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ABSTRACT
Many consumer products are two-sided marketplaces, ranging from
commerce products that connect buyers and sellers, such as Ama-
zon, Alibaba, and Facebook Marketplace, to sharing-economy prod-
ucts that connect passengers to drivers or guests to hosts, like Uber
and Airbnb. The search and recommender systems behind these
products are typically optimized for objectives like click-through,
purchase, or booking rates, which are mostly tied to the consumer
side of the marketplace (namely buyers, passengers, or guests). For
the long-term growth of these products, it is also crucial to con-
sider the value to the providers (sellers, drivers, or hosts). However,
optimizing ranking for such objectives is uncommon because it
is challenging to measure the causal effect of ranking changes on
providers. For instance, if we run a standard seller-side A/B test on
Facebook Marketplace that exposes a small percentage of sellers,
what we observe in the test would be significantly different from
when the treatment is launched to all sellers. To overcome this
challenge, we propose a counterfactual framework for seller-side
A/B testing. The key idea is that items in the treatment group are
ranked the same regardless of experiment exposure rate. Similarly,
the items in the control are ranked where they would be if the
status quo is applied to all sellers. Theoretically, we show that the
framework satisfies the stable unit treatment value assumption
since the experience that sellers receive is only affected by their
own treatment and independent of the treatment of other sellers.
Empirically, both seller-side and buyer-side online A/B tests are
conducted on Facebook Marketplace to verify the framework.

CCS CONCEPTS
• Mathematics of computing → Hypothesis testing and confi-
dence interval computation; • Information systems→ Evaluation
of retrieval results.
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1 INTRODUCTION
Many consumer products on the Internet are two-sided market-
places. For instance, Amazon, Alibaba, and Facebook Marketplace
connect buyers and sellers. LinkedIn and Facebook newsfeeds are
products where content consumers and producers interact. Sharing
economy products like Uber, DiDi and Airbnb make connections
between passengers and drivers or guests and hosts. The search
and recommender systems behind these products are typically op-
timized for consumer-oriented metrics like purchase rate, click-
through rate, booking rate, etc. [4, 12] (For the rest of the paper,
the term buyer is used in a broad sense indicating all types of con-
sumers, such as buyers on Amazon/Alibaba/Facebook Marketplace,
content consumers on newsfeeds, or passengers/guests on sharing
economy products. The term seller broadly refers to the producer
side of the marketplace, like sellers, content producers, drivers, or
hosts.)

However, it’s also crucial to optimize for seller-side objectives.
Some examples of seller-side objectives include the percentage of
sellers having success when using the product (e.g., having at least
one item sold, one home reservation, or one ride) and seller reten-
tion. Ensuring that sellers have a great experience and increasing
the likelihood they will return are essential to the long-term success
of the products. To the best of our knowledge, there has been little
work focusing on these objectives. One of the reasons is that unlike
the buyer side, measuring the impact of a ranking change on sellers
is challenging.

To demonstrate the challenge of measuring the impact of a rank-
ing change on sellers, let us consider the Facebook Marketplace
product where buyers can discover items for sale from local commu-
nities or businesses. When a buyer visits Marketplace on Facebook,

https://doi.org/10.1145/3397271.3401434
https://doi.org/10.1145/3397271.3401434
https://doi.org/10.1145/3397271.3401434


a marketplace feed shows a ranking of items by personalized rel-
evance (the left screenshot on Figure 1). Assume we run a simple
seller-side A/B test evaluating the causal effect of a ranking change
on sellers. As a concrete example, the ranking change boosts the
ranking positions of items from first-time sellers on Marketplace.

In this A/B test, the treatment group contains a 1% sample of
randomly-selected sellers, and the items from the new sellers in this
group are given a boost to their ranking scores. The control group
contains another 1% sample of randomly-selected sellers, and their
items do not get a boost. Because of the boost, the items from the
sellers in the treatment group (in short, the items in the treatment)
are ranked higher in the feed. Thus, the new sellers in the treatment
group get a better experience compared to the ones in the control
group. However, when the boosting is ramped up to 100% (i.e., to
all new sellers), the items in the original treatment group will be
ranked lower because a larger fraction of items are getting boosted
now. Thus, the impact on the sellers when experimented at 1% is
artificially inflated, and the seller A/B test result is incorrect.

To resolve the cannibalization effect above, we propose a novel
counterfactual framework for seller-side A/B testing. It is based on a
counterfactual property: when experimented at a small percentage
of sellers, the items in the treatment group are ranked at where
they would be if the treatment is ramped to 100% of the sellers.
Similarly, the items in the control are ranked where they would
be if the status quo is applied to all sellers. Thus, the difference
between treatment and control is independent of what applies to
the rest of the sellers.

To verify the counterfactual framework, we run a seller-side A/B
test on the framework in which 1% of the sellers get the new-seller
boosting treatment mentioned above and 1% of control sellers do
not get the boosting treatment. In the middle of the experiment
period, the boosting treatment is launched to the remaining 98% of
sellers. The experimental results show that seller-side metrics of the
treatment and control groups before and right after the launch are
consistent. This confirms the cannibalization effect does not happen.
Furthermore, we A/B test the ranking change on both the buyer
and seller sides separately. We observe that for metrics measurable
from both sides (e.g., the number of buyer-seller interactions), the
experimental results from the buyer-side and the seller-side A/B
tests are also consistent. As of writing this paper, the counterfactual
framework has been used for on-going seller-side experiments on
Marketplace and other Facebook products.

The rest of the paper is organized as the following. Section 2 gives
background information on the Facebook Marketplace product,
which is the case study used in this paper. Section 3 explains in
detail why it is challenging to measure the causal effect of ranking
on sellers. To solve this challenge, a counterfactual framework for
seller-side A/B testing is proposed in Section 4. Then in Section 5 we
present empirical results validating the counterfactual framework.
Previous work in the literature related to ours is reviewed in Section
6. Finally, in Section 7 we give our concluding remarks.

2 BACKGROUND
2.1 Product Overview
This section gives an overview of Facebook Marketplace, the case
study and product on which all experiments are conducted in this

paper. Facebook Marketplace is a social shopping platform where
users connect to buy and sell various items from electronics to cars
to apparel. Facebook Marketplace is available in many countries
around the world and there are hundreds of millions of people using
Marketplace on Facebook.

From the home screen of the Facebook app, a person can visit
Marketplace by tapping on the shop icon at the bottom of the app.
Then the person is presented with the Marketplace browse feed, a
ranked list of the items in the person’s local area as well as shipped
items (Figure 1 left screenshot). The items are sorted by relevance to
the person’s interests. When the person finds a relevant item, click-
ing on the item opens an item detail page where more information
about the item like description and price is shown (center screen-
shot). If the person finds the item interesting, they can message
the seller from the item detail page to ask for further information,
negotiate price, or arrange to buy the item (right screenshot).

Besides browsing the recommended items, people can also search
for their items of interest by entering queries on the search box
(Figure 2). Then a search result page appears with a ranked list of
items. As on the browse feed, people can click on the items on the
result page to land on the detail page and initiate a message to the
seller.

One challenge in both the search and recommendation systems
above is how to optimize the item ranking given a buyer, context
(e.g., time, location, etc.), and query (in the case of search). We will
discuss this in the next subsection.

2.2 Ranking Optimization
A common approach to ranking optimization in many industrial
systems is to estimate the probability of some events of business in-
terest, such as a buyer clicking on an item, a buyer liking or sharing
an item to friends, or a buyer sending a message to the seller (buyer-
seller interaction) [1, 4, 15]. Each of the probabilities is predicted by
a machine learning model taking into account many features based
on the item, buyer, context (i.e. location, time, etc.), and query (in
the case of search ranking). These models are usually trained on
historical actions in the log data. For instance, the training data of
the click model includes past impressions with clicks as positive
instances and impressions without clicks as negative ones. The
individual component scores (the predicted probabilities) are then
combined into a single score by a value model, which determines
the relative importance of the events.

As shown above, rankings are typically optimized towards the
value that buyers get from the items. However, there is another as-
pect in two-sided marketplaces: the values that sellers receive. Thus
it is crucial to also optimize the rankings for seller-side objectives.
An example of such objectives is the percentage of sellers that have
success with the system. The success can be defined as receiving at
least a certain number of messages, bookings, rides, etc. on a daily
basis. Ideally, the system should maximize the number of successful
sellers. Another example could be fairness across different groups
of sellers [6], like new sellers versus existing ones.

Besides the seller-side objectives derived directly from the ac-
tions on the rankings, it is also essential to optimize the rankings
for the future behavior of the sellers, such as retention and future



Figure 1: Left: a screenshot of Facebook Marketplace browse Feed. Center: an item detail page. Right: a buyer messages seller
regarding to the item.

Figure 2: Facebook Marketplace Search

listings. Note that purely optimizing on buyer satisfaction, as men-
tioned above, likely leads to directing traffic to only a small portion
of the total sellers. This causes the sellers (especially the new sellers)
who do not get enough distribution to churn out. In the industrial
setting, having more sellers return to produce more available items
or services in the future is important to businesses [12]. The larger
inventory will, in turn, benefit buyers in the future as well.

However, unlike the buyer-side objectives, one key challenge of
optimizing seller-side objectives is measuring the causal impact of
a ranking change on sellers. This will be discussed in detail in the
next section.

3 CHALLENGE OF MEASURING IMPACT OF
RANKING ON SELLERS

For almost all industrial search and recommender systems, before
deploying a new ranking function, it is common practice to run
A/B tests comparing the new version with the one currently in
production [14]. In a typical A/B test, a random portion of the
overall users (i.e., buyers in the case of Facebook Marketplace) is
served with the new function (treatment). At the same time, another
random portion of the buyers is served with the current production
function (control). Usually, the sizes of the treatment and control
groups are small (e.g., one or several percent) in order to minimize
the opportunity cost and the negative impact on the user experience
in the case that the new function is worse than the current one.

Comparing how the buyers in the two small groups engage
with the product presumably indicates the difference between two



Figure 3: A simple seller-side A/B test where items whose
sellers in the treatment group are ranked by a different rank-
ing model.

outcomes that we cannot observe simultaneously: the buyer en-
gagement if the new ranking function is applied to everyone versus
the buyer engagement if the status quo is maintained in the whole
universe. The correctness of the A/B test (the equivalence between
the observed and the counterfactual differences above) is based on
a fundamental assumption, known as “stable unit treatment value
assumption” in statistical inference theory [13, 18, 19]. The basic
idea of the assumption is that the level of buyer engagement in
either the treatment or control group is only dependent on the treat-
ment these buyers received (the ranking function in this case) and
independent of the ranking function applied to the buyers outside
of the group.

While the stable unit treatment value assumption generally holds
in the typical buyer-side A/B test mentioned above, it is definitely
not the case in the seller-side A/B tests. To demonstrate this, let us
consider ranking modelmA currently running in production that
is solely optimized on buyers’ objective and a new ranking model
mB , jointly optimized on both buyers’ and sellers’ objectives. We
compare them on some seller-side metrics, e.g., the percentage of
unique sellers getting messages from buyers and the seller retention
rate. The most straightforward way to measure the impact of the
new ranking model is to create a “naive” A/B test on the seller side.
As demonstrated in Figure 3, for this test, items from the sellers
in the treatment group are scored bymB while the rest (including
the items from the sellers in the control) are scored bymA. Finally,
the items are sorted by their scores into a single ranking. Then,
we compare the seller-side metrics of the treatment and control
groups.

After the experiment period, assume we launch the ranking
modelmB from 1% to 100% (Figure 4). Even though the score of
item 4 does not change (between the experiment period and after
launching), the scores of the others in the set do change due to
switching from usingmA tomB . As a result, the position of item 4
will be different (even if all features stay the same). So, this naive
test clearly violates the stable unit treatment value assumption
mentioned above. Positions of the items in the treatment group
(thus the experience that their sellers receive) do not only depend on
the ranking function applied to them but also the ranking function
applied to the other items.

To further illustrate the point, let’s use a concrete example where
mB gives some boost to the items from new sellers who use the
product for the first time. The rationale of the boosting is to avoid

Figure 4: When the experimented ranking model is
launched to all sellers, the items in the original seller-side
A/B test (e.g., item 4) are ranked at different places. Thus, the
seller-side effect when experimented at 1% is not the same
as when launched to 100% sellers.

the cold start problem for these sellers [21]. This improves the
experience of the new sellers, thus increasing the chance that they
will stick with the product. When experimented at 1% of the sellers,
items from the new sellers in the treatment group should be ranked
high because of the boost.

However, when the boosting is ramped up 100% or in the back-
test setting (where the boosting is ramped to 99% of the sellers and
the status quo remains for just 1%), the same items in the test group
of the original A/B test are ranked lower. This is because there are
significantly more items getting boosted now (100 or 99 times more).
Thus, the impact on the new sellers when experimented at 1% is not
the same as when launched to 100% or back-tested. In other words,
the effect in the original A/B test (also referred to as the pre-test) is
artificially inflated, and the seller A/B test result is incorrect. In the
next section, we propose a counterfactual experiment framework
that can avoid the effect mentioned above.

4 A COUNTERFACTUAL FRAMEWORK FOR
A/B TESTING

To compare two ranking modelsmA andmB on seller-side metrics,
ideally for every request, we generate two rankings of the same
set of items completely ranked by the models (Figure 5). Then, we
hypothetically show both rankings to the user and compare them.
This, of course, cannot happen in reality since we can only show
one ranking to the user.

Inspired by this idea, however, we propose a counterfactual ex-
periment framework for seller-side A/B testing. In this framework,
we generate two complete rankings by the two models (See the
upper part in Figure 6). To combine them into a single ranking, for
the items in the control group (denoted as C1 and C2), we get their
positions from the ranking bymA. For the items in the treatment
group (denoted as T1 and T2), however, we get their positions from
the ranking bymB , as demonstrated in the center box in the figure.
In pre-tests, we enforce the positions of these items on the ranking
by mA to get the final ranking (the lower-left box). Similarly, in
back-tests, we enforce the positions of the items on the ranking by
mB . Thus, in either case, the items in the treatment group would



Figure 5: A hypothetical comparison between twomodels on
seller-side metrics.

be ranked at the positions as if all results were ranked bymB , re-
gardless of which model is applied to the rest of the sellers. At the
same time, the items in the control group would be ranked at the
positions as if all results were ranked bymA.

In the case of collision, e.g., ranking position of C1 bymA is the
same as ranking position of T1 bymB , we can randomly move one
to right below the other. Because the sizes of treatment and control
groups are small (usually 1%-2%), collisions are rare. For example, if
the treatment and control groups are both 1%, then the probability
that there are items from both groups in top-10 is less than 0.914%,
as shown in Equation 1. Furthermore, the chance that one item in
the treatment group is ranked at the same place as another item in
the control group is significantly smaller. Given the top-10 contains
an item in the treatment and an item in the control and assuming
the two rankings produced bymA andmB are uncorrelated, the
collision only happens in 10% of those cases. In reality,mA andmB
are usually highly similar. The more similar the two functions are,
the smaller the likelihood that collisions happen (in the extreme
case that they are the same, there is zero chance that two different
items are ranked at the same position).

P(top-10 contains both treatment and control)
≈ P(top-10 contains treatment) ∗ P(top-10 contains control)

= (1 −
10∏
i=1

P(item i not in treatment))

∗ (1 −
10∏
i=1

P(item i not in control))

= (1 − 0.9910) ∗ (1 − 0.9910)
= 0.00914

(1)

With this counterfactual framework, the comparisons between
control and treatment in the pre-test (experiment mode) and the
back-test (post-launching mode) are the same. In either test, the
metrics on the sellers in the control group (e.g., percentage of unique
sellers getting messages from buyers) are the same as in the case
where the whole ranking bymA is shown to the buyer since the
sellers in the control are a random subset. Similarly, the metrics on
the sellers in the treatment group are the same as when the whole
ranking bymB is shown to the buyer.

From a theoretical perspective, let us first adapt the traditional
stable unit treatment value assumption for the seller-side A/B test-
ing: the experience that sellers receive is only affected by their own
treatment (ranking function in our specific case) and independent
of the treatment of any other seller. It is evident that the counterfac-
tual framework satisfies the assumption since the ranking position
of each item is guaranteed to be the same regardless of what applies
to other sellers in the whole universe.

The idea can be easily generalized to the case where we have
multiple arms (i.e., test groups) in the experiment instead of just
two arms. Assume we would like to compare the impacts of N
ranking modelsm1,m2 ...mN on sellers. We generate N test groups
in which each group contains randomly selected sellers from the
overall universe. To limit the chance of collision mentioned above,
we use a heuristic that the total size of all test groups is not bigger
than 30% of the universe. At the ranking time, the process is similar
to the one in Figure 6, except that the framework now generates
N complete rankings (instead of two). For each item whose seller
belongs to one of the test groups, its position is taken from the cor-
responding ranking. The final rankings of the pre-test and back-test
are generated exactly the same way as in the figure. It is straight-
forward to verify that this generalized framework also satisfies the
stable unit treatment value assumption mentioned earlier in this
section.

5 EMPIRICAL RESULTS
This section shows various empirical evidence confirming the cor-
rectness of the counterfactual experiment framework.

5.1 Consistency Between Before and After
Launching

To verify the framework, we run a seller-side A/B test evaluating the
causal impact of a simple ranking change on Facebook Marketplace
browse feed. The change aims to improve the experience of new
sellers. Given a ranking by the first-stage ranker, among the items
in the top 40 that are from new sellers not receiving any messages
in the last 24 hours, we boost up to four items with the highest
scores to positions 2 through 5 (0-indexed). We limit boosting to
items in the top 40 to make sure the boosted items have reasonable
quality, and we do not boost to the first two positions to alleviate the
impact on buyers’ experience. This simple re-ranking rule keeps the
logic highly intuitive and allows us to easily control the trade-off
between buyers’ experience and sellers’ experience.

The treatment group contains a random sample of 1% of sellers.
In the pre-test, only the items from these sellers are impacted by the
re-ranking rule above, but they are positioned as if the rule were
applied to all items. The items from new sellers in the treatment



Figure 6: In the final rankings, positions of items from the sellers in the treatment group (T1 and T2) are the same as if all
results were ranked bymB and positions of items from the sellers in the control group (C1 andC2) are the same as if all results
were ranked bymA.

satisfying the conditions are up-ranked, and the other items in
the treatment could potentially be ranked lower compared to the
original ranking. The control group contains another 1% of sellers,
and the re-ranking rule does not apply to their items (as well as
the remaining 98%). We compare the two groups on two seller-
side metrics: messages received and seller success rate (See Table
1). Since the ranking change improves the experience of the seller

segment that are least likely to be successful, the seller success rate
is expected to increase. The goal is to improve the metric while
avoiding or minimizing the impact on the messages received.

In the middle of the experiment period, we launch the ranking
change to the remaining 98% of sellers, i.e., we switch the pre-test
into a back-test. Then, we observe the differences between the
treatment and control groups before and after the launch. On the



Table 1: Seller-side metrics

Metric Description

Messages received The number of messages (buyer-seller
interactions) that a seller receives on a
given day.

Seller success rate The percentage of unique sellers receiv-
ing at least one message on a given day.

Figure 7: Consistency between before and after launch. The
left bars indicate the relative differences between treatment
and control groups in the number of messages sellers re-
ceive. The right bars are relative differences in the seller suc-
cess rate.

left of Figure 7, the blue bar indicates the relative difference between
the numbers of messages the sellers in the treatment group and
the sellers in the control group received in the pre-test. The orange
bar is the relative difference in the back-test. The black bars show
the confidence intervals. As shown, the differences between the
metrics before and after launch are not statistically significant.

The blue and orange bars on the right of the figure show the
relative improvements of the treatment over the control in terms
of seller success rate in the pre-test and back-test periods, respec-
tively. Both pre-test and back-test show a statistically significant
improvement in seller success rate of around 2.5%. So, on both
seller-side metrics, the experimental results before and after launch
are consistent.

5.2 Consistency Between the Buyer-Side and
Seller-Side A/B Tests

The ranking change above can also be A/B tested on the buyer
side. In the buyer-side A/B test, the rule is applied to the buyers
in the treatment group and not applied to the ones in the control.
Then, we can compare the two groups on the buyer-side metrics
like the number of messages the buyers send. Note that if the stable
unit treatment value assumption holds on both buyer and seller
sides, the difference in the number of messages the buyers send

Table 2: Boosting strategies to improve the seller’s experi-
ence. Treatment 1 is the least aggressive, and Treatment 3 is
the most aggressive.

Boosting strategy Description

Control No boosting
Treatment 1 (40-4-2) Boost up to 4 items in top-40 from new

sellers to positions starting from 2.
Treatment 2 (100-4-2) Boost up to 4 items in top-100 from new

sellers to positions starting from 2.
Treatment 3 (100-6-0) Boost up to 6 items in top-100 from new

sellers to positions starting from 0.

(on the buyer-side test) should be consistent with the difference
in the number of messages the sellers receive (on the seller-side
test). Since it is straightforward to see that the assumption holds
on this buyer-side A/B test, checking the consistency between the
two tests verifies the correctness of the seller-side test.

Besides the re-ranking rule mentioned earlier (Treatment 1 in
Table 2, we also experiment with some other variants (Treatments
2 and 3). Among the three boosting variants, Treatment 1 is the
least aggressive, and Treatment 3 is the most aggressive. For each
variant, we conduct A/B tests on both the buyer and seller sides.
Then, we verify if the trend across the three boosting variants on
the buyer-side is the same as the trend on the seller-side and if the
buyer-side result is consistent with the seller-side result across each
variant.

Figure 8 shows the differences between each treatment group
over the control on the metric of messages sent/received. For each
boosting strategy, the blue bar shows the differencemeasured by the
buyer-side experiment, while the orange bar is the difference from
the seller-side experiment. In Treatment 1, both of the experiments
give neutral results. As expected, Treatment 2 shows significant
regressions and Treatment 3 results in even larger (and consistent)
regressions on both buyer-side and seller-side experiments. More-
over, across the boosting variants, the difference in magnitudes
on the buyer-side and seller-side are well within their respective
confidence intervals. The consistency between the buyer-side and
seller-side experiments confirms that the seller-side experimental
results are reliable.

6 RELATEDWORK
Related to the challenge of A/B testing on the seller side is the net-
work effect in network bucket (A/B) testing [5, 11]. The intuition
behind this concept is that in social networks, a user’s behavior is
not only influenced by their own experience but also their friends’.
As an illustrative example, suppose a newsfeed system currently
only shows cat photos and no dog photos. Now, we run an A/B test
on a small portion of newsfeed consumers in which the users in
the treatment group only see dog photos on their feeds. Since most
of their friends are not in the treatment group, these users only
see photos with little engagement (e.g., likes, comments, etc.) from
friends. Thus, they do not engage with the photos themselves. How-
ever, if the change is applied to all newsfeed consumers, everyone
will only see dog photos, and their overall engagement will be the



Figure 8: Consistency between buyer-side and seller-side ex-
periments. The blue bars indicate the relative differences in
the number of messages buyers send. The orange bars are
the relative differences in the number of messages sellers
receive.

same (assuming dogs and cats are intrinsically equally interesting).
Thus, the stable unit treatment value assumption does not hold in
the social network setting.

A typical solution to alleviate the network effect on network
bucket testing is cluster-based randomization approach [2, 20, 24].
Before the online A/B test, users are clustered based on their con-
nections. Then, the randomization is performed at the cluster level
instead of the individual level, i.e., all users in the same cluster
are either in the treatment or control group. With the clustering
structure, there are relatively few connections across the clusters.
Thus, the network effect is reduced.

Note that the spill-over effect above and the challenge of the
seller-side ranking A/B tests described in Section 3 are similar but
not the same. In the example above, the spill-over effect on newsfeed
consumers in the treatment is indirect and via social influence. The
experience of the remaining consumers has an impact on the photos,
which in turn influences the engagement of the consumers in the
treatment group on them. Usually, the changes have to be rather
significant to spill over (100% dog photos versus 100% cat photos
in the illustrative example). On the seller-side A/B test example,
the ranking function used on the remaining 99% sellers has a direct
impact on positions of the items in the treatment since all the items
compete with each other on the same ranking. Thus, even if the
ranking function mB is just slightly different to mA (in Figures
3 and 4), switching from mA tomB on the remaining will likely
change positions of the item in the original treatment group.

Even given the difference, interestingly, the cluster-based ran-
domization approach can still be adapted to solve the seller-side
ranking A/B testing in a special case: buyers and sellers form a
large set of communities, and the buy and sell activities only hap-
pen within each community. In this setting, during a seller-side A/B
test, the new ranking function is only applied to sellers in a random
set of the communities. Since a buyer only sees items from the sell-
ers belonging to the same community, the ranking exposed to the

buyer does not depend on the ranking function used in other com-
munities. However, in many real-world marketplaces, to guarantee
the communities are relatively isolated, the communities have to be
large. For instance, using Uber as an example, an interaction could
be reasonably expected between a passenger and a driver within a
city or a region. Thus, the communities have to be at least at the
level of cities. The large sizes of the communities lead to a small
number of randomized units. Thus, this would significantly reduce
the statistical power of the test and increase type II error rate [3]. In
more open marketplaces like Alibaba, Amazon, Facebook Market-
place (where shipping across cities or even countries is available),
and Airbnb (where a user in Asia might book a house in Europe),
the cluster-based randomization approach is almost infeasible. The
counterfactual framework, on the other hand, does not require any
clustering structure among users. Indeed, it can work on the most
open marketplace where any buyer can potentially connect to any
seller. Moreover, on the framework, the randomization is performed
on individual sellers, thus achieving high statistical power of the
A/B tests.

Another research area in the literature also related to the work
in this paper is Multi-Objective Ranking Optimization (MORO)
[9, 22]. MORO is an approach to learning ranking models that
optimize multiple objectives simultaneously, which is a common
setting in many industrial search and recommendation systems.
MORO has been a well-studied research area in the context of Web
search [8–10, 22] and product search [7, 16] where relevance to the
query, freshness, and user actions (like purchase) are all essential.
Similarly, on recommender systems where users can have multiple
possible actions such as clicking, liking, sharing (an item), applying
and following (a job), MORO is also a natural approach [17, 23].
However, there has not been a lot of research focusing on jointly
optimizing both buyer-side and seller-side objectives.

7 CONCLUSIONS
In this paper, we present a key challenge in an emerging direction
of optimizing rankings on seller-side objectives. In many industrial
systems ranging from commerce products (e.g., Amazon, Alibaba,
and Facebook Marketplace) to newsfeeds (e.g., on Facebook and
LinkedIn) to sharing economy (e.g., Airbnb, Uber, Ola, and DiDi),
improving sellers’ experience and retention is an important goal.
However, it is challenging to A/B test the causal impact of ranking
changes on sellers.

To overcome the challenge and open up the opportunity to in-
troduce the seller-side objectives in the ranking optimization, we
propose a novel counterfactual framework for seller-side A/B test-
ing. It is based on a counterfactual property: when experimented
at a small percentage of sellers, the items in the treatment group
are ranked at where they would be if the treatment is ramped to
100% of the sellers. Similarly, the items in the control are ranked
where they would be if the status quo is applied to all sellers. Thus,
the seller-side metrics on the treatment or control are independent
of what applies to the rest of the sellers.

Theoretically, we adapt the stable unit treatment value assump-
tion traditionally used in standard buyer-side A/B testing for the
seller side. We show that the proposed framework satisfies the



assumption. Empirically, our seller-side online A/B tests show con-
sistent results between pre-tests (before launching) and back-tests
(after launching). Furthermore, buyer-side and seller-side A/B tests
also achieve consistent results on the metrics that can be measured
on either side. The counterfactual framework has been used for on-
going seller-side experiments on Marketplace and other products
on Facebook.
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