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Figure 1: (Left) Our framework, WyPR, jointly learns semantic segmentation and object detection for point cloud data from only scene-
level class tags. We find that encouraging consistency between the two tasks is key. (Right) Sample segmentation results from ScanNet val
set, without seeing any point-level labels during training. Please refer to § 4.4 and Appendix F for more analysis and visualizations.

Abstract

We introduce WyPR, a Weakly-supervised framework for
Point cloud Recognition, requiring only scene-level class
tags as supervision. WyPR jointly addresses three core
3D recognition tasks: point-level semantic segmentation,
3D proposal generation, and 3D object detection, coupling
their predictions through self and cross-task consistency
losses. We show that in conjunction with standard multiple-
instance learning objectives, WyPR can detect and segment
objects in point cloud data without access to any spatial
labels at training time. We demonstrate its efficacy us-
ing the ScanNet and S3DIS datasets, outperforming prior
state of the art on weakly-supervised segmentation by more
than 6% mIoU. In addition, we set up the first benchmark
for weakly-supervised 3D object detection on both datasets,
where WyPR outperforms standard approaches and estab-
lishes strong baselines for future work.

1. Introduction

Recognition (i.e., segmentation and detection) of 3D ob-
jects is a key step towards scene understanding. With the
recent development of consumer-level depth sensors (e.g.,
LiDAR [13, 43]) and the advances of computer vision al-
gorithms, 3D data collection has become more convenient
and inexpensive. However, existing 3D recognition sys-
tems often fail to scale as they rely on strong supervi-
sion, such as point level semantic labels or 3D bounding

∗Work partly done during an internship at Facebook AI Research.

boxes [9, 29, 32], which are time consuming to obtain. For
example, while the popular large-scale indoor 3D dataset
ScanNet [10] was collected by only 20 people, the anno-
tation effort involved more than 500 annotators spending
nearly 22.3 minutes per scan. Furthermore, due to the high
annotation cost, existing 3D object detection datasets have
limited themselves to a small number of object classes. This
time consuming labeling process is a major bottleneck pre-
venting the community from scaling 3D recognition.

Motivated by this observation, we study 3D weakly-
supervised learning with only scene-level class tags avail-
able as supervision to train semantic segmentation and ob-
ject detection models. Scene-level tags are very efficient to
annotate, taking only a second or less for each object in the
scene [36]. Hence, methods that rely on such supervision
can be scaled more easily than those that rely on box-level
supervision.

For this we develop the novel weakly-supervised frame-
work called WyPR, shown in Fig. 1. Using just scene level
tags, it jointly learns both segmentation of point cloud and
detection of 3D boxes. Why should joint learning of seg-
mentation and detection perform better than independently
learning the two tasks? First, since these two tasks are re-
lated, joint training is mutually beneficial for representation
learning. Second, these tasks naturally constrain each other,
leading to effective self-supervised objectives that further
improve performance. For example, the semantic labels
of points within a bounding box should be consistent, and
vice versa. Lastly, directly learning to regress to dimen-
sions of 3D bounding boxes, as common in supervised ap-
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Methods [46] [56] [59] [51] [53] [33] WyPR
Weak labels 2D boxes 2D inst seg sparse label 2D sem seg region & scene tags scene tags scene tags

Tasks det det seg seg seg det det + seg
Dataset indoor outdoor indoor & objects indoor indoor outdoor indoor

Table 1: Summary of closely related work in weakly-supervised 3D recognition. Compared to prior work, our proposed method
(WyPR) uses the readily available scene tags, and jointly learns detection and segmentation in the more challenging indoor room setting.

proaches [28, 29, 39], is extremely challenging using weak
labels. Learning weakly-supervised segmentation first per-
mits a two-stage detection framework, where object propos-
als are generated bottom-up conditioned on segmentation
prediction and further classified using a weakly-supervised
detection algorithm.

To achieve this, WyPR operates on point cloud data of
complex indoor scenes and combines a weakly-supervised
semantic segmentation stage (§ 3.1) with a weakly-
supervised object detection stage (§ 3.2). The latter takes
as input the geometric representation of the input scene
and a set of computed 3D proposals from GSS, our novel
Geometric Selective Search algorithm (§ 3.3). GSS uses
local geometric structures (e.g., planes) and the previously
computed segmentation, for bottom-up proposal genera-
tion. Due to the uninformative nature of weak labels,
weakly-supervised frameworks often suffer from noisy pre-
diction and high variance. We address this by encourag-
ing both cross-task and cross-transformation consistency
through self-supervised objectives. We evaluate WyPR on
standard 3D datasets, i.e., ScanNet and S3DIS (§ 4), im-
proving over prior work on weakly-supervised 3D segmen-
tation by more than 6% mIoU, and establishing new bench-
marks and strong baselines for weakly-supervised 3D de-
tection.

Our contributions are as follows: 1) a novel point cloud
framework to jointly learn weakly-supervised semantic seg-
mentation and object detection, which significantly out-
performs single task baselines; 2) an unsupervised 3D
proposal generation algorithm, geometric selective search
(GSS), for point cloud data; and 3) state-of-the-art results
on weakly-supervised semantic segmentation, and bench-
marks on weakly-supervised proposal generation and object
detection.

2. Related work
3D datasets. Semantically labeled 3D data can be broadly
classified into indoor [2, 5, 10, 41] and outdoor [7, 8, 14, 44]
settings. ScanNet [10], a popular 3D detection and segmen-
tation dataset, contains 20 classes labeled in 1500 scenes.
While this dataset is large, it is small in comparison to
2D datasets, which reach tens of millions of images [21]
and thousands of instance labels [17]. While the popular-
ity of advanced 3D sensors [13, 43] could lead to a simi-
lar growth in 3D data, annotating that data would still be

extremely time consuming. This underscores the need to
develop weakly-supervised techniques for 3D recognition.
3D representations. 3D data is often represented via a
point cloud, and processed using one of two main backbone
architectures. The first [9, 15, 16, 37] projects points to in-
termediate volumetric grids, and then processes them using
convolutional nets. These methods are efficient but suffer
from information loss due to the discretization into voxels.
The second operates directly on points [31, 32, 47, 52], pro-
cessing them in parallel either using a pointwise MLP [31,
32], graph convolution [52], or point convolution [47]. Our
method is compatible with either backbone architecture. We
adopt PointNet++ [32] for experimentation.
3D tasks. Semantic segmentation [2, 6, 10], object detec-
tion [29, 30, 39, 42], and classification [57] are the standard
recognition tasks defined on 3D data. For segmentation,
the two most common tasks are point-level object parts seg-
mentation [6] and scene object segmentation [2, 10], the
latter of which we address in this work using weak su-
pervision. For 3D object detection, standard techniques
leverage either only a point cloud [29, 39, 61], or a point
cloud together with the corresponding multi-view RGB im-
ages [18, 28, 30]. Unlike 2D where offline proposal genera-
tion methods [48, 64] are widely studied and generalize well
to unseen datasets, 3D proposals generated from a point
cloud are often trained in a supervised manner [20, 29, 39]
and overfit to the training set. We propose an unsupervised
3D proposal generation algorithm GSS, which we further
improve using weak supervision.
Weakly-supervised learning. Weak labels in the form
of image-level class tags are widely studied in 2D tasks
such as image localization [58, 63], semantic segmenta-
tion [27, 55], and object detection [3, 35, 45]. Prior
work mostly formulates weakly-supervised learning as a
multiple instance learning problem, where the target tasks
are learned implicitly in a multi-label classification frame-
work. Pipelined [40, 54] or end-to-end self-training mod-
ules [35, 45] have also been demonstrated to be beneficial.
Weakly-supervised learning in 3D. Compared to its 2D
counterpart, weakly-supervised learning for 3D tasks is rel-
atively unexplored. We summarize all relevant prior work
in Tab. 1. For semantic segmentation, Wang et al. [51]
leverage 2D segmentation as weak labels, Xu et al. [59] use
a sparsely labeled point cloud, and Wei et al. [53] utilize
both area and scene-level class tags during training. For
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Figure 2: Approach Overview. A backbone network extracts geometric features which are used by the segmentation head to compute a
point-level segmentation map. The segmentation map is passed into the 3D proposal generation module GSS, and the resulting proposals
along with original features are used to detect 3D object instances. Through a series of self and cross-task consistency losses along with
multiple-instance learning objectives, WyPR is trained end-to-end using only scene-level tags as supervision.

object detection, recent work uses small sets of labeled 3D
data [24, 46, 62], 2D instance segmentation [56], and click
annotation [24] as supervision. However, obtaining these
labels is still time consuming. A closely related concurrent
work [33] focuses on autonomous driving, building upon
a small number of relatively easy objects (e.g., car, pedes-
trian) while still using image data. In contrast, we focus on
complex indoor scenes, exclusively relying on the 3D point
cloud, i.e., no images are required.
Multi-task learning. Multi-task learning [4] has been
widely studied for various vision tasks [12, 19, 25, 34]. It
is of particular importance for weakly-supervised [23, 36]
or self-supervised 2D object detection [11, 34] as multi-
tasking provides mutual regularization and hence better rep-
resentation learning. For detection and segmentation, prior
work has studied joint training with 2D data [23] or super-
vised 3D data [49]. In this paper, we develop a novel frame-
work for learning both tasks under weak supervision.

3. WyPR
Our goal is to use weak supervision in the form of scene-

level tags and learn a joint 3D segmentation and detection
model, which we refer to as WyPR. Specifically, we assume
availability of data D = {(P,y)} of point cloud P and
corresponding scene-level tags y ∈ {0, 1}C , which indicate
absence or presence of theC object classes. P is a set of six-
dimensional points p ∈ P , represented by their 3D location
and RGB-color. Note, y only indicates existence of objects
in the scene and does not contain any information about per-
point semantic labels or object locations.
Approach overview. Fig. 2 provides an overview of our
model which consists of three parametric modules: a back-
bone network, followed by a segmentation and a detection
head. We first extract geometric features from the input
point cloud using the backbone network. Specifically, we
use the variant of PointNet++ [32] following VoteNet [29],
which is an encoder-decoder network with skip connec-
tions. The features are then fed into the segmentation and
detection modules. The segmentation module assigns each
point from the input point cloud P to one of C classes. We
use this segmentation output to generate 3D region propos-

alsR that are likely to contain objects in the scene. Finally,
the detection module classifies each proposal into either one
of C classes or background (not an object) class, using the
backbone features corresponding to that proposal.
Notation. We denote the output of the segmentation mod-
ule as Sseg ∈ R|P|×C , where the rows represent the score
logits over the C classes for all points P . The detection
module produces a score matrix Sdet ∈ R|R|×(C+1) over
the C classes and background for all 3D proposals R. For
readability, we also use p, r as indices into Sseg,Sdet in the
following sections.

3.1. Weakly-supervised 3D semantic segmentation

The segmentation module consists of two identical heads
that independently process the backbone features using a se-
ries of unit PointNet [31] and nearest neighbor upsampling
layers (Fig. 2 green region). The output from these heads
are two score matrices Useg,Sseg ∈ R|P|×C respectively,
containing logits over C object classes for all points p ∈ P .
The parameters of the backbone and the segmentation mod-
ule are optimized to minimize a composed loss

Lseg = LMIL
seg + LSELF

seg + LCST
seg + Ld→s + Lsmooth, (1)

where LMIL
seg denotes a multiple-instance learning (MIL)

loss, LSELF
seg denotes a self-training loss, LCST

seg and Ld→s
represent consistency loss across geometric transformations
and tasks respectively, and Lsmooth is a smoothness regular-
ization loss. We describe the individual loss terms next.
MIL loss. The multiple-instance learning loss [54, 55] en-
courages to learn the per-point semantic segmentation logits
without access to point-level supervision. We first convert
the per-point logits Useg into a scene-level prediction φ via
average pooling and a sigmoid normalization

φ[c] = sigmoid

 1

|P|
∑
p∈P

Useg[p, c]

 . (2)

The scene-level prediction φ is then supervised using the
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Algorithm 1 Segmentation pseudo label generation
Input: class label y, segmentation logits Useg, threshold p1
Output: pseudo label Ŷseg

1: Ŷseg = 0 . initialize to zero matrix
2: for each point p ∈ P do
3: c = argmax(y �Useg[p, :]) . element-wise product
4: Ŷseg [p, c] = 1

5: for ground-truth class c where y[c] = 1 do
6: P ′[c]← lowest p1-th percentile of Ŷseg[:, c]

7: Ŷseg [p, c] = 0 ∀p ∈ P ′[c] . ignore points with low score

scene-level tags y using the binary cross-entropy loss

LMIL
seg =−

C∑
c=1

y[c] logφ[c]−(1−y[c]) log(1−φ[c]). (3)

Self-training loss. Inspired by the success of self-training
in weakly-supervised detection [35, 45, 50], we further in-
corporate a self-training loss. The previously computed seg-
mentation logits Useg are used to supervise the final seg-
mentation logits Sseg via a cross-entropy loss

LSELF
seg = − 1

|P|
∑
p∈P

C∑
c=1

Ŷseg[p, c] logψ[p, c], (4)

where ψ[p, c] = softmax(Sseg[p, c]) denotes the probabil-
ity of point p belonging to class c, and Ŷseg[p, c] ∈ {0, 1}
is the point-level pseudo class label inferred from score ma-
trix Useg. We detail the process of computing the pseudo
label in Alg. 1. Intuitively, the algorithm ignores noisy pre-
dictions in Useg, leading to robust self-supervision for Sseg.
Cross-transformation consistency loss. In addition, we
use LCST

seg to encourage that the segmentation predictions
are consistent across data augmentations T . We obtain an
augmented point cloud P̃ = T (P) by changing the orig-
inal scene P via standard augmentations (see § 4 and Ap-
pendix C.1 for details). We predict the semantic segmenta-
tion S̃seg on this transformed point cloud. The consistency
loss is then formulated as

LCST
seg =

1

|P ∩ P̃|

∑
p∈P∩P̃

DKL

(
ψ[p, ·] || ψ̃[p, ·]

)
, (5)

where ψ[p, c] = softmax(Sseg[p, c]) and ψ̃[p, c] =

softmax(S̃seg[p, c]) are the probabilities of the point p be-
longing to class c, and DKL is the KL divergence over C
classes for points that are common across the transforma-
tion. This loss encourages the probability distributions for
semantic segmentation of corresponding points within the
point cloud P and P̃ to match.
Cross-task consistency loss. We further employ a cross-
task regularization term Ld→s. It uses the detection results
to refine the segmentation prediction. Intuitively, all points

Algorithm 2 Detection pseudo label generation
Input: class label y, detection logits Udet, proposalsR, threshold τ, p2
Output: pseudo label Ŷdet
1: for ground-truth class c where y[c] = 1 do
2: Ŷdet = 0 . initialize to zero matrix
3: R′[c]← top p2-th percentile of Udet[:, c] .R′[c] is descending
4: R∗[c]← r′1 . save 1st RoI (top-scoring) r′1 ∈ R′[c]
5: for i ∈ {2, · · · , |R′[c]|} do . start from the 2nd highest
6: R∗[c]← r′i if IoU(r′i, r̂) < τ ∀r̂ ∈ R∗[c]
7: Ŷdet[r, c] = 1 ∀r ∈ R∗[c]

within a confident bounding box prediction should have the
same semantic label. Assume we have access to a set of
confident bounding boxes r ∈ R∗ and their correspond-
ing predicted score matrix Sdet ∈ R|R∗|×(C+1). Using this
information, we encourage consistency via a cross entropy
loss on the point-level predictions, with the box-level pre-
diction as a soft target

Ld→s =− 1

|R∗|
∑
r∈R∗

1

|Pr|
∑
p∈Pr

C∑
c=1

ξ[r, c] logψ[p, c], (6)

whereψ[p, c] is the point probability from Eq. (4), ξ[r, c] =
softmax(Sdet[r, c]) denotes the probability of proposal r be-
longing to object class c, and Pr denotes the set of points
within proposal r. In practice, the confident bounding boxes
R∗ are obtained from Alg. 2, discussed later in § 3.2.
Smoothness regularization. Finally, we compute Lsmooth
to encourage local smoothness. We first detect a set of
planes G from input point cloud P using an unsupervised
off-the-shelf shape detection algorithm [22] detailed in Ap-
pendix B. We then compute

Lsmooth = −
|G|∑
i=1

1

|G[i]|
∑

p∈G[i]

C∑
c=1

ψ̄[c] logψ[p, c], (7)

where ψ̄[c] =
∑

p∈G[i] ψ[p,c]

|G[i]| is the mean probability of all
the points which lie inside plane G[i] for class c.

3.2. Weakly-supervised 3D object detection

Our object detection module assumes access to a set of
3D region proposals R (discussed in § 3.3) and uses the
backbone features to classify the proposals into one of the
C object classes or background (Fig. 2 blue region AS:
not the same blue as in the figure). Each region of inter-
est (RoI) r ∈ R6 is represented by a six-dimensional vec-
tor denoting its center location and its width, height and
length. We extract RoI features by averaging the backbone
features of all the points within each proposal. Inspired by
prior 2D literature [3], we use three separate linear layers
to extract classification logits Scls ∈ R|R|×(C+1), object-
ness logits Sobj ∈ R|R|×(C+1), and final detection logits
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Point cloud Detected shapes GSS proposalsHAC iter 20 HAC iter 40 HAC iter 60

Figure 3: Geometric Selective Search (GSS). Our algorithm takes as input the point cloud and detected planes (left column). It then
hierarchically groups the neighboring planes into sub-regions and generates 3D proposals for the combined regions (middle column). We
run the algorithm multiple times with different grouping criteria to encourage high recall of final output proposals (right column).

Sdet ∈ R|R|×(C+1) from the RoI features. As in [3], we
normalize Scls using a softmax function over rows to ob-
tain the probability over object classes for each proposal.
Similarly, we normalize Sobj over columns to obtain a prob-
ability over proposals for each class. Intuitively, Scls[r, c]
represents the probability of region r being classified as
class c, and Sobj[r, c] is the probability of detecting region r
for class c. We aggregate the evidence from both matrices
via element-wise multiplication to obtain the score matrix
Udet = Scls � Sobj. Similar to the self-training discussed
earlier for segmentation, we infer pseudo-labels from Udet
to supervise the final detection logits Sdet. We learn the
backbone and the detection module using the loss

Ldet = LMIL
det + LSELF

det + LCST
det , (8)

where LMIL
det is a MIL objective for detection, LSELF

det is a
self-training loss, and LCST

det is the cross-transformation con-
sistency loss. All the terms are described next.
MIL loss. Similar to the segmentation head, the multiple
instance learning (MIL) loss for detection is

LMIL
det =−

C+1∑
c=1

y[c] logµ[c]−(1−y[c]) log(1−µ[c]), (9)

where µ[c] =
∑

r∈RUdet[r, c] is the row-sum of the score
matrix Udet for class c. This sum-pooling operation aggre-
gates RoI scores into a scene-level score vector µ, which is
used for multi-label scene classification.
Self-training loss. As done before for segmentation, we
incorporate a self-training loss for detection as well. The
final detection logits Sdet are supervised by Udet via

LSELF
det = − 1

|R|
∑
r∈R

C+1∑
c=1

Ŷdet[r, c] log ξ[r, c], (10)

where ξ[r, c] = softmax(Sdet[r, c]) denotes the probability
of proposal r belonging to object class c, and Ŷdet[r, c] ∈
{0, 1} is the RoI pseudo class label inferred from score ma-
trix Udet. The pseudo label Ŷdet is computed using Alg. 2.
Conceptually, this algorithm selects a set of confident yet
diverse predictions as the pseudo labels for self-training.
Cross-transformation consistency loss. Following the
consistency loss for semantic segmentation (Eq. (5)), we en-

courage detection predictions to be consistent under trans-
formation T via

LCST
det =

1

|R|
∑
r∈R

DKL

(
ξ
[
r, ·] || ξ̃[T (r), ·

])
, (11)

where ξ[r, c] refers to the RoI probability introduced
in Eq. (10), ξ̃[T (r), c] denotes the RoI probability obtained
from the transformed input P̃ = T (P) and proposal T (r)
via the same backbone and detection module.

3.3. Geometric Selective Search (GSS)

The detection module uses a proposal set R as input.
In weakly-supervised learning, proposals are necessary be-
cause it is not possible to mimic supervised methods that
directly predict 3D bounding box parameters (e.g., size and
location). The key observation which inspires our novel 3D
proposal generation algorithm is that most indoor objects
are rigid and mainly consist of basic geometric structures
(e.g., planes, cylinders, spheres). We thus devise a bottom-
up solution termed Geometric Selective Search (GSS), first
detecting basic geometric shapes which are then grouped
hierarchically to form 3D proposals.

Given an input point cloud with unoriented normals, we
adopt a region-growing-based method [22, 26] for detecting
primitive shapes (e.g., planes) as shown in Fig. 3 left. We
choose region-growing over the popular RANSAC-based
methods [38] because 1) it is deterministic; 2) it performs
better in the presence of large scenes with fine-grained de-
tails. We then apply hierarchical agglomerative clustering
(HAC) to iteratively group the detected shapes into sub-
regions. In each HAC iteration, we compute the similarity
score s between all spatially overlapping sub-regions and
group the two most similar regions. We iterate until no
neighbors can be found or only one region is left. Every
time we generate a new region, we also compute the axis-
aligned bounding boxes of the new region and add it into
the proposal pool. We illustrate the process of growing the
proposal pool during HAC in Fig. 3 (middle columns).

In order to pick which two regions ni,nj to group, HAC
uses a similarity score

s(ni,nj) = w1ssize+w2svolume+w3sfill+w4sseg, (12)

where wi ∈ {0, 1} ∀i ∈ {1, · · · , 4} are binary indica-
tors. ssize and svolume ∈ [0, 1] measure size and volume
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compatibility and encourage small regions to merge early;
sfill ∈ [0, 1] measures how well two regions are aligned. Be-
sides similarities of low-level cues, we also measure high-
level semantic similarities by incorporating segmentation
similarity sseg ∈ [0, 1]. This score is the histogram inter-
section of the normalized C-dimensional class histogram
of two regions’ points. The class labels of these points
are computed from Sseg using the inference procedure de-
scribed in § 4. Please see Appendix A for the exact for-
mulation of the above five metrics. During training, as the
segmentation module improves, sseg increasingly prefers
grouping regions which correspond to the same object. A
similar idea to compute proposals from segmentations has
also been widely adopted in the 2D case [1, 48]. In practice,
we find that multiple runs of HAC with different wi values,
results in a more diverse set of proposals as each run uses a
different weighted similarity measure. We provide the val-
ues of wi for different runs in Appendix A.

GSS can be made completely unsupervised by re-
moving the segmentation term sseg(ni,nj) from Eq. (13).
This variant is also valuable as the proposals can be pre-
computed offline and are of decent quality (verified in § 4).
These proposals are independent of any specific supervi-
sion and can benefit various downstream unsupervised or
weakly-supervised 3D recognition tasks, akin to Selective
Search [48] or Edge Boxes [64] in 2D. This is distinct from
existing 3D proposal techniques that either use 2D image
cues [33] or full bounding box supervision [28, 29].

4. Experiments
We empirically evaluate WyPR on two standard 3D

benchmarks. We first provide the key implementation de-
tails (more details in Appendix C) and describe the baseline
methods we compare to (§ 4.1). We then present the quan-
titative results (§ 4.2 and 4.3), ablate our design choices and
present qualitative results (§ 4.4).
Input. Our network takes as input a fixed-size point cloud,
where 40K points are randomly sub-sampled from the orig-
inal scan. In addition to using color (RGB) and coordinates
(XYZ) as input features, following [29], we include surface
normal and a height feature of each point.
Augmentation. We augment the input point cloud at two
places in our framework: (1) data augmentation at the in-
put, and (2) to compute the consistency loss in Eq. (5)
and Eq. (11). In practice, we find it beneficial to apply
different geometric transformations for the above two pur-
poses. To augment the input, we follow [29] and use ran-
dom sub-sampling of 40K points, random flipping in both
horizontal and vertical directions, and random rotation of
[−5, 5] degrees around the upright-axis. To compute the
consistency loss, we use random flipping, point jittering,
random rotation with an angle uniform in [0, 30] degrees
around the upright-axis, random scaling by a factor from

Methods evaluation split mIoU
Weakly-supervised methods

PCAM [53] train 22.1
MPRM [53] train 24.4

WyPR train 30.7
MIL-seg val 20.7
WyPR val 29.6

WyPR+prior val 31.1
WyPR test 24.0

Supervised methods
VoteNet [29] test 55.7

SparseConvNet [9] test 73.6

Table 2: 3D semantic segmentation on ScanNet. WyPR out-
performs standard baselines and existing state-of-the-art [53] by a
margin. We also report fully supervised methods for reference.

[0.8, 1.2], and point dropout (p = 0.1). Finally, we also
find that jittering the point cloud is crucial to obtain good
proposals for noisy point clouds (analyzed in § 4.4).
Network architecture. (1) Backbone. We use Point-
Net++ [32] as the backbone model to compute the point
cloud features. The model has 4 set abstraction (SA) lay-
ers and 2 feature propagation (FP) layers. The four SA
layers sub-sample the point cloud to 2048, 1024, 512 and
256 points using a receptive radius of 0.2, 0.4, 0.8 and 1.2
meters respectively. The two FP layers up-sample the last
SA layer’s output back from 256 to 1024 points. The final
output has (256+3) dimensions (feature + 3D coordinates).
(2) Segmentation module. This module is implemented as
two FP layers which upsample the backbone features (1024
points) to the input size (40K points), and a two layer MLP
(implemented as two 1×1 convolutional layers) which con-
vert the features into per-point classification logits. (3) De-
tection module. This module has 3 fully-connected layers,
computing the classification Scls, objectness Sobj, and final
classification logits Sdet respectively, as described in § 3.2.
Training. We train the entire network end-to-end from
scratch with an Adam optimizer for 200 epochs. We use
8 GPUs with a batch size of 32. The initial leaning rate is
0.003 and is decayed by 10× at epoch {120, 160, 180}.
Inference. (1) Segmentation. We generate the segmentation
mask from the predicted logits (Sseg) by taking the class
with highest score for each point. We then post-process
the output for smoothness by using the detected planes (as
in Eq. (7)), and assign each point in the plane to the most
frequently occurring class. (2) Detection. Following [29],
we post-process the final output probability, softmax(Sdet),
by thresholding to drop predictions with score < 0.01,
and class-wise non-maximum suppression (NMS) with IoU
threshold 0.25.
Dataset. We use the ScanNet [10] and S3DIS [2] datasets
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Methods
Proposal Detection

#boxes MABO AR mAP
Unsupervised methods

Qin et al. [33] 1k 0.092 23.6 -
GSS ≤256 0.321 73.4 -
GSS ≤1k 0.378 86.2 -

Weakly-supervised methods
MIL-det (unsup. GSS) ≤1k 0.378 86.2 9.6

WyPR ≤1k 0.409 89.3 18.3
WyPR+prior ≤1k 0.427 90.5 19.7

Supervised methods
F-PointNet [30] - - - 10.8

GSPN [60] - - - 17.7
3DSIS [18] - - - 40.2

VoteNet [29] 256 0.436 84.7 58.6
VoteNet [29] 1k 0.450 88.1 55.3

Table 3: 3D object detection on ScanNet. Unsupervised GSS
outperforms concurrent work [33] by a large margin. In the
weakly-supervised setting, WyPR outperforms standard baselines
and even some fully supervised approaches [30, 60].

to evaluate our method. ScanNet contains 1.2K training and
300 validation examples of hundreds of different rooms, an-
notated with 20 semantic categories. We extract ground
truth bounding boxes from instance segmentation masks
following [29]. To demonstrate the generalizability of our
method, we futher evaluate on S3DIS, which contains 6
floors of 3 different buildings and 13 objects classes. We
use the fold #1 split following prior work [2, 9], where area
5 is used for testing and the rest for training.
Evaluation. We report mean intersection over union
(mIoU) across all classes for semantic segmentation, mean
average precision (mAP) across all classes at IoU 0.25 for
object detection, and average recall (AR) and mean average
best overlap (MABO) across all classes for proposal gener-
ation. Please see [10, 29, 48] for more on these metrics.

4.1. Baselines

Besides comparing to the few existing 3D weakly-
supervised learning methods, we build the following base-
lines, using standard weakly-supervised learning tech-
niques:
MIL-seg: Single task segmentation trained with Eq. (3).
MIL-det: Single task object detection, which uses the un-
supervised GSS proposals and is trained with Eq. (9).
WyPR: Our full model trained with Eq. (1) and Eq. (8).
WyPR+prior: We compute per-class mean shapes using
external synthetic datasets [6, 57], and use those to reject
proposals and pseudo labels in the WyPR detection module
that do not satisfy the prior. We also use a floor height prior
for segmentation. Please see Appendix D for details.

Methods
Segmentation Proposal Detection

mIoU MABO AR mAP
Weakly-supervised methods

MIL-seg 17.6 - - -
MIL-det (unsup. GSS) - 0.412 84.9 15.1

WyPR 22.3 0.441 88.3 19.3
Supervised methods

PointNet++ [31] 41.1 - - -
SparseConvNet [9] 62.4 - - -
Armeni et al. [2] - - - 49.9

Table 4: Generalizing to S3DIS. WyPR seamlessly generalizes
to S3DIS, and outperforms standard baselines for both weakly-
supervised segmentation and detection.

Removed
Seg. losses Det. losses Seg. Det.

LSELF
seg LCST

seg Ld→s Lsmooth LSELF
det LCST

det mIoU mAP
Self-training X X X X 22.1 13.2

Cross-transformation cst. X X X X 28.2 16.9
Cross-task consistency X X X X X 26.7 17.4

Local smoothness X X X X X 27.3 17.8
WyPR X X X X X X 29.6 18.3

Table 5: Ablation study of losses. We remove one set of losses
at a time. All models are trained with LMIL

seg and LMIL
det .

4.2. Quantitative results on ScanNet

Semantic Segmentation. Apart from the above baselines
we compare WyPR to recent approaches, PCAM [53] and
MPRM [53]. PCAM can be interpreted as MIL-seg with
a KPConv [47] backbone, and MPRM adds multiple addi-
tional self-attention modules to PCAM. Since prior work
reports results on the training set only, we compare against
their results on the training set in Tab. 2 (top 3 rows).
WyPR outperforms both methods (PCAM and MPRM) by
a significant margin (+8.6% / +6.3%). Since the main dif-
ference between prior work and our method is our joint
detection-segmentation framework, these results show the
effectiveness of joint-training. When comparing against our
baselines on the validation set (Tab. 2 middle) our joint
model outperforms the single-task baseline (MIL-seg) by
8.9%. We observe a large performance gap when compar-
ing against state-of-the-art fully supervised models (bottom
two rows). One possible solution to minimize the gap is to
utilize an external object prior (e.g., shape) from readily-
available synthetic data, which improves results by +1.5%.
Object Detection. To the best of our knowledge, no prior
work has explored weakly-supervised 3D object detection
using scene-level tags. We compare against our base-
line methods in Tab. 3 (middle rows). Our model signif-
icantly outperforms the single-task baseline (MIL-det) by
8.7% mAP, and achieves competitive results compared to
even some fully supervised methods (F-PointNet [30] and
GSPN [60], numbers borrowed from [29]). However, the
performance gap is large when compared to the state-of-
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Figure 4: Effect of jittering and #proposals. Jittering the point
cloud before proposal generation results in a>2% gain in AP. The
performance varies gracefully with #proposals, and we find 1000
proposals to have the right balance for high precision and recall.

the-art fully supervised methods. Similar to segmentation,
the performance of our model can be further improved by
incorporating an external object prior (+1.4%).
Proposal Generation. GSS can be made unsupervised by
relying only on low-level shape and color cues, i.e., remov-
ing sseg from Eq. (13) (§ 3.3). We compare the unsupervised
GSS to a concurrent unsupervised 3D proposal approach by
Qin et al. [33]. We adapt their method, originally designed
for outdoor environments, to indoor scenes by replacing
their front-view projection to a Y-Z plane projection. For
a fair comparison we use 1000 proposals and report results
in Tab. 3 (top rows). Unsupervised GSS outperforms [33]
by a large margin, and obtains recall values comparable to
even supervised approaches. The complete GSS, including
the weakly-supervised similarity sseg, further improves over
the unsupervised baseline (+3.1% AR/+0.031 MABO), and
outperforms supervised methods on recall (+1.2%), indicat-
ing the importance of joint training.

4.3. Generalizing to S3DIS

We train WyPR on S3DIS following the settings of § 4.2.
Since there is no prior weakly-supervised work on this
dataset, we compare against our baselines from § 4.1. The
results are summarized in Tab. 4, where WyPR outperforms
both single-task baselines with gains of 4.7% mIoU for
segmentation, 3.4% AR for proposal generation, and 4.2%
mAP for detection. These results also demonstrate that our
design choices are not specific to ScanNet and generalize to
different 3D datasets.

4.4. Analysis

Which loss terms matter? In Tab. 5 we analyze the rel-
ative contribution of the loss terms in Eq. (1) and (8). We
find self-training to be the most critical. Removing LSELF

seg

and LSELF
det leads to a significant drop in both metrics: -7.5%

mIoU and -5.1% mAP. This is consistent with observations
in prior work on weak-supervision [34, 54]. Next, we find
enforcing consistency between detection and segmentation
tasks to add large gains, especially for segmentation: 2.9%
mIoU. Enforcing consistency across transformations is par-
ticularly important for detection, leading to a 1.4% mAP

Figure 5: Qualitative results on ScanNet. WyPR+prior is able
to segment, generate proposals and detect objects without having
ever seen any spatial annotations.

gain. Finally, encouraging smoothness over primitive struc-
tures improves both metrics by 1.7% mIOU and 0.5% mAP.
Jittering for proposal generation. We observe that
scanned point clouds are often imperfect, with large holes
in objects due to occlusions, clutter or sensor artifacts. This
makes it challenging for GSS to correctly group parts. To
overcome this, we jitter the points in 3D space using a ran-
dom multiplier within range [1 − δ, 1 + δ] and decide the
neighboring regions based on the jittered points. This sim-
ple technique counts spatially close but non-overlapping re-
gions as neighbors, and greatly improves GSS results. We
show the impact of δ in Fig. 4 (left).
Number of proposals. We randomly sample at most 250,
500, 1000, 1500, 2000 regions from the same set of com-
puted proposals and report the recall and detection mAP
in Fig. 4 (right). Using fewer proposals hurts both the recall
and precision since the model misses many relevant objects.
In contrast, a large number of proposals increases recall but
hurts precision, presumably because too many proposals in-
crease the false positive rate of the detection module. We
find 1000 proposals to be a good balance between precision
and recall, and use this number for all our experiments.
Qualitative results. Fig. 5 shows a few representative
examples of our model’s predictions on ScanNet. As can
be seen, input point clouds are quite challenging, with large
amounts of clutter and sensor imperfections. Nevertheless,
our model is able to recognize objects such as chairs, tables,
and sofa with good accuracy. Please see Appendix F for
more results, analysis and failure modes.

5. Conclusion
We propose WyPR, a novel framework for joint 3D se-

mantic segmentation and object detection, trained using
only scene-level class tags as supervision. It leverages a
novel unsupervised 3D proposal generation approach (GSS)
along with natural constraints between the segmentation
and detection tasks. Through extensive experimentation on
standard datasets we show WyPR outperforms single task
baselines and prior state-of-the-art methods on both tasks.
Acknowledgements. This work is supported in part by
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Appendix
In this section, we provide: (1) algorithm details

and ablation studies of Geometric Selective Search (Ap-
pendix A); (2) introduction of the shape detection algorithm
(Appendix B); (3) additional implementation details (Ap-
pendix C); (4) details of the integration of an external object
prior (Appendix D); and (5) per-class segmentation results;
(6) additional qualitative results (Appendix F).

A. Geometric Selective Search (GSS)
As introduced in the main paper § 3.3, the goal of GSS

is to capture all possible object locations in 3D space. We
formulate a bottom-up algorithm where the key idea is to
utilize the geometric and semantic cues for guiding 3D pro-
posal generation.

A.1. Approach

Given an input point cloud with unoriented normals, we
first detect primitive shapes using a region growing based
method [22] as detailed in Appendix B. It outputs a set of
detected planes with assigned points, i.e., each point is as-
signed to at most one plane or none.

We then apply hierarchical agglomerative clustering
(HAC) to generate the candidate bounding boxes from the
detected planes. We first initialize a region set with the
detected planes, and then compute the similarity score s
between all neighboring regions in the set. Two regions
are neighboring if the corresponding convex hull of them
overlap. To overcome the artifacts of the point cloud, we
randomly jitter the points of each region before computing
their convex hull. This technique greatly improves the re-
sults in practice as verified in Fig. 4. Once the neighboring
relationships and similarity scores are computed, the two
most similar regions are grouped into a new region. We
then generate an axis-aligned 3D box for the new region
as a proposal. New similarity scores are calculated between
the resulting region and its neighbors. HAC is repeated until
no neighbors can be found or only a single region remains.
We provide the detailed pseudo-code in Alg. 3.

In order to pick which two regions ni,nj to group, we
use the similarity score s(ni,nj) =

w1scolor(ni,nj)+w2ssize(ni,nj)+

w3svolume(ni,nj)+w4sfill(ni,nj)+w5sseg(ni,nj),
(13)

where wi ∈ {0, 1} ∀i ∈ {1, · · · , 5} are binary indicators.
Binary weights are used over continuous values to encour-
age more diverse outputs following [48]. scolor ∈ [0, 1] mea-
sures the color similarity; ssize and svolume ∈ [0, 1] measure
size and volume compatibility and encourage small regions
to merge early; sfill ∈ [0, 1] measures how well two regions
are aligned; and sseg(ni,nj) ∈ [0, 1] measures high-level
semantic similarities. We detail each metric next.

Algorithm 3 Geometric Selective Search (GSS)
Input: point cloud P
Output: 3D proposal setR
1: Detect shapes from P → initial regionsN = {n1,n2, · · · }
2: Initialize similarity set S = ∅, proposal setR = ∅
3: for each neighboring region pair (ni,nj) do
4: S = S ∪ s(ni,nj) . compute and store similarities
5: while S 6= ∅ do . HAC
6: Get the most similar pair s(ni,nj) = max(S)
7: Remove similarities regarding ni : S = S \ s(ni, ∗)
8: Remove similarities regarding nj : S = S \ s(nj , ∗)
9: Update region setN = N \ ni,N = N \ nj

10: Merge and generate new region nk = ni ∪ nj

11: Compute similarity of nk and its neighbors in N : S = S ∪
{s(nk,n

′) : neighbor(nk,n
′) = True ∀n′ ∈ N}

12: Add new region toN = N ∪ nk

13: Generate 3D proposalR = R∪ AxisAlignedBox(nk)

Color similarity scolor. Color is an informative low-level
cue to guide the plane grouping process. For each region,
we first compute the L1-normalized color histogram follow-
ing [48]. The similarity score is computed as the histogram
intersection:

scolor(ni,nj) =
∑
k

min(bki , b
k
j ), (14)

where bki , b
k
j are the k-th bin in the color histograms of ni

and nj respectively. Following [48], we use 25 bins for each
HSV color channel and 75 in total for one histogram.
Size similarity ssize and volume similarity svolume. These
two metrics encourage small regions to merge early. This
strategy is desirable as it guarantees a bottom-up group-
ing of parts of different objects at multiple locations in 3D
space. It encourages diverse 3D proposals and prevents a
single region from absorbing all other regions gradually. We
compute size similarity

ssize(ni,nj) = 1− size(ni) + size(ni)

size(P)
, (15)

where size(ni), size(nj), size(P) are the size of the axis-
aligned bounding boxes of region ni,nj and the whole
point cloud. Similarly, volume similarity is defined as:

svolume(ni,nj) = 1− volume(ni) + volume(ni)

volume(P)
, (16)

where volume(ni), volume(nj), volume(P) are the volume
of the water-tight convex hull of region ni,nj and the whole
point cloud.
Alignment score sfill. This score measures how well two
regions fit into each other and encourage merged regions to
be cohesive. Essentially, if one region is contained in the
other one, they should be merged first to avoid any holes.
Meanwhile, a low score means the two regions don’t fit very
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Class cabinet bed chair sofa table door window shelf picture counter desk curtain fridge sc∗ toilet sink bathtub other mean
Unsupervised GSS

ABO 0.402 0.414 0.419 0.462 0.432 0.327 0.349 0.469 0.121 0.286 0.365 0.342 0.469 0.421 0.415 0.355 0.325 0.432 0.378
Recall 86.0 97.5 90.4 99.0 91.1 67.0 86.9 100.0 26.1 75.0 92.1 91.0 98.2 96.4 94.8 91.8 77.4 90.9 86.2

GSS
ABO 0.449 0.471 0.441 0.437 0.464 0.379 0.388 0.446 0.136 0.366 0.381 0.399 0.501 0.478 0.409 0.365 0.400 0.453 0.409
Recall 90.6 98.8 91.7 98.9 93.7 75.2 89.7 100.0 27.9 88.5 94.5 97.0 96.5 100.0 94.8 92.9 83.8 92.3 89.3

Table 6: Per-class results of GSS proposals. GSS achieves more than 80% recall rate for all classes except picture (27.9%) and door
(75.2%), where the plan detection algorithm often fails to differentiate these two objects from the surrounding wall. Here sc∗ refers to the
‘shower curtain’ class.

well, and they may form a strange region. AS: what’s a
‘strange region’? We compute the alignment score:

sfill(ni,nj) = 1− size(ni ∪ nj)− size(ni)− size(ni)

size(P)
,

(17)

where ni∪nj means the union of two regions, and the other
numbers are identical to the ones used for the computation
of scolor.
Semantic similarity sseg. The above four metrics are
mainly low-level geometric cues. GSS can also utilize high-
level semantic information, i.e., weakly-supervised seg-
mentation prediction. For each region, we first infer the seg-
mentation mask from Sseg using the inference procedure de-
scribed in § 4. We then take the most likely class assignment
for each point in the region and compute an L1-normalized
histogram over classes for that region. The similarity score
is computed as the histogram intersection:

sseg(ni,nj) =

C∑
c=1

min(bci , b
c
j), (18)

where bci , b
c
j are the bin of class c in the class histograms.

Post-processing. To remove the redundant proposals, we
use several post-processing steps: (1) the proposals are first
filtered by a 3D NMS module with an IoU threshold of 0.75;
(2) we then remove the largest bounding boxes after NMS
as it covers the whole scene rather than certain objects due
to the bottom-up nature of HAC; (3) we keep at most 1000
proposals through random sampling.
Diversification strategies. Since a single strategy usually
overfits, we adopt multiple strategies to encourage a diverse
set of proposals, which will eventually lead to a better cov-
erage of all objects in 3D space. Specifically, we first create
a set of complementary strategies, and ensemble their re-
sults afterwards. Highly-overlapping redundant proposals
are removed though an NMS with IoU threshold of 0.75
and we still keep at most 1000 proposals through random
sampling after ensembeling.

Metric Avg. # boxes MABO AR
Single run

SZ 382.9 0.351 84.1
C 252.0 0.316 70.7
V 366.8 0.367 84.4
F 330.2 0.398 81.8

SG 350.7 0.362 83.9
SZ+C 295.0 0.361 79.0
SZ+V 373.4 0.366 84.5

SZ+SG 369.2 0.353 85.1
V+F 373.3 0.384 85.7

V+SG 385.5 0.362 83.8
SZ+C+F 297.6 0.361 78.6

SZ+V+SG 377.5 0.391 86.4
V+F+SG 381.6 0.380 84.9

SZ+C+V+F 320.4 0.379 81.9
SZ+V+F+SG 369.1 0.387 86.1

Ensembeling
C, V+F, SZ+V 712.0 0.378 86.2

C, V+F, SZ+V+SG 742.9 0.409 89.3

Table 7: GSS results using various similarity metrics. SZ, C, V,
F, and SG represent ssize, scolor, svolume, sfill, and sseg respectively.

A.2. Experiments

In this sub-section we evaluate the proposal quality of
GSS and validate the corresponding design choices. We
evaluate on the ScanNet validation set and report the two
popular metrics: average recall (AR) and mean average best
overlap (MABO) across all classes. In addition, we also re-
port the average number of boxes of each scene.

We first examine each similarity metric and their com-
binations in Tab. 7. We first evaluate each single similarity
and report their results in the top 5 rows, where we find
size, volume, and segmentation metric to work much better
than color and fill similarity. Tab. 7 also reports the results
of different combined metrics. Combining multiple similar-
ity metrics often yields better results than using each single
similarity. The best result is achieved using the combination
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of size, volume, and segmentation similarities.
In practice, we find that ensembling the results of multi-

ple runs using different similarity metrics further improves
the results as shown in Tab. 7 bottom. We provide the re-
sults of an unsupervised version (C, V+F, SZ+V) and the
complete version (C, V+F, SZ+V+SG). Comparing these
two methods, we find that introducing segmentation simi-
larity is beneficial.

Lastly, we show per-class average best overlap (ABO)
and recall rate in Tab. 6. We find that GSS achieves high
recall rate (> 80% ) for all classes except picture (27.9%)
and door (75.2%). This is likely due to the fact that these
two objects are often embedded in the wall and hard to dif-
ferentiate.

A.3. Qualitative results

Fig. 3 illustrates several representative examples of the
generated proposals on ScanNet. From left to right, we
show the input point cloud, the detected shapes, GSS com-
puted proposals, and the ground-truth boxes. We show all
the GSS computed proposals in the top 3 rows where we ob-
serve that the computed proposals are mainly around each
object in the scene. In the bottom four rows, we show
the best overlapping proposals with ground-truth bounding
boxes. GSS generates proposals with great recall, and gen-
eralizes well to various object classes and complex scenes.

B. Shape detection
In this paper, we detect geometric shapes for two rea-

sons: to be used in the local smoothness loss for segmen-
tation (Eq. (7)), and as input to the GSS algorithm (Ap-
pendix A). As introduced in the main paper § 3.3, we adopt
a region-growing algorithm [22, 26] for detecting primitive
shapes (e.g., planes). The basic idea is to iteratively detect
shapes by growing regions from seed points. Specifically,
we first choose a seed point and find its neighbors in the
point cloud. These neighbors are added to the region if they
satisfy the region requirements (e.g., on the same plane),
and hence the region grows. We then repeat the procedure
for all the points in the region until no neighbor points meet
the requirements. In the latter case we start a new region.
Region-growing out-performs the popular RANSAC-based
methods [38] because 1) it is deterministic; 2) it performs
better in the presence of large scenes with fine-grained de-
tails; 3) it has higher shape detection recall. Even though it
runs slower, we use it as a pre-processing step which won’t
influence the training speed.

In practice, we use the efficient implementation
of The Computational Geometry Algorithms Library
(CGAL) [26]. We set the search space to be the 12 nearest
neighbors, the maximum distance from the furthest point to
a plane to be 12, the maximum accepted angle between a
point’s normal and the normal of a plane to be 20 degree,

and the minimum region size to be 50 points. We refer the
reader to CGAL documents [26] for more details.

Representative visualization of the detected planes are
provided in Fig. 6 second column from left. The algorithm
detects big planes (e.g., floor, table top, wall) with great ac-
curacy and doesn’t over segment these regions into small
pieces. This is particularly useful for WyPR as the local
smoothness loss will enforce the segmentation module to
predict consistently within these shapes. For complex ob-
jects (e.g., curtain, chair, and bookshelf), this algorithm seg-
ments the object regions into small shapes. Such primitive
shapes will be used during the proposal generation algo-
rithm GSS to infer the 3D bounding boxes of all objects in
the scene.

C. Additional implementation details
In this section, we provide additional implementation de-

tails.

C.1. Geometric transformations

We apply geometric transformations in two places: 1) as
data-augmentation; 2) for computing cross-transformation
consistency losses (Eq. (5) and Eq. (11)) for both tasks.

To augment the input, we first randomly sub-sample
40,000 points as input in each training iteration. We then
randomly flip the points in both horizontal and vertical di-
rections with probability 0.5, and randomly rotate them
around the upright-axis with [−5, 5] degree. Note that af-
ter data augmentation, we only get one point cloud P as
input.

To compute the consistency losses, we further transform
the input point cloud using random flipping of both horizon-
tal and vertical directions with probability 0.5, larger ran-
dom rotation of [0, 30] degrees around the upright-axis, ran-
dom scaling by a factor within [0.8, 1.2], and point dropout
(p = 0.1). We denote the resulting point cloud as P̃ , which
will be used when computing LCST

seg and LCST
det .

C.2. Backbone

We adopt a PointNet++ network as backbone, which has
four set abstraction (SA) layers and two feature propagation
(FP) layers. For a fair comparison we use the same back-
bone network as Qi et al. [29]. The input to the backbone is
a fix-sized point cloud where we randomly sample 40,000
points from the original scans. The outputs of the backbone
network are geometric representations of 1024 points with
dimension 3+256 (XYZ+feature dimension).

C.3. Segmentation module

The segmentation module contains two feature propaga-
tion (FP) layers which upsample the geometric representa-
tions of 1024 points to 2048 and then 40,000 points with
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metric cabinet bed chair sofa table door shelf desk curtain fridge toilet sink bathtub
µl:w 4.64 1.58 1.29 1.94 1.65 5.74 3.17 1.92 5.78 1.68 1.55 1.29 1.93
σl:w 5.81 0.45 0.53 0.54 1.02 3.78 2.07 0.91 3.58 1.16 0.39 0.26 0.42
µl:h 1.49 2.12 1.16 2.36 3.04 0.61 1.22 2.28 1.40 0.65 1.08 2.14 3.18
σl:h 1.01 0.95 0.98 0.57 3.72 0.69 1.11 1.65 1.34 0.19 0.56 0.89 1.67

Table 8: Prior statistics of each class.

the same dimension (3+256) as before. We then use a two-
layer MLP with dimension [256, C] as the classifier where
C represents the number of classes. The segmentation mod-
ule outputs a dense semantic prediction for each point in the
point cloud.

C.4. Detection module

The detection module first applies a RoI pooling by
average-pooling the features of all points within each RoI.
The computed RoI features are then fed into three fully-
connected layers to get the classification Scls, objectness
Sobj, and final classification logits Sdet respectively.

C.5. Losses

For computing the smoothness regularization Lsmooth in
Eq. (7), enumerating all the detected planes in each training
iteration is time-consuming and not necessary. We thus ran-
domly sample 10 planes in each iteration, as we find 10 to
be the sweet spot balancing training speed and performance.
For computing the self-training losses LSELF

seg and LSELF
det , we

set the threshold p1 in Alg. 1 to be 0.1, and p2 in Alg. 2 to
be 0.15. The threshold τ in Alg. 2 is set to 0.25.

D. External prior
WyPR can be further improved by integrating external

object priors as shown in Tab. 2 and Tab. 3. We mainly
introduce two types of priors as they can be easily computed
from external synthetic datasets [6, 57]: the shape prior and
the location prior.

For the shape prior, we compute the mean aspect ra-
tio between an object’s 3D bounding box length to height
(µc

l:h), and length to width (µc
l:w) for class c ∈ {1, · · · , C}.

Since objects can be of arbitrary pose in 3D space, we
set length and width to measure the longer and shorter
edge in the XY plane. We also compute the correspond-
ing standard deviations σc

l:h and σc
l:d. To use it, we reject

proposals whose aspect ratios don’t fall within the range
[µc

l:h− 2σc
l:h, µ

c
l:h + 2σc

l:h] and [µc
l:w − 2σc

l:w, µ
c
l:w + 2σc

l:w]
for any class c ∈ {1, · · · , C}. We also reject pseudo bound-
ing boxes of ground-truth class c (R∗[c] in Alg. 2) whose
aspect ratios don’t fall in [µc

l:h − 2σc
l:h, µ

c
l:h + 2σc

l:h] and
[µc

l:w − 2σc
l:w, µ

c
l:w + 2σc

l:w]. The computed statistics of
each class are shown in Tab. 8. There are certain classes
that are missing from the external synthetic datasets [6, 57]

such as shower curtain, window, counter, and picture. For
these classes, we use the prior of other objects with similar
shapes as a replacement. For example, we use the prior of
curtain for shower curtain, table for counter, door for win-
dow and picture.

The location prior is only applied to the floor class. This
prior is of vital importance as floor appears in almost every
scene. It becomes a hard class for semantic segmentation as
the MIL loss rarely sees any negative examples. Besides, a
great portion of points in each scene belongs to the floor. We
estimate the floor height as the 1% percentile of all points’
heights following Qi et al. [29]. We force all the points
below floor height to be floor. All the points above this
height cannot be floor.

E. Per-class segmentation results
In Tab. 9, we report the per-class IoU on ScanNet. These

results are consistent with Tab. 2 in main paper. Compared
to prior methods PCAM [53] and MPRM [53], WyPR sig-
nificantly out-performs them, and greatly improves the per-
formance of some hard classes such as door, counter, and
fridge.

F. Additional qualitative results
In Fig. 7, we show the qualitative comparison between

ground-truth labels and our (WyPR+prior) prediction. In
each row we show the results of both tasks for one scene.
We find that WyPR segments and detects certain classes (ta-
ble in row (a, f), chair in rows (a, b, f), sofa in row (b),
bookshelf in row (c, f)) with great accuracy. WyPR also
learns to recognize some uncommon objects of the dataset
such as toilet and sink in row (d). Moreover, we observe
that predicted segmentation mask and bounding boxes are
highly consistent, which reflects the effectiveness of the
joint-training framework.

Common failure cases for WyPR are partially observed
objects (row (b): the window on the left side), ambiguous
objects (row (a): picture and wall; row (b, f): sofa and left-
most chair). When multiple objects of the same classes are
spatially close, WyPR often cannot differentiate them and
only predicts one big boxes covering everything (row (a):
tow chair on the left side).
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Methods eval. wall floor cabinet bed chair sofa table door window shelf picture counter desk curtain fridge sc∗ toilet sink bathtub other mIoU
PCAM [53] train 54.9 48.3 14.1 34.7 32.9 45.3 26.1 0.6 3.3 46.5 0.6 6.0 7.4 26.9 0.0 6.1 22.3 8.2 52.0 6.1 22.1
MPRM [53] train 47.3 41.1 10.4 43.2 25.2 43.1 21.5 9.8 12.3 45.0 9.0 13.9 21.1 40.9 1.8 29.4 14.3 9.2 39.9 10.0 24.4

WyPR train 59.3 31.5 6.4 58.3 31.6 47.5 18.3 17.9 36.7 34.1 6.2 36.1 24.3 67.2 8.7 38.0 17.9 28.9 35.9 8.2 30.7
MIL-seg val 36.4 36.1 13.5 37.9 25.1 31.4 9.6 18.3 19.8 33.1 7.9 20.3 21.7 32.5 6.4 14.0 7.9 14.7 19.4 8.5 20.7
WyPR val 58.1 33.9 5.6 56.6 29.1 45.5 19.3 15.2 34.2 33.7 6.8 33.3 22.1 65.6 6.6 36.3 18.6 24.5 39.8 6.6 29.6

WyPR+prior val 52.0 77.1 6.6 54.3 35.2 40.9 29.6 9.3 28.7 33.3 4.8 26.6 27.9 69.4 8.1 27.9 24.1 25.4 32.3 8.7 31.1

Table 9: 3D semantic segmentation on ScanNet. WyPR outperforms standard baselines and existing state-of-the-art [53] by a margin.
Here sc∗ refers to the ‘shower curtain’ class.
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Figure 6: Visualization of the computed proposals. Top three rows show all the computed 3D proposals, from which we observe that
the proposals are mainly around object areas. The bottom four rows show the proposals which best overlap with ground-truth boxes. GSS
generates 3D proposals with great recall for various objects in complex scenes.
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Figure 7: Additional qualitative results. We show the qualitative comparison between ground-truth labels and our (WyPR+prior) predic-
tions. We show both detection and segmentation results for the same scene.
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