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Figure 1. Our SimPoE framework learns a kinematics-aware video-conditioned policy that controls a character in a physics simulator (Top)
and estimates accurate and physically-plausible human motion (Bottom).

Abstract
Accurate estimation of 3D human motion from monocu-

lar video requires modeling both kinematics (body motion
without physical forces) and dynamics (motion with phys-
ical forces). To demonstrate this, we present SimPoE, a
Simulation-based approach for 3D human Pose Estimation,
which integrates image-based kinematic inference and
physics-based dynamics modeling. SimPoE learns a policy
that takes as input the current-frame pose estimate and the
next image frame to control a physically-simulated charac-
ter to output the next-frame pose estimate. The policy con-
tains a learnable kinematic pose refinement unit that uses
2D keypoints to iteratively refine its kinematic pose estimate
of the next frame. Based on this refined kinematic pose,
the policy learns to compute dynamics-based control (e.g.,
joint torques) of the character to advance the current-frame
pose estimate to the pose estimate of the next frame. This
design couples the kinematic pose refinement unit with the
dynamics-based control generation unit, which are learned
jointly with reinforcement learning to achieve accurate and
physically-plausible pose estimation. Furthermore, we pro-
pose a meta-control mechanism which dynamically adjusts
the character’s dynamics parameters based on the charac-
ter state to attain more accurate pose estimates. Experi-
ments on large-scale motion datasets demonstrate that our
approach establishes new state of the art in pose accuracy
while ensuring physical plausibility.

1. Introduction
We aim to show that accurate 3D human pose estimation

from monocular video requires modeling both kinematics
and dynamics. Human dynamics, i.e., body motion model-
ing with physical forces, has gained relatively little atten-
tion in 3D human pose estimation compared to its coun-
terpart, kinematics, which models motion without physical
forces. There are two main reasons for the disparity be-
tween these two equally important approaches. First, kine-
matics is a more direct approach that focuses on the geo-
metric relationships of 3D poses and 2D images; it sidesteps
the challenging problem of modeling the physical forces un-
derlying human motion, which requires significant domain
knowledge about physics and control. Second, compared to
kinematic measurements such as 3D joint positions, phys-
ical forces present unique challenges in their measurement
and annotation, which renders standard supervised learn-
ing paradigms unsuitable. Thus, almost all state-of-the-art
methods [36, 59, 20, 19, 33] for 3D human pose estimation
from monocular video are based only on kinematics. Al-
though these kinematic methods can estimate human mo-
tion with high pose accuracy, they often fail to produce
physically-plausible motion. Without modeling the physics
of human dynamics, kinematic methods have no notion of
force, mass or contact; they also do not have the ability
to impose physical constraints such as joint torque limits
or friction. As a result, kinematic methods often generate
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physically-implausible motions with pronounced artifacts:
body parts (e.g., feet) penetrate the ground; the estimated
poses are jittery and vibrate excessively; the feet slide back
and forth when they should be in static contact with the
ground. All these physical artifacts significantly limit the
application of kinematic pose estimation methods. For in-
stance, jittery motions can be misleading for medical moni-
toring and sports training; physical artifacts also prevent ap-
plications in computer animation and virtual/augmented re-
ality since people are exceptionally good at discerning even
the slightest clue of physical inaccuracy [44, 12].

To improve the physical plausibility of estimated human
motion from video, recent work [22, 45, 47] has started to
adopt the use of dynamics in their formulation. These meth-
ods first estimate kinematic motion and then use physics-
based trajectory optimization to optimize the forces to in-
duce the kinematic motion. Although they can generate
physically-grounded motion, there are several drawbacks of
trajectory optimization-based approaches. First, trajectory
optimization entails solving a highly-complex optimization
problem at test time. This can be computationally inten-
sive and requires the batch processing of a temporal win-
dow or even the entire motion sequence, causing high la-
tency in pose predictions and making it unsuitable for inter-
active real-time applications. Second, trajectory optimiza-
tion requires simple and differentiable physics models to
make optimization tractable, which can lead to high approx-
imation errors compared to advanced and non-differentiable
physics simulators (e.g., MuJoCo [51], Bullet [8]). Fi-
nally and most importantly, the application of physics in
trajectory optimization-based methods is implemented as
a post-processing step that projects a given kinematic mo-
tion to a physically-plausible one. Since it is optimization-
based, there is no learning mechanism in place that tries to
match the optimized motion to the ground truth. As such,
the resulting motion from trajectory optimization can be
physically-plausible but still far from the ground-truth, es-
pecially when the input kinematic motion is inaccurate.

To address these limitations, we present a new approach,
SimPoE (Simulated Character Control for Human Pose
Estimation), that tightly integrates image-based kinematic
inference and physics-based dynamics modeling into a joint
learning framework. Unlike trajectory optimization, Sim-
PoE is a causal temporal model with an integrated physics
simulator. Specifically, SimPoE learns a policy that takes
the current pose and the next image frame as input, and pro-
duces controls for a proxy character inside the simulator that
outputs the pose estimate for the next frame. To perform
kinematic inference, the policy contains a learnable kine-
matic pose refinement unit that uses image evidence (2D
keypoints) to iteratively refine a kinematic pose estimate.
Concretely, the refinement unit takes as input the gradient
of keypoint reprojection loss, which encodes rich informa-

tion about the geometry of pose and keypoints, and out-
puts the kinematic pose update. Based on this refined kine-
matic pose, the policy then computes a character control ac-
tion, e.g., target joint angles for the character’s proportional-
derivative (PD) controllers, to advance the character state
and obtain the next-frame pose estimate. This policy de-
sign couples the kinematic pose refinement unit with the
dynamics-based control generation unit, which are learned
jointly with reinforcement learning (RL) to ensure both ac-
curate and physically-plausible pose estimation. At each
time step, a reward is assigned based on the similarity be-
tween the estimated motion and the ground truth. To further
improve pose estimation accuracy, SimPoE also includes a
new control mechanism called meta-PD control. PD con-
trollers are widely used in prior work [42, 39, 61] to convert
the action produced by the policy into the joint torques that
control the character. However, the PD controller parame-
ters typically have fixed values that require manual tuning,
which can produce sub-optimal results. Instead, in meta-
PD control, SimPoE’s policy is also trained to dynamically
adjust the PD controller parameters across simulation steps
based on the state of the character to achieve a finer level of
control over the character’s motion.

We validate our approach, SimPoE, on two large-scale
datasets, Human3.6M [14] and an in-house human mo-
tion dataset that also contains detailed finger motion. We
compare SimPoE against state-of-the-art monocular 3D hu-
man pose estimation methods including both kinematic and
physics-based approaches. On both datasets, SimPoE out-
performs previous art in both pose-based and physics-based
metrics, with significant pose accuracy improvement over
prior physics-based methods. We further conduct extensive
ablation studies to investigate the contribution of our pro-
posed components including the kinematic refinement unit,
meta-PD control, as well as other design choices.

The main contributions of this paper are as follows:
(1) We present a joint learning framework that tightly inte-
grates image-based kinematic inference and physics-based
dynamics modeling to achieve accurate and physically-
plausible 3D human pose estimation from monocular video.
(2) Our approach is causal, runs it real-time without batch
trajectory optimization, and addresses several drawbacks of
prior physics-based methods. (3) Our proposed meta-PD
control mechanism eliminates manual dynamics parameter
tuning and enables finer character control to improve pose
accuracy. (4) Our approach outperforms previous art in both
pose accuracy and physical plausibility. (5) We perform ex-
tensive ablations to validate the proposed components to es-
tablish good practices for RL-based human pose estimation.

2. Related Work
Kinematic 3D Human Pose Estimation. Numerous prior
works estimate 3D human joint locations from monoc-
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ular video using either two-stage [9, 43, 38] or end-to-
end [28, 27] frameworks. On the other hand, parametric hu-
man body models [2, 25, 36] are widely used as the human
pose representation since they additionally provide skele-
tal joint angles and a 3D body mesh. Optimization-based
methods have been used to fit the SMPL body model [25]
to 2D keypoints extracted from an image [5, 21]. Alter-
natively, regression-based approaches use deep neural net-
works to directly regress the parameters of the SMPL model
from an image [52, 50, 37, 34, 16, 10], using weak super-
vison from 2D keypoints [52, 50, 16] or body part seg-
mentation [34, 37]. Song et al. [48] propose neural gra-
dient descent to fit the SMPL model using 2D keypoints.
Regression-based [16] and optimization-based [5] methods
have also been combined to produce pseudo ground truth
from weakly-labeled images [20] to facilitate learning. Re-
cent work [3, 13, 17, 49, 19, 26] starts to exploit the tem-
poral structure of human motion to estimate smooth mo-
tion. Kanazawa et al. [17] model human kinematics by
predicting past and future poses. Transformers [53] have
also been used to improve the temporal modeling of hu-
man motion [49]. All the aforementioned methods disre-
gard human dynamics, i.e., the physical forces that generate
human motion. As a result, these methods often produce
physically-implausible motions with pronounced physical
artifacts such as jitter, foot sliding, and ground penetration.

Physics-Based Human Pose Estimation. A number of
works have addressed human dynamics for 3D human pose
estimation. Most prior works [6, 57, 55, 63, 61, 45, 47] use
trajectory optimization to optimize the physical forces to in-
duce the human motion in a video. As discussed in Sec. 1,
trajectory optimization is a batch procedure which has high
latency and is typically computationally expensive, making
it unsuitable for real-time applications. Furthermore, these
methods cannot utilize advanced physics simulators with
non-differentiable dynamics. Most importantly, there is no
learn mechanism in trajectory optimization-based methods
that tries to match the optimized motion to the ground truth.
Our approach addresses these drawbacks with a framework
that integrates kinematic inference with RL-based charac-
ter control, which runs in real-time, is compatible with ad-
vanced physics simulators, and has learning mechanisms
that aim to match the output motion to the ground truth. Al-
though prior work [60, 61, 15] has used RL to produce sim-
ple human locomotions from videos, these methods only
learn policies that coarsely mimic limited types of motion
instead of precisely tracking the motion presented in the
video. In contrast, our approach can achieve accurate pose
estimation by integrating images-based kinematic inference
and RL-based character control with the proposed policy
design and meta-PD control.

Reinforcement Learning for Character Control. Deep
RL has become the preferred approach for learning char-

acter control policies with manually-designed rewards [23,
24, 39, 41]. GAIL [11] based methods are proposed to
learn character control without reward engineering [31, 56].
To produce long-term behaviors, prior work has used hi-
erarchical RL to control characters to achieve high-level
tasks [30, 29, 40, 32]. Recent work also uses deep RL to
learn user-controllable polices from motion capture data for
character animation [4, 35, 58]. Prior work in this domain
learns control policies that reproduce training motions, but
the policies do not transfer to unseen test motions, nor do
they estimate motion from video as our approach does.

3. Approach
The overview of our SimPoE (Simulated Character

Control for Human Pose Estimation) framework is illus-
trated in Fig. 2. The input to SimPoE is a video I1:T =
(I1, . . . , IT ) of a person with T frames. For each frame It,
we first use an off-the-shelf kinematic pose estimator to esti-
mate an initial kinematic pose q̃t, which consists of the joint
angles and root translation of the person; we also extract
2D keypoints qxt and their confidence ct from It using a
given pose detector (e.g., OpenPose [7])). As the estimated
kinematic motion q̃1:T = (q̃1, . . . , q̃T ) is obtained with-
out modeling human dynamics, it often contains physically-
implausible poses with artifacts like jitter, foot sliding, and
ground penetration. This motivates the main stage of our
method, simulated character control, where we model hu-
man dynamics with a proxy character inside a physics sim-
ulator. The character’s initial pose q1 is set to q̃1. At each
time step t shown in Fig. 2 (b), SimPoE learns a policy that
takes as input the current character pose qt, velocities q̇t, as
well as the next frame’s kinematic pose q̃t+1 and keypoints
(qxt+1, ct+1) to produce an action that controls the character
in the simulator to output the next pose qt+1. By repeating
this causal process, we obtain the physically-grounded esti-
mated motion q1:T = (q1, . . . , qT ) of SimPoE.

3.1. Automated Character Creation

The character we use as a proxy to simulate human mo-
tion is created from skinned human mesh models, e.g., the
SMPL model [25], which can be recovered via SMPL-based
pose estimation methods such as VIBE [19]. These skinned
mesh models provide a skeleton of B bones, a mesh of V
vertices, and a skinning weight matrix W ∈ RV×B where
each element Wij specifies the influence of the j-th bone’s
transformation on the i-th vertex’s position. We can obtain a
rigid vertex-to-bone associationA ∈ RV by assigning each
vertex i to the bone with the largest skinning weight for it:
Ai = arg maxjWij . With the vertex-to-bone association
A, we can then create the geometry of each bone by com-
puting the 3D convex hull of all the vertices assigned to the
bone. Assuming constant density, the mass of each bone is
determined by the volume of its geometry. Our character
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Figure 2. Overview of our SimPoE framework. (a) SimPoE is a physics-based causal temporal model. (b) At each frame (30Hz), the
policy network Fθ use the current pose qt, velocities q̇t, and the next frame’s estimated kinematic pose q̃t+1 and keypoints (qxt+1, ct+1)
to generate an action at, which controls the character in the physics simulator (450Hz) via PD controllers to produce the next pose qt+1.

(c) The policy network Fθ outputs the mean action at , (ut,ηt,λ
p
t ,λ

d
t ). The kinematic refinement unit iteratively refines a kinematic

pose estimate by learning pose updates. The refined pose q̃(n)t+1 is used by the control generation unit to produce the mean action at.

creation process is fully automatic, is compatible with pop-
ular body mesh models (e.g., SMPL), and ensures proper
body geometry and mass assignment.

3.2. Simulated Character Control

The task of controlling a character agent in physics simu-
lation to generate desired human motions can be formulated
as a Markov decision process (MDP), which is defined by a
tupleM = (S,A, T , R, γ) of states, actions, transition dy-
namics, a reward function, and a discount factor. The char-
acter agent interacts with the physics simulator according to
a policy π(at|st), which models the conditional distribution
of choosing an action at ∈ A given the current state st ∈ S
of the agent. Starting from some initial state s1, the char-
acter agent iteratively samples an action at from the policy
π and the simulation environment with transition dynamics
T (st+1|st,at) generates the next state st+1 and gives the
agent a reward rt. The reward is assigned based on how well
the character’s motion aligns with the ground-truth human
motion. The goal of our character control learning process
is to learn an optimal policy π∗ that maximizes the expected
return J(π) = Eπ [

∑
t γ

trt] which translates to imitating
the ground-truth motion as closely as possible. We apply
a standard reinforcement learning algorithm (PPO [46]) to
solve for the optimal policy. In the following, we provide a
detailed description of the states, actions and rewards of our
control learning process. We then use a dedicated Sec. 3.3
to elaborate on our policy design.

States. The character state st , (qt, q̇t, q̃t+1, qxt+1, ct+1)
consists of the character’s current pose qt, joint velocities
(time derivative of the pose) q̇t, as well as the estimated
kinematic pose q̃t+1, 2D keypoints qxt+1 and keypoint con-
fidence ct+1 of the next frame. The state includes informa-

tion of both the current frame (qt, q̇t) and next frame (q̃t+1,
qxt+1,ct+1), so that the agent learns to take the right action
at to transition from the current pose qt to a desired next
pose qt+1, i.e., pose close to the ground truth.
Actions. The policy π(at|st) runs at 30Hz, the input
video’s frame rate, while our physics simulator runs at
450Hz to ensure stable simulation. This means one policy
step corresponds to 15 simulation steps. One common de-
sign of the policy’s action at is to directly output the torques
τ t to be applied at each joint (except the root), which are
used repeatedly by the simulator during the 15 simulation
steps. However, finer control can be achieved by adjusting
the torques at each step based on the state of the character.
Thus, we follow prior work [42, 61] and use proportional-
derivative (PD) controllers at each non-root joint to produce
torques. With this design, the action at includes the target
joint angles ut of the PD controllers. At the j-th of the
15 simulation (PD controller) steps, the joint torques τ t are
computed as

τ t = kp ◦ (ut − qnrt )− kd ◦ q̇nrt , (1)

where kp and kd are the parameters of the PD controllers,
qnrt and q̇nrt denote the joint angles and velocities of non-
root joints at the start of the simulation step, and ◦ denotes
element-wise multiplication. The PD controllers act like
damped springs that drive joints to target angles ut, where
kp and kd are the stiffness and damping of the springs. In
Sec. 3.4, we will introduce a new control mechanism, meta-
PD control, that allows kp and kd to be dynamically ad-
justed by the policy to achieve an even finer level of char-
acter control. With Meta-PD control, the action at includes
elements λpt and λdt for adjusting kp and kd respectively.
As observed in prior work [62], allowing the policy to apply
external residual forces to the root greatly improves the ro-
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bustness of character control. Thus, we also add the residual
forces and torques ηt of the root into the action at. Overall,
the action is defined as at , (ut,ηt,λ

p
t ,λ

d
t ).

Rewards. In order to learn the policy, we need to define a
reward function that encourages the motion q1:T generated
by the policy to match the ground-truth motion q̂1:T . Note
that we use ·̂ to denote ground-truth quantities. The reward
rt at each time step is defined as the multiplication of four
sub-rewards:

rt = rpt · rvt · r
j
t · rkt . (2)

The pose reward rpt measures the difference between the
local joint orientations ojt and the ground truth ôjt :

rpt = exp

−αp
 J∑
j=1

‖ojt 	 ô
j
t‖2
 , (3)

where J is the total number of joints, 	 denotes the relative
rotation between two rotations, and ‖ · ‖ computes the rota-
tion angle. The velocity reward rvt measures the mismatch
between joint velocities q̇t and the ground truth ̂̇qt:

rvt = exp
[
−αv‖q̇t − ̂̇qt‖2] . (4)

The joint position reward rjt encourages the 3D world joint

positionsXj
t to match the ground truth X̂

j

t :

rjt = exp

−αj
 J∑
j=1

‖Xj
t − X̂

j

t‖2
 . (5)

Finally, the keypoint reward rkt pushes the 2D image pro-
jection xjt of the joints to match the ground truth x̂jt :

rkt = exp

−αk
 J∑
j=1

‖xjt − x̂
j
t‖2
 . (6)

Note that the orientations ojt , 3D joint positionsXj
t and 2D

image projections xjt are functions of the pose qt. The joint
velocities q̇t are computed via finite difference. There are
also weighting factors αp, αv, αj, αk inside each reward.
These sub-rewards complement each other by matching dif-
ferent features of the generated motion to the ground-truth:
joint angles, velocities, as well as 3D and 2D joint posi-
tions. Our reward design is multiplicative, which eases pol-
icy learning as noticed by prior work [58]. The multipli-
cation of the sub-rewards ensures that none of them can be
overlooked in order to achieve a high reward.

3.3. Kinematics-Aware Policy

As the action at is continuous, we adopt a parametrized
Gaussian policy πθ(at|st) = N (at,Σ) where the mean
at , (ut,ηt,λ

p
t ,λ

d
t ) is output by a neural networkFθ with

parameters θ, and Σ is a fixed diagonal covariance matrix

whose elements are treated as hyperparameters. The noise
inside the Gaussian policy governed by Σ allows the agent
to explore different actions around the mean action at and
use these explorations to improve the policy during training.
At test time, the noise is removed and the character agent
always takes the mean action at to improve performance.

Now let us focus on the design of the policy network Fθ
that maps the state st to the mean action at. Based on the
design of st, the mapping can be written as

at = Fθ
(
qt, q̇t, q̃t+1, qxt+1, ct+1

)
. (7)

Recall that q̃t+1 is the kinematic pose, qxt+1 and ct+1 are
the detected 2D keypoints and their confidence, and that
they are all information about the next frame. The over-
all architecture of our policy network Fθ is illustrated in
Fig. 2 (c). The components (ut,ηt,λ

p
t ,λ

d
t ) of the mean ac-

tion at are computed as follows:

q̃
(n)
t+1 = Rθ

(
q̃t+1, qxt+1, ct+1

)
, (8)

(δut,ηt,λ
p
t ,λ

d
t ) = Gθ

(
q̃
(n)
t+1, qt, q̇t

)
, (9)

ut = q̃
(n)
t+1 + δut . (10)

In Eq. (8),Rθ is a kinematic refinement unit that iteratively
refines the kinematic pose q̃t+1 using the 2D keypoints
qxt+1 and confidence ct+1, and q̃(n)t+1 is the refined pose af-
ter n iterations of refinement. Eq. (9) and (10) describe a
control generation unit Gθ that maps the refined pose q̃(n)t+1,
current pose qt and velocities q̇t to the components of the
mean action at. Specifically, the control generation unit Gθ
includes a hand-crafted feature extraction layer, a normal-
ization layer (based on running estimates of mean and vari-
ance) and another MLP Vθ, as illustrated in Fig. 2 (c). As
described in Eq. (10), an important design of Gθ is a resid-
ual connection that produces the mean PD controller target
angles ut using the refined kinematic pose q̃(n)t+1, where we
ignore the root angles and positions in q̃(n)t+1 for ease of nota-
tion. This design builds in proper inductive bias since q̃(n)t+1

provides a good guess for the desired next pose qt+1 and
thus a good base value for ut. It is important to note that
the PD controller target angles ut do not translate to the
same next pose qt+1 of the character, i.e., qt+1 6= ut. The
reason is that the character is subject to gravity and contact
forces, and under these external forces the joint angles qt+1

will not be ut when the PD controllers reach their equilib-
rium. As an analogy, since PD controllers act like springs,
a spring will reach a different equilibrium position when
you apply external forces to it. Despite this, the next pose
qt+1 generally will not be far away from ut and learning
the residual δut to q̃(n)t+1 is easier than learning from scratch
as we will demonstrate in the experiments. This design also
synergizes the kinematics of the character with its dynam-
ics as the kinematic pose q̃(n)t+1 is now tightly coupled with
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the input of the character’s PD controllers that control the
character in the physics simulator.

Kinematic Refinement Unit. The kinematic refinement
unitRθ is formed by an MLP Uθ that maps a feature vector
z (specific form will be described later) to a pose update:

δq̃
(i)
t+1 = Uθ (z) , (11)

q̃
(i+1)
t+1 = q̃

(i)
t+1 + δq̃

(i)
t+1 , (12)

where i denotes the i-th refinement iteration and q̃(0)t+1 =
q̃t+1. To fully leverage the 2D keypoints and kinematic
pose at hand, we design the feature z to be the gradient
of the keypoint reprojection loss with respect to current 3D
joint positions, inspired by recent work [48] on kinematic
body fitting. The purpose of using the gradient is not to
minimize the reprojection loss, but to use it as an informa-
tive kinematic feature to learn a pose update that eventually
results in stable and accurate control of the character; there
is no explicit minimization of the reprojection loss in our
formulation. Specifically, we first obtain the 3D joint posi-
tions X̃t+1 = FK(q̃

(i)
t+1) through forward kinematics and

then compute the reprojection loss as

L(X̃t+1) =

J∑
j=1

∥∥∥Π
(
X̃
j

t+1

)
− qxjt+1

∥∥∥2 · cjt+1 , (13)

where X̃
j

t+1 denotes the j-th joint position in X̃t+1, Π(·)
denotes the perspective camera projection, and (qxjt+1, c

j
t+1)

are the j-th detected keypoint and its confidence. The gra-
dient feature z , ∂L/∂X̃t+1 is informative about the kine-
matic pose q̃(i)t+1 as it tells us how each joint should move
to match the 2D keypoints qxjt+1. It also accounts for key-
point uncertainty by weighting the loss with the keypoint
confidence cjt+1. Note that z is converted to the character’s
root coordinate to be invariant of the character’s orientation.
The refinement unit integrates kinematics and dynamics as
it utilizes a kinematics-based feature z to learn the update of
a kinematic pose, which is used to produce dynamics-based
control of the character. The joint learning of the kinematic
refinement unit Rθ and the control generation unit Gθ en-
sures accurate and physically-plausible pose estimation.

Feature Extraction Layer. After refinement, the control
generation unit Gθ needs to extract informative features
from its input to output an action that advances the char-
acter from the current pose qt to the next pose qt+1. To this
end, the feature extraction layer uses information from both
the current frame and next frame. Specifically, the extracted
feature includes qt, q̇t, the current 3D joint positions Xt,
the pose difference vector between qt and the refined kine-
matic pose q̃(n)t+1, and the difference vector betweenXt and
the next-frame joint position X̃t+1 computed from q̃

(n)
t+1.

All features are converted to the character’s root coordinate

to be orientation-invariant and encourage robustness against
variations in absolute pose encountered at test time.

3.4. Meta-PD control
PD controllers are essential in our approach as they relate

the kinematics and dynamics of the character by converting
target joint angles in pose space to joint torques. However,
an undesirable aspect of PD controllers is the need to spec-
ify the parameters kp and kd for computing the joint torques
τ t as described in Eq. (1). It is undesirable because (i) man-
ual parameter tuning requires significant domain knowledge
and (ii) even carefully designed parameters can be subopti-
mal. The difficulty, here, lies in balancing the ratio between
kp and kd. Large ratios can lead to unstable and jittery
motion while small values can result in motion that is too
smooth and lags behind ground truth.

Motivated by this problem, we propose meta-PD con-
trol, a method that allows the policy to dynamically adjust
kp and kd based on the state of the character. Specifically,
given some initial values k′p and k′d, the policy outputs λp
and λd as additional elements of the action at that act to
scale k′p and k′d. Moreover, we take this idea one step
further and let the policy output two sequences of scales
λpt = (λpt1, . . . , λ

p
tm) and λdt = (λdt1, . . . , λ

d
tm) where

m = 15 corresponds to the number of PD controller (simu-
lation) steps during a policy step. The PD controller param-
eters kp and kd at the j-th step of the 15 PD controller steps
are then computed as follows:

kp = λptjk
′
p, kd = λdtjk

′
d . (14)

Instead of using fixed kp and kd, meta-PD control allows
the policy to plan the scaling of kp and kd through the 15
PD controller steps to have more granular control over the
torques produced by the PD controllers, which in turn en-
ables a finer level of character control. With meta-PD con-
trol, the action at is now defined as at , (ut,ηt,λ

p
t ,λ

d
t ).

4. Experiments
Datasets. We perform experiments on two large-scale hu-
man motion datasets. The first dataset is Human3.6M [14],
which includes 7 annotated subjects captured at 50Hz and
a total of 1.5 million training images. Following prior
work [20, 19, 33], we train our model on 5 subjects (S1, S5,
S6, S7, S8) and test on the other 2 subjects (S9, S11). We
subsample the dataset to 25Hz for both training and testing.
The second dataset we use is an in-house human motion
dataset that also contains detailed finger motion. It consists
of 3 subjects captured at 30Hz performing various actions
from free body motions to natural conversations. There are
around 335k training frames and 87k test frames. Our in-
house dataset has complex skeletons with twice more joints
than the SMPL model, including fingers. The body shape
variation among subjects is also greater than that of SMPL,
which further evaluates the robustness of our approach.
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Figure 3. Visualization of estimated poses in the camera view and an alternative view. SimPoE estimates more accurate poses and foot
contact. Pose mismatch and ground penetration are highlighted with boxes. Please see the supplementary video for more comparisons.

Metrics. We use both pose-based and physics-based met-
rics for evaluation. To assess pose accuracy, we report mean
per joint position error (MPJPE) and Procrustes-aligned
mean per joint position error (PA-MPJPE). We also use
three physics-based metrics that measure jitter, foot sliding,
and ground penetration, respectively. For jitter, we compute
the difference in acceleration (Accel) between the predicted
3D joint and the ground-truth. For foot sliding (FS), we find
body mesh vertices that contact the ground in two adjacent
frames and compute their average displacement within the
frames. For ground penetration (GP), we compute the av-
erage distance to the ground for mesh vertices below the
ground. The units for these metrics are millimeters (mm)
except for Accel (mm/frame2). MPJPE, PA-MPJPE and
Accel are computed in the root-centered coordinate.

4.1. Implementation Details.

Character Models. We use MuJoCo [51] as the physics
simulator. For the character creation process in Sec. 3.1,
we use VIBE [19] to recover an SMPL model for each sub-
ject in Human3.6M. Each MuJoCo character created from
the SMPL model has 25 bones and 76 degrees of free-
dom (DoFs). For our in-house motion dataset, we use non-
rigid ICP [1] and linear blend skinning [18] to reconstruct a
skinned human mesh model for each subject. Each of these
models has fingers and includes 63 bones and 114 DoFs.

Initialization. For Human3.6M, we use VIBE to provide
the initial kinematic motion q̃1:T . For our in-house motion
dataset, since our skinned human models have more com-
plex skeletons and meshes than the SMPL model, we de-
velop our own kinematic pose estimator, which is detailed

Human3.6M

Method Physics MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

VIBE [19] 7 61.3 43.1 15.2 15.1 12.6
NeurGD* [48] 7 57.3 42.2 14.2 16.7 24.4
PhysCap [47] 3 113.0 68.9 - - -
EgoPose [61] 3 130.3 79.2 31.3 5.9 3.5
SimPoE (Ours) 3 56.7 41.6 6.7 3.4 1.6

In-House Motion Dataset

Method Physics MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

KinPose 7 49.7 40.4 12.8 6.4 3.9
NeurGD* [48] 7 36.7 30.9 16.2 7.7 3.6
EgoPose [61] 3 202.2 131.4 32.6 2.2 0.5
SimPoE (Ours) 3 26.6 21.2 8.4 0.5 0.1

Table 1. Results of pose-based (MPJPE, PA-MPJPE) and physics-
based (Accel, FS, GP) metrics on Human3.6M and our in-house
motion dataset. Symbol “-” means results are not available and “*”
means self-implementation (better results than the original paper).

in the supplementary materials. To recover the global root
position of the person, we assume the camera intrinsic pa-
rameters are calibrated and optimize the root position by
minimizing the reprojection loss of 2D keypoints, similar to
the kinematic initialization in [47].

Other Details. The kinematic refinement unit in the pol-
icy network refines the kinematic pose n = 5 times. To
facilitate learning, we first pretrain the refinement unit with
supervised learning using a MSE loss on the refined kine-
matic pose. The normalization layer in the policy computes
the running average of the mean and variance of the input
feature during training, and uses it to produce a normalized
feature. Our learned policy runs at 38 FPS on a standard
PC with an Intel Core i9 Processor. More implementation
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Method
Human3.6M In-House Motion Dataset

MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓ MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓
w/o Meta-PD 59.9 44.7 5.9 2.2 1.4 39.8 31.7 7.1 0.4 0.1
w/o Refine 61.2 43.5 8.0 3.4 2.0 47.9 38.9 9.6 0.6 0.1
w/o ResAngle 68.7 51.0 6.4 4.1 2.1 193.4 147.6 6.5 0.9 0.3
w/o ResForce 115.2 65.1 23.5 6.1 3.2 48.4 31.3 12.5 0.9 0.3
w/o FeatLayer 81.4 47.6 9.3 5.0 1.8 36.9 27.5 9.5 0.6 0.1
SimPoE (Ours) 56.7 41.6 6.7 3.4 1.6 26.6 21.2 8.4 0.5 0.1

Table 2. Ablation studies on Human3.6M and our in-house motion dataset.

0 1 2 3 4 5
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57

58

59

60

61

M
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PE

Human3.6M

Figure 4. Effect of refinement unit.

details such as training procedures and hyperparameter set-
tings can be found in the supplementary materials.

4.2. Comparison to state-of-the-art methods

We compare SimPoE against state-of-the-art monocu-
lar 3D human pose estimation methods, including both
kinematics-based (VIBE [19], NeurGD [48]) and physics-
based (PhysCap [47], EgoPose [61]) approaches. The re-
sults of VIBE and EgoPose are obtained using their pub-
licly released code and models. As PhysCap and NeurGD
have not released their code, we directly use the reported
results on Human3.6M from the PhysCap paper and imple-
ment our own version of NeurGD. Table 1 summarizes the
quantitative results on Human3.6M and the in-house mo-
tion dataset. On Human3.6M, we can obeserve that our
method, SimPoE, outperforms previous methods in pose ac-
curacy as indicated by the smaller MPJPE and PA-MPJPE.
In particular, SimPoE shows large pose accuracy improve-
ments over state-of-the-art physics-based approaches (Ego-
Pose [61] and PhysCap [47]), reducing the MPJPE almost
by half. For physics-based metrics (Accel, FS and GP),
SimPoE also outperforms prior methods by large margins.
It means that SimPoE significantly reduces the physical ar-
tifacts – jitter (Accel), foot sliding (FS), and ground pen-
etration (GP), which particularly deteriorate the results of
kinematic methods (VIBE [19] and NeurGD [48]). On the
in-house motion dataset, SimPoE again outperforms previ-
ous methods in terms of both pose-based and physics-based
metrics. In the table, KinPose denotes our own kinematic
pose estimator used by SimPoE. We note that the large ac-
celeration error (Accel) of EgoPose is due to the frequent
falling of the character, which is a common problem in
physics-based methods since the character can lose balance
when performing agile motions. The learned policy of Sim-
PoE is robust enough to stably control the character without
falling, which prevents irregular accelerations.

We also provide qualitative comparisons in Fig. 3, where
we show the estimated poses in the camera view and the
same poses rendered from an alternative view. The alterna-
tive view shows that SimPoE can estimate foot contact with
the ground more accurately and without penetration. As the
quality and physical plausibility of the estimated motions
are best seen in videos, please refer to the supplementary
video for additional qualitative results and comparisons.

4.3. Ablation Studies

To further validate our proposed approach, we conduct
extensive ablation studies to investigate the contribution of
each proposed component to the performance. Table 2 sum-
marizes the results where we train different variants of Sim-
PoE by removing a single component each time. First, we
can observe that both meta-PD control and the kinematic
refinement unit contributes to better pose accuracy as indi-
cated by the corresponding ablations (w/o Meta-PD and w/o
Refine). Second, the ablation (w/o ResAngle) shows that it
is important to have the residual connection in the policy
network for producing the mean PD controller target angles
ut. Next, the residual forces ηt we use in action at are also
indispensable as demonstrated by the drop in performance
of the variant (w/o ResForce). Without the residual forces,
the policy is not robust and the character often falls down as
indicated by the large acceleration error (Accel). Finally, it
is evident from the ablation (w/o FeatLayer) that our feature
extraction layer in the policy is also instrumental, because it
extracts informative features of both the current frame and
next frame to learn control that advances the character to the
next pose. We also perform ablations to investigate how the
number of refinement iterations in the policy affects pose
accuracy. As shown in Fig. 4, the performance gain satu-
rates around 5 refinement iterations.

5. Discussion and Future Work
In this work, we demonstrate that modeling both kine-

matics and dynamics improves the accuracy and physical
plausibility of 3D human pose estimation from monocular
video. Our approach, SimPoE, unifies kinematics and dy-
namics by integrating image-based kinematic inference and
physics-based character control into a joint reinforcement
learning framework. It runs in real-time, is compatible with
advanced physics simulators, and addresses several draw-
backs of prior physics-based approaches.

However, owing to its physics-based formulation,
SimPoE depends on 3D scene modeling to enforce con-
tact constraints during motion estimation. This hinders di-
rect evaluation on in-the-wild datasets, such as 3DPW [54],
which includes motions such as climbing stairs or even
trees. Future work may include integration video-based 3D
scene reconstruction to address this limitation.

8



References
[1] Brian Amberg, Sami Romdhani, and Thomas Vetter. Op-

timal step nonrigid icp algorithms for surface registration.
In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2007. 7

[2] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Se-
bastian Thrun, Jim Rodgers, and James Davis. Scape: shape
completion and animation of people. In ACM SIGGRAPH
2005 Papers, pages 408–416. 2005. 3

[3] Anurag Arnab, Carl Doersch, and Andrew Zisserman. Ex-
ploiting temporal context for 3d human pose estimation in
the wild. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3395–3404,
2019. 3

[4] Kevin Bergamin, Simon Clavet, Daniel Holden, and
James Richard Forbes. Drecon: data-driven responsive
control of physics-based characters. ACM Transactions on
Graphics (TOG), 38(6):1–11, 2019. 3

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a
single image. In European Conference on Computer Vision,
pages 561–578. Springer, 2016. 3

[6] Marcus A Brubaker, Leonid Sigal, and David J Fleet. Esti-
mating contact dynamics. In 2009 IEEE 12th International
Conference on Computer Vision, pages 2389–2396. IEEE,
2009. 3

[7] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Realtime multi-person 2d pose estimation using part affinity
fields. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7291–7299, 2017. 3

[8] Erwin Coumans. Bullet physics engine. Open Source Soft-
ware: http://bulletphysics. org, 1(3):84, 2010. 2

[9] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer
Afaque, Abhishek Sharma, and Arjun Jain. Learning 3d hu-
man pose from structure and motion. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
668–683, 2018. 3

[10] Riza Alp Guler and Iasonas Kokkinos. Holopose: Holistic
3d human reconstruction in-the-wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 10884–10894, 2019. 3

[11] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. In Advances in Neural Information Process-
ing Systems, pages 4565–4573, 2016. 3

[12] Ludovic Hoyet, Rachel McDonnell, and Carol O’Sullivan.
Push it real: Perceiving causality in virtual interactions. ACM
Transactions on Graphics (TOG), 31(4):1–9, 2012. 2

[13] Yinghao Huang, Federica Bogo, Christoph Lassner, Angjoo
Kanazawa, Peter V Gehler, Javier Romero, Ijaz Akhter, and
Michael J Black. Towards accurate marker-less human shape
and pose estimation over time. In 2017 international confer-
ence on 3D vision (3DV), pages 421–430. IEEE, 2017. 3

[14] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian
Sminchisescu. Human3. 6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural environ-

ments. IEEE transactions on pattern analysis and machine
intelligence, 36(7):1325–1339, 2013. 2, 6

[15] Mariko Isogawa, Ye Yuan, Matthew O’Toole, and Kris M Ki-
tani. Optical non-line-of-sight physics-based 3d human pose
estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7013–
7022, 2020. 3

[16] Angjoo Kanazawa, Michael J Black, David W Jacobs, and
Jitendra Malik. End-to-end recovery of human shape and
pose. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7122–7131, 2018. 3

[17] Angjoo Kanazawa, Jason Y Zhang, Panna Felsen, and Jiten-
dra Malik. Learning 3d human dynamics from video. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5614–5623, 2019. 3

[18] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol
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