations to equalize these.

Train Validation Test
Train 0.0 0.003932 0.00487
Validation 0.003932 0.0 0.00489
Test 0.00487 0.00489 0.0

Table 3: Maximum Mean Disrepancy between the training,
test and validation sets (Evaluated on a random set of 1024
images per split, averaged over 10 runs)

provides well-balanced splits. The results of this procedure can be
seen in Figure 9, where the age distribution is significantly more
well-balanced in the test and validation as opposed to the training
set.

As a final sanity check, we compute the MaximumMean Discrep-
ancy (MMD) ([Sriperumbudur et al. 2010]) between the training,
validation and test sets to ensure the identity-based splits of the
data produce sufficiently correlated subsets. The standard devia-
tion of the Gaussian RBF kernel (𝑘 (𝑥, 𝑥 ′) = exp(− ∥𝑥−𝑥 ′ ∥22

2𝜎2 )) used
in computing the MMD is set based on the median Euclidian norm
between all image pairs in the dataset [Liang et al. 2017]. In our case,
this amounts to setting 1

2𝜎2 = 0.0087719. Evaluating the metric for
random sets of 1024 images across the data splits gives the results
shown in Table 3, which strongly indicates that the three derived
image sets are drawn from the same underlying data distribution.

7 INVESTIGATIONS INTO NEURAL
NETWORK MODELS TO SEGMENT KEY
EYE-REGIONS

There is a growing interest in segmentation of the ocular biometric
traits of key eye regions such as the pupil, the iris and the sclera as
these can provide useful information to model eye movements in
various eye states such as as saccades and fixation [Venkateswarlu
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2003]. As such, a large amount of works have focused on segmenting
single eye region, i.e. only iris or only pupil, [Das et al. 2017; Lucio
et al. 2018; Radu et al. 2015; Sankowski et al. 2010; Thoma 2016]. On
the other hand, a very limited amount of investigations have focused
on multi-class eye segmentation. Studies in [Rot et al. 2018] and
[Luo et al. 2019] are the most recent examples for works focusing on
multi-class eye segmentation. The study by [Rot et al. 2018] trained
a neural network to segment iris and sclera on a very small dataset
of 120 images drawn from 30 participants. Along the similar lines,
the study by [Luo et al. 2019] trained a neural network coupled with
a graphical model, the conditional random fields, [?] to segment
iris and sclera on a data set of 3161 low resolution eye images.

In this Section, we attempt to address the problem of multi-class
segmentation of eye regions, using the present dataset, which is
comprised of 12,759 high resolution eye images and the correspond-
ing ground truth segmentation masks generated from a pool of
152 participants. Specifically we adopt a popular framework of
semantic segmentation (SS), also known as pixel level classifica-
tion, to develop a neural network model that maps a given input
image into a semantically labeled output mask. In particular, we
investigate neural network models derived from one of the popular
deep learning model for semantic segmentation, the SegNet model,
[Badrinarayanan et al. 2017].

SegNet is comprised of an encoder neural network that maps
the input image to a compressed latent representation, followed
by a decoder neural network that uses pooling indices computed
in the max-pooling step of the corresponding layer of the encoder
network to perform non-linear upsampling. The final layer is a
pixel wise classification layer. The entire network is trainable in an
end-to-end fashion producing semantically segmented regions of
interest for a given input image. For our investigations, we consider
the following 3 modifications: (a) limit the number convolutional
layers in the SegNet encoder and decoder sub-networks to 4 (b)
add a boundary refinement (BR) layer in between the decoder net-
work and the final pixel level classification layer. BR layer have been
shown to improve pixel localization performance near object bound-
aries [Peng et al. 2017], and (c) replace the convolutional layers
with separable convolution (SC) layers. SC factorizes convolution
operation on multi-channel image into depth-wise 1×1 convolution
along the dimension of the channels, which significantly reduces
the computational cost for model inference [Howard et al. 2017].
The final modification to the SegNet model involves replacing the
additive skip connection from the first layer of encoder network to
last layer of decoder network with a multiplicative skip connection.
The motivation for multiplicative skip connection is to suppress
low probability pixel level class predictions. The SegNet model with
4 convolutional layer coupled with multiplicative skip connection
is referred to as the modified-SegNet (mSegNet) model. The two
additional variants that we investigate are: (a) mSegNet coupled
with a BC layer and (b) mSegNet with SC.

We trained each network for 200 epochs on a NVIDIA RTX 2080
GPU using PyTorch [Paszke et al. 2017] with the ADAM optimizer
[Kingma and Ba 2014]. The training parameters are: initial learning
rate 0.001, mini-batch size 8, and regularization weight of 1e−5. No
data augmentation was performed. The training was performed
to minimize the pixel-wise multi-class cross-entropy loss as in the
SegNet paper [Badrinarayanan et al. 2017].

Model Pixel Mean Mean Mean #Param.
acc. acc. F1 IoU (M)

mSegNet 98.0 96.8 97.9 90.7 3.5
mSegNet
w/ BR

98.3 97.5 98.3 91.4 3.5

mSegNet
w/ SC

97.6 96.6 97.4 89.5 0.4

Table 4: Semantic Segmentation results. #Params: the num-
ber of learnable parameters, where “M” stands for million.
mSegnet: 4-layer segnet with multiplicative skip connection
between the last layer of the encoder and the decoder net-
work.

The models are evaluated using the four commonmetrics used to
evaluate semantic segmentation, following the procedure described
in [Long et al. 2015]. In addition, we also report the model complex-
ity measured in terms of the learnable model parameters. Table 4
shows the results of our experiments. In terms of accuracy, mSegNet
with BR achieved the best performance with a mean IoU of 91.4%.
In terms of model complexity, unsurprisingly, mSegNet with SC is
the smallest model size with only 400,000 trainable parameters.

Given the focus of this paper, we did not iterate training to
achieve best in class model performance. As such, all models failed
to produce high fidelity eye region segments for eye-images im-
pacted by occlusions from eye-glasses or heavy mascara or non-
conforming pupil orientation. Figure 11 shows examples of these
failure cases. We hope that our findings will encourage researchers
from the community to leverage this dataset to develop improved
semantic segmentation models to classify eye regions of interest.

8 CONCLUSION
We have presented a new dataset of images and optometric data of
the human eye. Initial algorithmic analysis of the provided labels
demonstrates the usefulness of the data for semantic segmentation.
We made the dataset open to the public and we encourage the
community to improve upon the reported results. We strongly
believe that the foundation of this work will improve eye tracking
robustness and efficiency in the future which has strong potential
in enabling a variety of applications in VR environments, including
but not limited to gaze interaction, foveated rendering, usability
evaluation and others. We also believe that in addition to the eye
tracking applications this dataset will be useful for researchers that
study the variability of periocular regions of human eyes.
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