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ABSTRACT

We outline a way to deploy a privacy-preserving protocol
for multiparty Randomized Controlled Trials on the scale
of 500 million rows of data and more than a billion gates.
Randomized Controlled Trials (RCTs) are widely used to
improve business and policy decisions. A Randomized Con-
trolled Trial is a scientifically rigorous method to measure
the effectiveness of a treatment. This is accomplished by
randomly allocating subjects to two or more groups, treating
them differently, and then comparing the outcomes across
groups. In many scenarios, multiple parties hold different
parts of the data for conducting and analyzing RCTs. Given
privacy requirements and expectations of each of these par-
ties, it is often challenging to have a centralized store of data
to conduct and analyze RCTs.

We accomplish this by a three-stage solution. The first
stage uses the Private Secret Share Set Intersection (PS°I)
[3] solution to create a joined set and establish secret shares
without revealing membership, while discarding individuals
who were placed into more than one group. The second
stage runs multiple instances of a general purpose MPC
over a sharded database to aggregate statistics about each
experimental group while discarding individuals who took
an action before they received treatment. The third stage adds
distributed and calibrated Differential Privacy (DP) noise to
the aggregate statistics and uncertainty measures, providing
formal two-sided privacy guarantees.

We also evaluate the performance of multiple open source
general purpose MPC libraries for this task. We additionally
demonstrate how we have used this to create a working ads
effectiveness measurement product capable of measuring
hundreds of millions of individuals per experiment.

1 INTRODUCTION

Randomized Controlled Trials (RCT) are considered to be
one of the most reliable forms of scientific evidence since it
reduces spurious causality and bias. United States Preventive
Services Task Force has recognized "evidence obtained from
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at least one properly randomized controlled trial with good
internal validity" as the highest quality evidence [7]. It is not
uncommon in RCT that multiple parties hold the data needed
for analysis. For example, one party knows how subjects are
randomized into treatment and control groups, and the other
party holds the outcomes measures that the treament is meant
to affect. They wish to compare aggregate statistics of the
treatment and control groups, without revealing their input
data to the other party.

We design and implement Private RCT; a practical and
scalable secure two-party computation system for calculat-
ing RCT results. Designing a scalable privacy-preserving
solution is technically challenging, especially when using
one cryptographic primitive in isolation, such as either Gar-
bled Circuit (GC) or Homomorphic Encryption (HE). Our
protocol combines a suite of underlying cryptographic prim-
itives such as GC, HE, Private Set Intersection (PSI) and
Secret Sharing, and incorporates them in a way that is more
efficient than using any one secure computation technique
by itself. Moreover, we demonstrate how to add distributed
computing scaling techniques such as sharding without com-
promising privacy. Finally, we use differential privacy to add
noise to the output of the computation and prevent leakage
of the input data based on the revealed output.

1.1 Private Randomized Controlled Trials

Privacy-preserving computation (secure computation) is a
cryptographic method that enables parties to jointly compute
a function on each of their secret inputs while preserving
the privacy of the inputs. The technology guarantees that
the parties will only learn the designated output of the func-
tion and they cannot access or derive each other’s inputs
(also known as input privacy), any intermediate values, or
statistical results.

In the context of RCTs, privacy-preserving computation is
highly desirable as it enables statistical measurements with-
out giving access to the raw/un-encrypted input databases to
external parties. This creates stronger guarantees to enforce
the individual expectation of privacy.

Take clinical trials for example. Medical researchers ran-
domly assign subjects into treatment and control groups and
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Figure 1: Private RCT, high level design

measure a few pre-determined health outcomes. While re-
searchers can measure some demographic variables by them-
selves, much richer but usually unavailable demographic
and behavioral data such as living conditions, mental status,
social interactions, socio-economic status can be immensely
valuable to improve statistical power, cut costs, and extract
more credible insights from typically small-scale clinical
trials. Unfortunately such auxiliary data is usually held by
third parties such as hospitals, physicians, and government
agencies. Private RCT solution makes it easier for these in-
dependent parties to collaborate in analyzing RCTs.

1.2 High-level Design

Private RCT has three main stages. The protocol is designed
to make real-world deployment easy by modularizing the
protocol and address their challenges individually. Figure 1
shows the overall design.

(1) Private Identity Matching. The first stage is to deter-
mine the union/intersection of users we want to com-
pute on. Private Identity Matching also aligns the rows
which the two parties have in common. We have pro-
posed a couple of protocols for handling this identity
intersection: PID and PS®I [3]. The former computes a
full outer join of the identities using a new Decisional
Diffie-Hellman (DDH) based construction that is only
twice as computationally expensive as standard DDH-
based Private Set Intersection (PSI). PS®I extends this
to generating secret shares of attached data for only
those identities in the intersection and uses DDH tech-
niques and additive Homomorphic Encryption (HE).
We also have ongoing work to extend PS®I to handle
identity matching in many-to-many scenarios.

(2) Scalable Secure Computation. In the second stage, we
calculate a pre-defined linear circuit on the output of
the previous step. Since we envision different use cases,

which differ in their nature of calculation, the compu-
tation step should be able to compute any circuit on
the joined data. We evaluated multiple general purpose
MPC frameworks for this step and concluded to build
our solution based on EMP-toolkit. We used sharding
mechanism to scale it from handling 2 million rows of
input data to 500 million rows. We use an XOR secret
sharing mechanism to hide any intermediary result in
this step.

(3) Differentially Private RCT Output. The last step is to pre-
pare the output. Since the output is going to be revealed
to both parties, it is important to ensure it does not
break the privacy guarantees that the system promises.
We need to check for access control, ensure rate limits,
and finally add DP noise to the output. We calibrate
DP noises to ensure two-sided privacy guarantee: par-
ticipant A gets only a differentially private view of B’s
secret input, and vice versa. To provide differentially
private confidence intervals of two-sample difference-
in-means estimators, we examine several algorithms
and compare their coverage, tightness, and computa-
tional cost within MPC. We also propose methods to
generate DP noises distributively in the presence of
semi-honest or malicious adversaries.

1.3 Our Contributions

By combining Decisional Diffie-Hellman (DDH), Homo-
morphic Encryption (HE), Secure Multi-Party Computation
(MPC), and Differential Privacy (DP), we provide a private
yet performant solution to enable two parties to collaborate
in RCTs. Starting from the correct underlying cryptographic
primitives, we show how to use them, scale to large data
sets, and handle the challenges in practice. In addition to
designing and implementing the Private RCT, we have the
following contributions which can be of independent interest
to the community:
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(1) Evaluation Framework for MPC. We looked into multi-
ple services that enable secure computation to decide
on the best framework that meets the requirements
of Private RCT. This systematization of knowledge
on MPC protocols can be of independent value for
researchers and industry cryptographers. We started
with a comparison across more than twenty secure
computation services — across secret sharing, garbled
circuits, homomorphic encryption-based protocols. We
chose ABY, EzPC, EMP-toolkit, Fancy Garbling, Scale-
Mamba, Obliv-C and MPyC for a more detailed liter-
ature review — and from them we did performance
testing on ABY, EMP-toolkit, and Scale-Mamba.

(2) Scaling via Private Sharding. Handling large volumes
of data is important in practice. Unfortunately, most
current secure computation platforms cannot handle
large enough data sets at the required scale and speed
imposed by our application. In this work, we designed
and implemented a privacy-preserving sharding tech-
nique to make EMP scale to 500M rows. Our protocol
does not reveal any intermediary information to the
involved parties. ie., the intermediary result of com-
putation on each shard will remain private. We will
discuss the details of this protocol in section 2.3.

(3) Private Conversion Lift. To test the efficiency and scal-
ability of our design, we implemented Conversion Lift
as an application that uses Private RCT in the back-
bone. Conversion Lift compares the actions of users
in randomized test and control groups to measure the
additional business driven by the advertisement.

2 PRIVATE RCT PROTOCOL

In the following sub-sections, we provide detailed design for
each step of the protocol.

2.1 Assumptions and Model

We consider two parties, the most common in real world
scenarios. We assume each party has their own separate
infrastructures that jointly participate in the 2PC protocol
and there is no trusted third party involved. We assume
a Semi-Honest (Passive) adversary: a corrupted party will
memorize and use any information it can learn from the
protocol, but will not deviate from the protocol specification.
We do consider that an adversary may craft their inputs
to maximize the information they can learn passively, as
discussed in 2.4.

2.2 Private Identity Matching

Before computation can be done for Private RTCs the two
data sets must be joined by some identities of the users. There
are three matching cases we consider:

(1) Single unique identifier. The simplest situation is
that each user has one identifier (e.g., email) which is
unique to them in one of the party’s input sets. We

want to compute on users who have the same identifier
in both party’s input sets.

(2) External identifier. In this situation, there is a com-
mon identifier shared between the two parties and
each party has a many-to-many relationship between
their own user ids and the external ids.

(3) Many identifiers. Each user may have multiple iden-
tifiers (e.g., email and phone). This case also results in
a many-to-many matching between users from both
parties.

The paper [3] introduces two protocols for handling the
case of a single unique identifier. Both protocols can compose
with general-purpose MPC to enable arbitrary computation
on the joined data. The first variant which we call Private-
ID (PID), allows the parties to privately compute a set of
pseudorandom universal identifiers (UID) corresponding to
the records in the union of their sets, where each party ad-
ditionally learns which UIDs correspond to which items in
its set but not if they belong to the intersection or not. This
new formulation enables the parties to independently sort
their UIDs and the associated records and feed them to any
general-purpose MPC that ignores the non-matching records
and computes on the matching ones. The Private-ID protocol
has the advantage that it only needs the identifiers from the
records as input to produce the UIDs and hence for each
application, parties can assemble a possibly new set of fea-
tures/labels per identifier for the downstream computation
without re-executing the protocol.

The second protocol from [3] called Private Secret Shared
Set Intersection (PS°I), is a natural extension of PSI where in-
stead of learning the plaintext matched records, parties only
learn additive shares of those records which they can feed
to any general-purpose MPC to execute the desired compu-
tation on. The construction is based on efficiently extending
existing DDH-based PSI using any additive homomorphic
encryption scheme. The advantage of PS®I over PID is that
its output size and hence the complexity of the subsequent
MPC is proportional to the size of intersection which in some
cases is much smaller than size of union of the two original
datasets. Its disadvantage, similar to prior work, is that full
records and not just the identifiers need to be ready at the
time of execution, and it requires a rerun when associated
records change for the same identifiers. We have further
generalized these protocols to work in matching scenarios
(2) and (3) where the mapping is many-to-many. There are
two ways to resolve these many-to-many mappings:

(1) Resolve to a single match. In the matching case
where each user has many identifiers, we can define
rules of priorities or weights so as to choose the best
possible match. Both Private-ID and PS®I can be natu-
rally generalized to do this. In cases where the many-
to-many mapping results from a shared external iden-
tifier, it is generally the case that each occurrence of
the identifier is of equal value in defining a match, so
the next collecting approach may be better.
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(2) Collect a many-to-one match. In some applications
of Private RCT it is actually best not to resolve to
a single match but rather to collect all the matches
on one side of a many-to-many matching. The PS’I
protocol generalizes more naturally to do this than
Private-ID, and we call this variant Collecting PS31.
One implication of a many-to-many identity matching is
that it affects the RCT validity. If one party partitions users
into Test and Control groups, it is possible that one user from
the other party’s set will match with users from both the Test
and Control groups. We call such users contaminated and
drop them from the study by running the collecting version
of PS®I on both the test and control groups simultaneously
and looking for overlap in the encrypted intersections.

2.3 Private RCT Computation

We estimate that a large RCT, as is seen in advertising Conver-
sion Lift, may routinely have up to 500M rows; thus handling
a large volumes of data is crucial in practice. Unfortunately,
EMP-toolkit and similar MPC platforms were not able to
handle such a large volume of data at once in the required
scale and speed imposed by the application. EMP-toolkit was
limited to 2M rows of integer data when we tested on the
largest available AWS Fargate option (30GB), although it was
able to handle 4M rows on a larger EC2 instance (64GB).

In this section we go over our design for computing a RCT
game privately across multiple containers via our privacy-
preserving sharding mechanism. In our protocol, data from
the private id match is deterministically partitioned into sep-
arate container shards. Each shard then performs a 2PC with
the corresponding shard controlled by the other party. The
intermediary output of each shard remains private, i.e. the
garbled values will not be open to the parties. Instead, each
party will learn an XOR share of the value. Consequently,
the aggregation step happens after the data is reconstructed
from the XOR-shares in a garbled circuit and only the final
result will be revealed.

Figures 2 show the high-level design of the Protocol, as it
is replicated on both the Garbler and Evaluator’s sides. Both
Garbler and Evaluator each have one Coordinator, multiple
Workers and one Aggregator. The Coordinator partitions
the input database into shards in a round robin method, and
assigns each shard to a Worker. Workers will evaluate the sub-
circuit on the input shard and send the intermediary result
to the Aggregator who evaluates the final output and adds
DP noise to it. For each Worker on the Garbler side, there is a
corresponding Worker on the Evaluator side that have point-
to-point connection with each other and work together to
evaluate the garbled circuit. Similarly, the Aggregator on
the Garbler side has network connection and computes the
aggregation jointly with the Aggregator on the evaluator
side.

2.3.1 Private Partitioning and Aggregation. To ensure no
party learns the output of computation on one shard, we
do not reveal the intermediary output at the end of their
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game. Instead, The server will choose a random number as a
new input and XOR the result of the computation with that
random number in the garbled circuit. At the end of the game,
Evaluator knows the result of computation XORed with that
random number and Garbler knows the random number.
Jointly, they can reconstruct the result but individually, they
do not have any information about it due to the security of
one-time pads.

2.4 Differential Privacy in MPC

Deterministic MPC output can leak input information. Typ-
ical privacy attacks on aggregated statistics include re-
identification attacks, database reconstruction, and mem-
bership inference [6]. To further enhance privacy of the pro-
tocol, we use Differential Privacy (DP) to add randomness to
the output. See [5] for common DP algorithms. We address
three specific considerations to implement DP for Private
RCT below.

2.4.1 DP Confidence Intervals (Cls). Valid statistical infer-
ence with RCTs requires valid measures of uncertainty (e.g.
Confidence Intervals). Valid ClIs consider both the sampling
variation and the randomness added by the DP noise. We
consider three criteria for Cls. 1) CIs should be differentially
private. 2) CIs should have the correct coverage probability.
3) CIs should be narrow, given the DP guarantee and the
correct coverage.

There are several additional challenges to construct DP
confidence intervals in Private RCTs. 1) Most proposed meth-
ods for DP confidence intervals aim at estimating unknown
parameters from known parametric distributions, e.g. releas-
ing the DP mean estimate and its DP standard error from
a Gaussian distribution [1, 4, 8]. In RCTs we estimate the
difference-in-means of two samples from unknown distri-
butions. 2) Nonparametric methods for confidence intervals
are typically based on resampling techniques such as boot-
strapping, which can be computationally expensive in MPC
[2].

We compare existing parametric and nonparametric
approaches to DP confidence intervals, and found non-
parametric bootstrapping methods are generally more robust
to our application, due to wide variations across RCTs and
vastly different expected treatment effect sizes.

2.4.2  Two-side Privacy Guarantees. In Private RCTs, each
party’s input data is masked from the other party, thus DP
noises need to be calibrated to ensure two-side privacy guar-
antee: Party A gets only a differentially private view of Party
B’s secret input, and vice versa [9]. Recall that data parties
hold different parts of the data, for example, party A has the
treatment and party B holds the outcome. The sensitivity
of the calculation with respect to the treatment variable is
larger than the sensitivity with respect to the outcome vari-
able. It suggests that to protect party A’s input data, more
noise needs to be added to the final output exposed to party
B.
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Figure 2: Private RCT design. Garbler and Evaluator have the same overall architecture.

2.4.3 Distributed DP Noise Generation. If any party knows
the DP noise added to the final output, they can back out the
non-private deterministic output. One way to avoid that is to
add party A-generated random noise to the final output and
send the sum to party B, and add party B-generated random
noise to the output exposed to party A. This way, neither
party sees the true output, and both parties have incentives
to protect their noise values.

However, a malicious adversary may intentionally choose
a huge noise to destroy the other party’s data utility. To
address this concern, we use the cut and choose method.
Each party generates a list of random values as noise, drawn
from respective Laplace or Gaussian distributions scaled
proportional to sensitivities. They commit to these values
and put them as input to the garbled circuit. Each party also
chooses a random index which will be used to select one
of the other party’s noise inputs and includes it as input to
the garbled circuit. The computation circuit picks the noise
values at the two indices and adds them for DP noise and
reveals the rest of random values. This way, both parties can
verify that the noises come from the claimed distribution.

One caveat with our system is that the private identity
match already leaks the size of the match, which is not dif-
ferentially private. One method to prevent this problem is
adding synthetic data to the set in a way that it hides the
size of the match. However, addressing this issue is an open
problem for future.
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